Lanthanide(III) Nitrate Complexes of the Schiff Base Vanillideneanthranilic Acid

JESSY CHACKO & GEETHA PARAMESWARAN* Department of Chemistry, University of Calicut Malapuram 673 635

Received 2 July 1986; revised 10 March 1987; rerevised and accepted 12 May 1987

The complexes formed by the lanthanide(III) nitrates with the schiff base vanillideneanthranilic acid (H_2L) have been isolated and characterised. These compounds have the formula $[Ln(HL)_2(NO_3)(H_2O)]$ where Ln = La, Ce, Pr, Nd, Sm, Eu and Gd. The structures of the complexes have been established on the basis of IR, PMR and electronic spectroscopy and thermal analysis. The IR spectral data reveal that the ligand acts in a monovalent bidentate manner in the chelates.

Coordination compounds formed by schiff bases with *d*-transition elements have been extensively studied¹. A survey of literature shows that corresponding compounds of lanthanide elements have been much less studied²⁻⁸. No systematic studies have been carried out on the reactions of the schiff base vanillideneanthranilic acid with lanthanides. In continuation of our earlier work⁹⁻¹² on vanillideneanthranilic acid complexes of *d*-transition metal ions, we report here the results of our studies on some new lanthanide(III) complexes of this schiff base.

Vanillideneanthranilic acid was prepared as reported earlier⁹ (M.P., 173°C). La(III), Ce(III), Pr(III), Nd(III), Sm(III), Eu(III) and Gd(III) nitrates, supplied by BDH, were used as such. All the other chemicals were of reagent quality.

An ethanolic solution (0.01 mol) of vanillideneanthranilic acid was mixed with an ethanolic solution of lanthanide(III) nitrate (0.01 mol) and the mixture was stirred magnetically. After 5 min, dilute ammonia (1:20) was added till the solution became turbid. Soon a flocculent mass was obtained, which was stirred for 5-6 h. The precipitate was filtered, washed with hot ethanol and dried *in vacuo* over P_2O_5 .

The lanthanides were determined by conversion into the corresponding oxides. Microanalyses for carbon, hydrogen and nitrogen were performed at the Central Drug Research Institute, Lucknow.

Conductance measurements were made with a Toshniwal conductivity bridge. Infrared spectra were recorded in nujol and KBr in the region 4000-200 cm⁻¹ on a Perkin Elmer 257 spectrophotometer. Electronic spectra of the complexes were recorded in ethanol on a Carl Zeiss DMR-21 UV-Vis spectrophotometer, NMR spectra were obtained in DMSO- d_6

ale kole – El kola Di**m** kar Enero –

Table 1—Analytical Data of Complexes			
Found (Calc.). %			
 C	Н	N	M
47.62	3.52	5.64	18.33
(47.44) 47.56	(3.45) 3.62	(5.53) 5.71	18.32
(47.37) 47.42	(3.45) 3.58	(5.52) 5.67	(18.42) 18.41
(47.32)	(3.44)	(5.52)	(18.51)
46.96 (47.11)	3.49 (3.43)	5.52 (5.49)	18.71 (18.86)
46.68	3.35	5.49	19.31 [′]
(46.74) 46.55	(3.40) 3.32	(5.45) 5.35	(19.50) 19.58
(46.64)	(3.39)	(5.44)	(19.67)
(46.33)	(3.37)	(5.40)	(20.22)
	C 47.62 (47.44) 47.56 (47.37) 47.42 (47.32) 46.96 (47.11) 46.68 (46.74) 46.55 (46.64) 46.25 (46.33)	$\begin{array}{c c} \hline C & H \\ \hline & \\ \hline \hline & \\ \hline \hline \\ \hline \hline & \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

with TMS as an internal standard, using a Varian EM-390 NMR spectrometer. Thermal analyses were conducted on a Stanton recording thermobalance Model TR-1, in an atmosphere of static air. The heating rate was 4K min⁻¹ and chart speed was 6 in h^{-1} .

All the complexes are solid reddish-yellow compounds. These compounds are finely divided powders which decompose above 120° C without melting. The compounds could not be recrystallised due to their insolubility in common solvents. The results of the analyses of these compounds are presented in Table 1. The analytical data are in good accord with their formulation as $[Ln(HL)_2(NO_3)(H_2O)]$ where H_2L is the schiff base vanillideneanthranilic acid.

All the chelates are non-conducting ($\Lambda M = 0.5$ -4.8 ohm⁻¹cm²mol⁻¹) in nitrobenzene at 28 ± 2° which indicates their non-electrolytic nature.

The medium intensity band at 2700 cm^{-1} in the IR spectrum of the ligand may be due to intramolecularly H-bonded vOH; this band remains largely unaffected in the chelates providing evidence for the uninegative bidentate nature of the ligand in these complexes. The band appearing in the region 3300-3100 cm⁻¹ is assigned to v(-OH) of coordinated water. The free ligand band at 1620 cm⁻¹, assignable to vC=N, undergoes shift to lower wavenumbers (1570-1590 cm⁻¹) in the complexes indicating participation of the nitrogen atom of the azomethine group in coordination¹³⁻¹⁶.

The asymmetric and symmetric stretching vibrations of the carboxylate group occur at 1590-1630 and 1440-1450 cm⁻¹, respectively, showing a Δv value of 140-190 cm⁻¹. these observations suggest that

The Provide the Addition of the state of the second state of the second states of the second

the present compounds contain monodentate carboxylate group^{15,17,18}. The IR spectrum shows bands around 1290, 1030 and 745 cm⁻¹ corresponding to the v_1 , v_2 and v_3 vibrations of unidentate nitrate group¹⁹. The formation of M—N and M—O bonds is further supported by the appearance of v(M—N) and v(M—O) in the regions 400-600 and 350-440 cm⁻¹ respectively in the spectra of the chelates²⁰.

The NMR spectrum of vanillideneanthranilic acid in DMSO- d_6 is characterised by four signals at $\delta 9.5$, 8.7, 7.2 and 3.8 and they have been attributed to the various proton resonances due to -OH, -HC = N, phenyl and methoxy groups respectively. In the spectra of the complexes, the resonance due to the -OHgroup does not disappear but the resonance due to the azomethine proton shifts to upfield due to shielding effect and merges with proton signal at 7.3 δ . These observations suggest that the azomethine nitrogen coordinates with Ln(III).

The electronic spectrum of the ligand shows one absorption maximum due to $n \rightarrow \pi^*$ transition at ≈ 330 nm. The spectrum below 300 nm $(\pi \rightarrow \pi^*)$ region has not been investigated. The very broad band observed in the visible region with absorption maximum around ≈ 380 nm in all the complexes may be assigned to the very strong ligand to metal chargetransfer transition.

The thermogravimetric studies of lanthanide(III) chelates show mass loss corresponding to one water molecule around 160°C. Above this temperature, the

complexes undergo continuous decomposition and oxidation to give the stable oxides.

References

- Holm R H, Everett (Jr) G W & Chakravorty A, Progress in inorganic chemistry, Vol. 7 (Interscience, New York), 1964,83.
- 2 Dutt N K & Nag K, J inorg nucl Chem, 30 (1968) 2493.
- 3 Yamada S, Yamanonchi K & Kuma H, Bull chem Soc Japan, 44 (1971) 1448.
- 4 Isobe T, Kida S & Misumi S, Bull chem Soc Japan, 40 (1967) 1867.
- 5 Yamada S, Yamanonchi K & Kuma H, Synth React inorg met org Chem, 1 (1971) 9.
- 6 Butter E, Lorenz B & Hayer E, J prakt Chem, 34 (1966) 30.
- 7 Durham D A & Hart F A, J inorg nucl Chem, 31 (1969) 145.
- 8 Smith G D, Conghlin C N, Mozhar-ul-Haque & Hart F A, Inorg Chem, 12 (1973) 2654.
- 9 Chacko J & Parameswaran G, J therm Anal, 29 (1984) 3.
- 10 Chacko J & Parameswaran G, Indian J Chem, 24A (1985) 977.
- 11 Chacko J & Parameswaran G, J Indian chem Soc, 63 (1986) 774.
- 12 Chacko J & Parameswaran G, J Indian chem Soc, 57 (1980) 95.
- 13 Olszewski E J & Martin D F, J inorg nucl Chem, 26 (1964) 1577.
- 14 Dutta R L& Sengupta G P, J chem Soc, 48 (1971) 33.
- 15 Nakamoto K, Infrared spectra of inorganic and coordination compounds (John Wiley, New York) 1966.
- 16 Sacconi L & Campigli U, Inorg Chem, 5 (1966) 606.
- 17 Curtis N F, J chem Soc, 7A (1968) 1579.
- 18 Dey K & Ray K C, J Indian chem Soc, 50 (1973) 66.
- 19 Ueno K & Martell A E, J phys Chem, 60 (1956) 1270.
- 20 Nakamoto K, Spectroscopy and structure of metal chelate compounds (John Wiley, New York) 1968.