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Failures at geological discontinuities often play a dominant role in the prediction of rockslides. In this study, a second 
order work criterion was used to analyze this type of problem by its constitutive instabilities, as it can expound all physical 
instabilities by divergence, except flutter instabilities. Derived from vanishing of the second order work, a matrix analysis 
focusing on the instability of geological discontinuities in two dimensions was performed. A real rockslide was simulated in 
a 2-D framework, and the second order work criterion was used to predict the occurrence of the rockslide. The numerical 
results were compared to monitoring data. Rockslides could be considered as processes involving a transition from a static 
loading to a dynamic response including a sudden burst of kinetic energy. Furthermore, a relationship existed between the 
second order work and second order kinetic energy. Hence, kinetic energy estimation was performed using two numerical 
approaches derived from this relationship and compared. 

[Keywords: Rockslide; Geological discontinuity; Static-dynamic transition; Bifurcation instability; Kinetic energy; Second 
order work.] 

Introduction 
A rock mass is a structural aggregation that consists 
of an intact rock block and geological discontinuities 
such as fractures, joints, and faults. The mechanical 
behaviors of these geological discontinuities frequently 
control the rock mass failure, because they are notably 
more degraded compared to that of an intact rock.  
In many real cases, the potential sliding surface of  
a rock slope is continually formed along a major 
geological discontinuity such as a fault or a weak 
zone. Thus, it is necessary to accurately analyze 
failure at geological discontinuities in stability problems 
of rock slopes. It can be considered that these geological 
discontinuities exhibit “soil-like” behaviors that can 
be described by elasto-plastic hardening models1,2. An 
incremental relationship between stress and strain is 
used to present the constitutive relation as follows: 
 

𝑑𝝈 ൌ 𝑴 ∙ 𝑑𝜺  … (1) 
 

where 𝑑𝝈 and 𝑑𝜺 are the incremental effective stress 
vector and incremental strain vector, respectively, and 
M is the elasto-plastic constitutive matrix.  

As defined within the framework of classic plasticity 
theory, failure occurs when relative displacements 

along the geological discontinuity (or ‘deformation’ 
from a general view point) are sustained under a 
constant loading. Consequently, when the shearing 
stress reaches a peak, the corresponding shearing 
strain increases continuously under constant stresses. 
This can be considered as a failure that occurs in the 
geological discontinuity, and this will induce 
rockslides in a rock slope. Such analyses of failure 
lead to the notion of limit stress states corresponding 
to the plastic limit criterion such as the Mohr-
Coulomb criterion. The limit analyses (conventionally 
termed as limit equilibrium methods) are widely used 
to analyze soil slopes or rock slopes that are heavily-
fractured or weathered7,9. According to the definition 
of failure, this criterion corresponds to detሺ𝑴ሻ ൌ 0, 
where detሺ𝑴ሻ is the determinant of the constitutive 
matrix M.  

However, results derived from the limit equilibrium 
methods are frequently unsatisfactory. Compared to 
the experimental results, the limit analysis presented 
by Adhikary and Dyskin10 overestimated the failure 
level by at least 70%, but the stress-strain analysis 
results were more accurate with a maximum error of 
15%. There are two reasons for this. The first reason 
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is the assumption that the plastic limit criterion was 
applicable throughout in accordance with the limit 
analysis; however, geomaterials in reality are effectively 
not homogeneous. The second reason is that 
geomaterials exhibit a rather non-associated behavior 
that induces the occurrence of failures before the 
plastic limit criterion. A bifurcation domain of failure 
existed in the stress space for geomaterials2,6,11,14. 
Rice’s criterion could be reached prior to the plastic 
limit, in conjunction with the phenomena wherein 
increasing plastic deformation localizes in shear or 
compaction/dilation bands15,17. The second order work 
criterion could explain another bifurcation failure by 
excluding both the aforementioned criteria; diffuse 
failure that involves the liquefaction phenomenon of 
loose sand in an undrained condition is a typical 
example11,14. In this study, the second order work 
criterion was used to analyze failures of geological 
discontinuities, 
 

𝑑ଶ𝑤 ൌ 𝑑𝝈 ∙ 𝑑𝜺  … (2) 
 

where 𝑑ଶ𝑤 denotes the second order work.  
Second order work was initially described by Hill18; 

Darve et al. elucidated the bifurcation instabilities  
for geomaterials, established and validated the general 
framework of bifurcation failures theoretically, 
experimentally and numerically11,14. The second order 
work criterion is a new tool that is different from the 
plastic limit criterion and Rice’s localization criterion. 
Additionally, it is the most conservative criterion as 
compared to the other two and can explain all types  
of material instabilities by divergence, except for 
flutter instabilities corresponding to abruptly cyclically 
increasing strains. The plastic limit criterion was 
included in the framework because the failure indicated 
by this criterion can be elucidated as a specific case. 
Furthermore, Rice’s criterion involves a particular 
case in line with linear algebra19,20, and thus localized 
failures could also be described within the framework. 
 

Materials and Methods 
The paper discusses the second order work 

criterion that is applied to bifurcation instabilities of 
geological discontinuities. This is followed by the 
examination of the relationship between second order 
work and kinetic energy and the derivation of two 
approaches to estimate kinetic energy. Thereafter, the 
simulation of a real rockslide in China is examined. 
Real-time monitoring data were used and compared 
with the numerical results, and the kinetic energy was 
calculated and analyzed. 

Second order work criterion applied to geological 
discontinuities and transition of static-dynamic 
regimes 

Hill’s second order work theory was conveniently 
used to identify material instabilities by divergence, 
which resulted in failures11,14. Bursts of kinetic energy 
related to negative second order work further 
indicated effective failure21,23. As per the stress-strain 
analysis approach, the value of second order work 
stated in Equation (2) (that is, the necessary and 
sufficient conditions of failure) corresponded to three 
points: The current stress state, the loading direction, 
and appropriate loading manners24. A material is 
strictly stable if the calculated second order work is 
positive in every loading direction, and a material is 
potentially unstable if the calculated second order 
work is negative in any loading direction. Moreover, 
failure occurs if the second order work is negative in 
the current loading direction. 
 
Bifurcation instabilities and second order work 
criterion in case of geological discontinuities 

The objective of this study involved analyzing 
material instability problems of geological 
discontinuities in two dimensions. Equation (2) can 
also be expressed as follows: 
 
𝑑ଶ𝑤 ൌ 𝑑𝜏 ∙ 𝑑𝛾 ൅ 𝑑𝜎 ∙ 𝑑𝑢  … (3) 
 

where 𝑑𝜏 and 𝑑𝜎 are the tangential and normal 
incremental stress components, respectively (that are 
positive in compression). Correspondingly, 𝑑𝛾 and 𝑑𝑢 
are the tangential and normal incremental strain 
components, respectively. Tensorial zones25 in which 
the constitutive matrix M is constant were introduced 
to simplify the analysis. Equation (3) can be stated as 
follows: 

 

𝑑ଶ𝑤 ൌ ቀ𝑑𝛾
𝑑𝑢

ቁ
்

𝑴 ቀ𝑑𝛾
𝑑𝑢

ቁ ൌ ቀ𝑑𝛾
𝑑𝑢

ቁ
்

൬
𝐺௧ 𝐺௡
𝐸௧ 𝐸௡

൰ ቀ𝑑𝛾
𝑑𝑢

ቁ … (4) 

 
where 𝐸௡, and 𝐺௧ denote the normal and tangential 

stiffnesses, respectively; and 𝐸௧ and 𝐺௡ correspond  
to the dilatants feature of geological discontinuity. 
Hence, we obtain the following expression is 
obtained: 
 
𝑑ଶ𝑤 ൌ 𝐸௡𝑑𝑢ଶ ൅ ሺ𝐺௡ ൅ 𝐸௧ሻ𝑑𝑢𝑑𝛾 ൅ 𝐺௧𝑑𝛾ଶ ൌ

𝑑𝛾ଶ ൬𝐸௡ ቀௗ௨

ௗఊ
ቁ

ଶ
൅ ሺ𝐺௡ ൅ 𝐸௧ሻ ௗ௨

ௗఊ
൅ 𝐺௧൰  … (5) 
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Let us consider that 𝑑𝛾ଶ ൐ 0 to study the 
conditions that resulted in 𝑑ଶ𝑤 ൑ 0. This leads to the 
expression: 

 

𝑃ሺ𝑥ሻ ൌ 𝐸௡ሺ𝑋ሻଶ ൅ ሺ𝐺௡ ൅ 𝐸௧ሻ𝑋 ൅ 𝐺௧ ൑ 0  … (6) 
 

where 𝑋 ൌ
ௗ௨

ௗఊ
 denotes the loading direction. 

Evidently, 𝐸௡ represents a normal stiffness and is 
positive for most rocks (𝐸௡ may be negative only in 
the case of compacting rocks with a high porosity26. 
Consequently, the conditions necessary to satisfy the 
inequality in Eq. (6) are expressed as: 
 

൝
Δ ൌ ሺ𝐺௡ ൅ 𝐸௧ሻଶ െ 4𝐸௡𝐺௧ ൒ 0

ௗ௨

ௗఊ
∈ ቂିሺீ೙ାா೟ሻି√୼

ଶா೙
,

ିሺீ೙ାா೟ሻା√୼

ଶா೙
ቃ
  … (7a, b) 

 
Equation (7a) gives the condition of potential 

bifurcation instability. Equation (7b) indicates the 
loading directions leading to effective instability. 
According to Equation (7b), a series of cones existed 
in the bifurcation domain of the ሺ𝑑𝑢, 𝑑𝛾ሻ plane, based 
on tensorial zones in which a mechanical state situates 
(different tensorial zones correspond to different 
constitutive matrices). The loading directions along 
the two branches of the cones provided the exact nil 
value of second order work, and the directions inside 
the cones resulted in a negative value. 

Furthermore, the second order work vanishes  
when the determinant of the symmetric part of the 
constitutive matrix, ‖𝑴௦‖ ൌ 0, but not when ‖𝑴‖ ൌ
0. Because geomaterials obey non-associated constitutive 
law, the corresponding constitutive matrix M was 
asymmetric, and its symmetric part can be written as: 
 

𝑴௦ ൌ ቌ
𝐺௧

ீ೙ାா೟

ଶ
ீ೙ାா೟

ଶ
𝐸௡

ቍ  … (8) 

 
The determinant of 𝑴௦ is as follows: 
 

detሺ𝑴௦ሻ ൌ 𝐺௧𝐸௡ െ ቀீ೙ାா೟

ଶ
ቁ

ଶ
ൌ െ

୼

ସ
  … (9) 

 
This was equivalent betweenΔ ൒ 0 and detሺ𝑴௦ሻ ൑

0. The plastic limit criterion corresponds to detሺ𝑴ሻ ൌ
0 and is the upper limit of the bifurcation domain.  
The second order work criterion corresponding  
to detሺ𝑴௦ሻ ൌ 0 is the lower limit. Linear algebra 
principles indicate that the determinant of the positive 

finite matrix exceeds that of its symmetric part27, and 
this explains why the material instabilities by 
divergence can occur, from the mathematical viewpoint. 
 

Calculations of local and global second order works 
in boundary value problems 

In this study, the second order work was used in 
constitutive relations of geological discontinuities  
as a failure criterion, to investigate the instability  
of the rock slope and occurrence of rockslides from  
a constitutive viewpoint. Second order work was 
calculated only in the loading directions to ensure a 
reasonable computation time for the calculation; this 
could induce a smaller bifurcation domain because 
some other directions could potentially lead to 
instability earlier. This also involves the conservative 
assumption that a failure had occurred when the 
calculated second order work was not positive. In 
addition, to improve the readability of the corresponding 
graphs, 𝑑ଶ𝑤 is normalized as: 
 

𝑑ଶ𝑤௡ ൌ
ௗమ௪

‖ௗ𝝈‖‖ௗ𝜺‖
  … (10) 

 

where ‖𝑑𝝈‖ and ‖𝑑𝜺‖ denote the norms of the 
stress increment vector and the strain increment 
vector, respectively. Hence, the value of 𝑑ଶ𝑤௡ is 
limited between -1 and 1.  

Moreover, a normalized global second order work 
criterion is used to apply the second order work to 
boundary value problems, and this is formulated as6,28: 
 

𝐷ଶ𝑊 ൌ
∑൫ௗమ௪೔∙ఠ೔௃೔൯

∑ ఠ೔௃೔ ∑ሺ‖ௗ𝝈೔‖‖ௗ𝜺𝒊‖ሻ
  … (11) 

 

where the subscript i indicates the number of 
calculation points, 𝜔௜ and 𝐽௜ denote the numerical 
weight and the determinant of the Jacobian matrix at 
the point i, respectively. With respect to the numerical 
methods that did not involve the integration 
calculation, 𝜔௜ and 𝐽௜ were assigned the value of 1. 
According to equation (11), 𝐷ଶ𝑊 ൑ 0 indicated 
global failure of the material. 

 

Transition between static-dynamic regimes 
The effective failure of geomaterials is associated 

with an outburst of kinetic energy21,22 that declares the 
transition from a quasi-static regime to a dynamic 
regime. Let us consider the equation of motion: 
 

div𝝈 ൅ 𝒃 ൌ 𝜌𝒖ሷ   … (12) 
 

It was assumed that density 𝜌 is a constant and  
the time derivative of equation (12) is given by 
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multiplying the velocity vector 𝒖ሶ  on the left and right 
sides as a scalar product: 
 
൫divσሶ ൅ 𝑏ሶ ൯ ∙ 𝑢ሶ ൌ 𝜌𝑢ሷሶ ∙ 𝑢ሶ   … (13) 
 

As 𝐸௖ ൌ
ଵ

ଶ
𝜌‖𝒖ሶ ଶ‖, we obtain𝐸ሷ௖ ൌ 𝜌ฮ𝒖ሷ 𝟐ฮ ൅ 𝜌𝒖ሶ 𝒖ሷሶ ൌ

𝜌ሺ𝒖ሶ 𝒖ሷ ሻሶ where 𝐸௖denotes kinetic energy. Consequently, 
Equation (13) can be written as: 
 
divሺ𝝈ሶ ∙ 𝒖ሶ ሻ െ 𝝈ሶ : 𝜺ሶ ൅ 𝒃ሶ ∙ 𝒖ሶ ൌ 𝐸ሷ௖ െ 𝜌ฮ𝒖ሷ 𝟐ฮ  …(14) 
 

Thus, the relationship between second order work 
denoted as 𝑑ଶ𝑤/Δ𝑡ଶ ൌ 𝝈ሶ : 𝜺ሶ  and kinetic energy as: 
 
𝑑ଶ𝑤/Δ𝑡ଶ ൌ divሺ𝝈ሶ ∙ 𝒖ሶ ሻ ൅ 𝒃ሶ ∙ 𝒖ሶ െ 𝐸ሷ௖ ൅ 𝜌ฮ𝒖ሷ 𝟐ฮ   
 … (15) 
 

The above equation proposed an approach to study 
the transition problems between the quasi-static 
regime in the pre-failure stage and the dynamic 
response at failures. In the framework, second order 
kinetic energy was linked with the external second 
order work involved with the external forces (the first 
and second terms), the internal second order work was 
related to the continuous constitutive behavior of the 
media, and finally the inertial term 𝜌ฮ𝒖ሷ 𝟐ฮ denoted the 
dynamic effect of the media, which remained positive 
and was close to zero under the quasi-static loading. 

Equation (15) did not indicate a direct relationship 
between the second order work and kinetic energy. 
Indeed, a direct relation could be obtained by 
invoking Taylor’s formula and the following initial 
conditions:  
1) Assuming Δ𝑡sufficiently small and ignoring third 

order terms, 
ாሷ೎ሺ௧ሻ

ଶ!
Δ𝑡ଶ ൎ  𝐸௖ሺ𝑡 ൅ Δ𝑡ሻ െ 𝐸௖ሺ𝑡ሻ െ

𝐸ሶ௖ሺ𝑡ሻΔ𝑡 
2) Considering that the media was in an equilibrium 

configuration at time t and was unstable at time 
𝑡 ൅ Δ𝑡, 𝐸௖ሺ𝑡ሻ ൌ 𝐸ሶ௖ሺ𝑡ሻ ൌ 0 

Thus, Δ𝑡ଶ𝐸ሷ௖ሺ𝑡ሻ  ൎ 2𝐸௖ሺ𝑡 ൅ 𝛥𝑡ሻ and Equation (15) 
is expressed as follows: 

 
𝑑ଶ𝑤ሺ𝑡ሻ/Δ𝑡ଶ ൎ div൫𝝈ሶ ሺ𝑡ሻ ∙ 𝒖ሶ ሺ𝑡ሻ൯ ൅ 𝒃ሶ ሺ𝑡ሻ ∙ 𝒖ሶ ሺ𝑡ሻ െ
2𝐸௖ሺ𝑡 ൅ Δ𝑡ሻ/∆𝑡ଶ ൅ 𝜌ฮ𝒖ሷ ሺ𝑡ሻ𝟐ฮ  … (16) 
 

The first, second, and fourth terms on the right side 
of the above equation were close to zero because at 

the next moment when instability occurs, the 
increasing external loading cannot be applied and the 
inertial force remains a small value. This resulted in 
the following direct link as follows: 
 

𝑑ଶ𝑤ሺ𝑡ሻ ൎ െ2𝐸௖ሺ𝑡 ൅ Δ𝑡ሻ  … (17) 
 

According to this relationship, the increasing 
kinetic energy, which implies the instability evoking 
failure, induced a negative value of second order 
work. It was evident that Equation (17) was 
applicable only at the moment when failure occurred. 

For estimating kinetic energy during quasi-static 
loading stage, two approaches could be derived. Let 
us introduce the assumption that Δ𝑡 was sufficiently 

small and take into account 
ாሷ೎ሺ௧ሻ

ଶ!
Δ𝑡ଶ ൎ  𝐸௖ሺ𝑡 ൅ Δ𝑡ሻ െ

𝐸௖ሺ𝑡ሻ െ 𝐸ሶ௖ሺ𝑡ሻ, Equation (15) could be expressed for 
boundary value problems as follows: 

 

𝐸௖ሺ𝑡 ൅ Δ𝑡ሻ ൎ
1
2

ቆන 𝝈ሶ ∙ 𝒖ሶ ∙ 𝒏𝑑𝑆଴
ௌబ

൅ න 𝒃ሶ ∙ 𝒖ሶ
௏బ

𝑑𝑉଴

൅ න 𝜌ฮ𝒖ሷ 𝟐ฮ
௏బ

𝑑𝑉଴ െ න 𝝈ሶ
௏బ

∙ 𝛆ሶ 𝑑𝑉଴ቇ Δ𝑡ଶ 

൅𝐸௖ሺ𝑡ሻ ൅ 𝐸ሶ௖ሺ𝑡ሻΔ𝑡 ൌ
ଵ

ଶ
ሺ𝑑ଶ𝑊௘௫௧ െ 𝑑ଶ𝑊௜௡௧ ൅ 𝐼ሻΔ𝑡ଶ ൅

𝐸௖ሺ𝑡ሻ ൅ 𝐸ሶ௖ሺ𝑡ሻΔ𝑡  … (18)  
 

where 𝑉଴ denotes the volume of media subjected to 
body forces, and 𝑆଴ denotes the boundary of media 
subjected to surface forces. The kinetic energy of the 
media at the time step 𝑡 ൅ ∆𝑡 was calculated by the 
external second order work denoted by 𝑑ଶ𝑊௘௫௧ ൌ

׬ 𝝈ሶ ∙ 𝒖ሶ ∙ 𝒏𝑑𝑆଴ௌబ
൅ ׬ 𝒃ሶ ∙ 𝒖ሶ௏బ

𝑑𝑉଴, the inertial term 

denoted by 𝐼 ൌ ׬ 𝜌ฮ𝒖ሷ 𝟐ฮ௏బ
𝑑𝑉଴, the internal second 

order work denoted by 𝑑ଶ𝑊௜௡௧ ൌ ׬ 𝝈ሶ௏బ
∙ 𝛆ሶ𝑑𝑉଴, the 

kinetic energy 𝐸௖ሺ𝑡ሻ and its differential 𝐸ሶ௖ሺ𝑡ሻ at the 
time step t. This was the first approach to estimate the 
evolution of kinetic energy. With initial condition that 
𝐸௖ሺ𝑡଴ሻ ൌ 𝐸ሶ௖ሺ𝑡଴ሻ ൌ 0, 𝐸௖ሺ𝑡 ൅ Δ𝑡ሻ could be solved at 
each time step. It should be noted that this was an 
approximate approach and was thus limited to small 
time increments. 

With respect to the second approach, Equation (15) 
could be expressed for boundary value problems as 
follows: 

 

𝐸ሷ௖ ൌ ׬ 𝝈ሶ ∙ 𝒖ሶ ∙ 𝒏𝑑𝑆଴ௌబ
൅ ׬ 𝒃ሶ ∙ 𝒖ሶ

௏బ
𝑑𝑉଴ ൅ ׬ 𝜌‖𝒖ሷ 𝟐‖

௏బ
𝑑𝑉଴ െ

׬ 𝝈ሶ
௏బ

∙ 𝛆ሶ 𝑑𝑉଴  (19) 
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The second order kinetic energy of system was 
related to 𝑑ଶ𝑊௘௫௧, I, and 𝑑ଶ𝑊௜௡௧, and thus an 
integration procedure with respect to time was 
required to calculate the kinetic energy. With the 
same initial condition as 𝐸௖ሺ𝑡଴ሻ ൌ 𝐸ሶ௖ሺ𝑡଴ሻ ൌ 0, for 
each time 𝑡଴ ൅ ∆𝑡, the integral expression from 
Equation (19) is expressed as: 

 

𝐸௖ሺ𝑡଴ ൅ ∆𝑡ሻ ൌ ׬ ቀ׬ ሺ𝑑ଶ𝑊௘௫௧ െ 𝑑ଶ𝑊௜௡௧ ൅ 𝐼ሻ𝑑𝑡
்

௧బ
ቁ 𝑑𝑇

௧బା∆௧
௧బ

   

 … (20) 
 

The concept of kinetic energy, failure, and second 
order work criterion could be used in many problems 
irrespective of the scale involved. In the following 
sections, these concepts are introduced with respect to 
macroscopic problems, such as the scale of rockslides, 
by means of numerical simulations.  
 

Simulation of a real rockslide  
In this study, the simulation was performed by means 

of FLAC-3D, which is a numerical tool based on the 
finite difference method. This numerical tool uses the 
full dynamic equations of motion even when modeling 
objects are static or quasi-static, and this characteristic 
made it possible to follow physically unstable processes 
without numerical complexities. In addition, an explicit 
solution scheme was selected to restrict the numerical 
cost. The small time limitation and the question of 
required damping posed delicate shortcomings for this 
type of formulation. However, they were overcome by 
automatic inertia scaling and automatic damping that did 
not influence the mode of failure.  

A rock slope is considered as a rock mass separated 
by geological discontinuities. Accurately describing 
failures that occurred in the major geological 
discontinuity was the key point in investigating the 
occurrence of rockslides. As shown in Figure 1, the 

sliding bed is considered a stable and rigid block, and 
the sliding rock mass is considered one or several 
mobile and rigid blocks. Various factors such as 
earthquakes, rainfall, and charge loadings on top of 
the slope can induce sliding for a rockslide model of 
this type. However, with respect to a global viewpoint, 
the necessary and sufficient condition is that the 
sliding force induced from the upper blocks (𝑇ଵ) should 
exceed the resistant force of the major geological 
discontinuity (𝑇ଶ).  
 
Nanfen rockslide analyzed using second order work 
criterion 

The Nanfen open-pit mine is located in north-east 
China and is the largest single open pit iron mine in 
Asia. Up to now, more than 60 rockslides have 
occurred in this area, which has formed an old 
rockslide body of approximated 110000 mଶ and this 
pose a major threat to normal production. The 
landslide body contains mainly chlorite hornblende 
schist. A major fault with a 48୭ inclination provides a 
potential principal sliding surface.  

As shown in Figure 2, the monitoring points were 
distributed according to the structure and the scale of 
the old rockslide body in the foot-hanging wall in the 
mining site. Additionally, 28 monitoring points were 
installed to measure the sliding force (blue round 
dots) in the sliding body (334-662 m bench). A GPRS 
relay station, a Beidou satellite relay station, and a 
rain-fall monitoring point were installed in the 
hanging wall that was stable as compared to the foot 
hanging wall. 

The sliding force could be derived from the 
monitored data with a remote real-time monitoring 
system developed by He29,31. Figure 3 shows the 
evolution of the sliding force along the geological 
discontinuity from B334 to B358 (see Fig. 2), which 

 
 

Fig. 1 — Mechanical model for rock slopes controlled by one major geological discontinuity 
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was principally induced by mining activities at the toe 
of the slope. The effect of rainfall was not considered 
because it had not rained in the transition process 
from a stable state to rockslide as shown in Figure 3 
(Noted that rainfalls occurred on September 29, 2011 
and particularly on October 6, 2011 could trigger a 
saturation process in the major fault and introduce a 
potential factor of instability). The sliding force 
remained stable until August 2, 2011, and increased 
rapidly to 1678 kN on October 6, 2011, when the 
rockslide occurred29.  

First, it was reasonable to consider this real case  
by using the mechanical model illustrated in  
Figure 1 because the real rock slope presented an 

obvious mechanical discontinuity according to the 
geological data in Table 1, and it was the failure of 
the major fault that induced the rockslide. Second, 
this case could be analyzed using Equations (3-9) 
because the failure of the major fault occurred under 
an increasing sliding force and a constant normal 
force. In the framework of a 2-D analysis, the loading 
conditions corresponded to 𝑑𝜎 ൌ 0 and 𝑑𝜏 ൐ 0. 
According to Equations (3-5) and 𝑑𝜎 ൌ 𝐸௧𝑑𝛾 ൅
𝐸௡𝑑𝑢 ൌ 0, the second order work under this loading 
path is expressed as: 

 

𝑑ଶ𝑤 ൌ 𝑑𝜏 ∙ 𝑑𝛾 ൌ 𝑑𝛾ଶ ቀ𝐺௡
ௗ௨

ௗఊ
൅ 𝐺௧ቁ ൌ 𝑑𝛾ଶ ቀെ𝐺௡

ா೟

ா೙
൅

𝐺𝑡൑0  … (21) 

 
 

Fig. 2 — Distribution of monitoring points 
 

 
 

Fig. 3 — Monitoring sliding force against time29 
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It was assumed that 𝑑𝛾ଶ ൒ 0, and thus the 
condition of 𝑑ଶ𝑤 ൑ 0 is  
 
ா೟

ா೙
൒

ீ೟

ீ೙
  … (22) 

 
Evidently, this condition was equivalent to 

detሺ𝑴ሻ ൑ 0, which corresponded to the plastic limit 
criterion. Consequently, under this loading path, the 
failure occured exactly at the plastic limit criterion 
and bifurcation instability did not exist prior to the 
same. However, Equation (22) was always included  
in Δ ൌ ሺ𝐺௡ ൅ 𝐸௧ሻଶ െ 4𝐸௡𝐺௧ ൒ 0, and this is another 
example wherein the second order work criterion 
included the plastic limit criterion. It should be noted 
that failures of major faults occurring during rainfalls 
involved a decreasing 𝜎. If rainfall was sufficiently 
intense and the permeability of the major fault  
was sufficiently low, an undrained condition could 
lead to bifurcation instabilities before the plastic limit. 
This is why the second order work criterion was 
recommended to analyze the instability problems of 
the rock slope. 
 

Numerical model of Nanfen rockslide 
As shown in Figure 4, the slope has a major fault 

with an inclination of 48୭, a height of 36 m, and a 
thickness of 3 m. The monitored sliding force was 
assumed as a shearing stress that increased linearly 
from the top of the slope to the toe and was incident 
along the upper surface of the fault. During the 
calculation, the shearing stress was increased until 
global failure (loss of convergence) occurred. It 
should be noted that the upper block was neglected 
because the calculation was only performed with 
respect to the major fault. The effects of the upper 
block on the major fault were considered to have been 
caused initially by gravity (initialization of gravity 
caused an initial sliding force of 380 kN) and then by 
the shearing force.  

The strain hardening Mohr-Coulomb model was 
selected according to the physical parameters in  
Table 1 and the second order work was implanted in 
FLAC as the failure criterion. In this study, we did  
not repeat details of this model, but only recalled  

the corresponding yield surface and the potential 
function, written as: 

 

⎩
⎪
⎨

⎪
⎧𝑓 ൌ 𝜎ଵ െ 𝜎ଷ𝑁ఝ െ 2𝑐ඥ𝑁ఝ

𝑔 ൌ 𝜎ଵ െ 𝜎ଷ𝑁ట

𝑁஦ ൌ
ଵାୱ୧୬ఝ

ଵିୱ୧୬ఝ

𝑁ந ൌ
ଵାୱ୧୬ట

ଵିୱ୧୬ట

  … (23) 

 
where 𝜑 and c denote the effective angle of friction 

and cohesion, respectively. Furthermore, 𝜓 denotes 
the dilation angle. Moreover, 𝑓 ് 𝑔, and thus this was 
a non-associated constitutive model, and the corresponding 
constitutive matrix was not symmetric. 
 
Results and Analysis 

The rockslide was induced by failure at the major 
fault, and the evolution of second order work in the 
major fault was proposed to highlight this point. 
Three points in the major fault were selected to 
present the local second order work curves in  
Figure 5. Evidently, the local second order works at 
the toe of slope and in the middle (points A and B) 
decreased and vanished at load step 20. This implied 
that some zones in the lower part of the major fault 

Table 1 — Physical parameters for rock mass and fault of Nanfen rockslide32 

Physical parameters E v c 𝜑 𝜓 𝜌 

Unit MPa - kPa º º Kg/m³ 
Rock mass 36000 0.31 317 37 8 2910 

Fault 800 0.26 12 24.7 2 1825 
 

 

Fig. 4 — Rockslide model in 2D 
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became unstable at load step 20 under a sliding force 
of 1453.3 kN. In contrast, the local second order work 
near the top of the slope (point C) remained positive 
during the calculations. 

Figures 6a-e show the contours of local second 
order work along the major fault that globally coincided 
with the result in Figure 5. Given a shearing force of 
1467.8 kN, first unstable zones appeared and were 
evidently distributed in the toe and the middle of the 
fault in Figure 6a. It is important to note that a red 
warning was actually issued as shown in Figure 3 to 
stop excavation activity at the toe of the slope. With 
respect to the increasing sliding force (as illustrated in 
Figs 6b-d under sliding forces of 1526, 1656.7, and 
1714.9 kN), the unstable zones as indicated by the 
second order work criterion extended progressively 
near the top of the slope. When the sliding force 
reached 1729.4 kN (as shown in Fig. 6e), a through 
failure appeared along the major fault and the sliding 
body moved. The results in gross terms of the 
maximum sliding force predicted by this numerical 
approach coincided with those of the real case shown 
in Figure 3. 

The global second order work began decreasing 
from step 15 and was negative at load step 39  
(see Fig. 7). With respect to load step 39, the sliding 
force was 1729.4 kN and a through instability zone 

 
 

Fig. 5 — Evolution of local 𝑑ଶ𝑤௡ at three points in major fault 

 
 

Fig. 6a — Contour of local 𝑑ଶ𝑤௡ under sliding force of 1467.8kN at load step 21; 6b ─ Contour of local 𝑑ଶ𝑤௡ under sliding force of 
1526kN at load step 25; 6c ─ Contour of local 𝑑ଶ𝑤௡ under sliding force of 1656.7kN at load step 34; 6d ─ Contour of local 𝑑ଶ𝑤௡ under 
sliding force of 1714.9kN at load step 38; 6e ─ Contour of local 𝑑ଶ𝑤௡ under sliding force of 1729.4kN at load step 39 
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appeared (as shown in Fig. 6e). This result coincided 
with the evolution of a maximum unbalance force as 
shown in Figure 8. This force was related to the 
inertial force and remained at a sufficiently small 

value to ensure the balance of the system forces. As 
shown in Figure 8, the force slowly increased and a 
small peak appeared after loading step 20 due to the 
first instability zones in the lower part of the major 
fault. Furthermore, the first abrupt decrease in global 
second order work also occurred. With respect to the 
real case, a red warning was issued under the 
corresponding sliding force (as shown in Fig. 3). The 
force increased sharply with respect to the shearing 
loading before load step 39, and this indicated a 
sudden kinetic energy burst in the major fault, which 
evoked a global failure and a dynamic response.  

The kinetic energy of the major fault was estimated 
according to Equations (18 and 20) as shown in 
Figure 9a, and two zooms to a smaller load step and a 
load step closed to the failure were demonstrated in 
Figure 9b and c. The studied media remained at a low 
kinetic energy during the quasi-static loading, and the 
energy increased more quickly after load step 20, 
wherein a local instability appeared. An energy burst 
appeared at load step 39, which indicated the occurrence 
of the global failure and the transfer of media into 
dynamic regime. The approximation approach could not 
show the energy burst at failure because Toylar’s 
formula was an appropriate tool for smooth function, 
and the energy function was no longer continuous at 
failure, this was why estimations of the two approaches 
remained a good coincidence in the quasi-static loading 
stage, but the case changed when failure occurred. 
Additionally, energy calculated from Equation (18) was 
less than that from integration approach in case that 
the media remained a very small energy, and the case 
was contrary when energy of the media was large. 

 
 

Fig. 7 — Evolution of normalized global second order work in the 
major fault 
 

 
 

Fig. 8 — Evolution of maximum unbalance force 

 
 

Fig. 9a-c — Kinetic energy estimated according to Equations (18 and 20) 
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Finally, it is important to note that, although  
the kinetic energy estimation is just a heuristic 
attempt, the result is qualitatively acceptable.  
Hence, it is worthwhile to explore a large scale 
approach that assesses the kinetic energy of a 
geological disaster. 

 
Conclusion 

The study involved the analysis and simulation of a 
real rockslide as a static-dynamic transition in the 
bifurcation instability framework. First, an analysis 
using the second order work criterion was performed 
for the rock slopes controlled by a major 
discontinuity. With respect to the real landslide 
simulated in the study, the stress-strain analysis 
indicated that bifurcation failure would not occur 
under certain loading paths. However, second order 
work continued to be an appropriate tool because it 
includes all bifurcation failures by divergence, 
including the plastic limit criterion and excluding 
flutter instability. Second, according to the numerical 
results of the real landslide, an approximated peak of 
the sliding force was obtained and compared to the 
monitoring data. Additionally, a through instability 
zone was presented under this sliding force peak. 
Third, global second order work was introduced to 
predict the occurrence of the rockslide, and the  
kinetic energy derived from the second order work  
was estimated to describe the static-dynamic regime 
transition. The corresponding results coincided with  
the evolution of the maximum unbalance force 
calculated by FLAC, and the kinetic energy results 
estimated from two numerical approaches were 
qualitatively satisfactory and shed light on the 
discontinuity of energy evolution when failure occurred. 
A quantitative validation could be performed later and 
will provide an expected approach to estimate the kinetic 
energy of rockslides in addition to detailing important 
suggestions for engineering. 

In conclusion, the second order work criterion 
could accurately predict the failure of geological 
discontinuities in addition to those of soils. The stress-
strain analysis approach based on this could be 
considered as reliable in analyzing and predicting 
rockslides induced by major geological discontinuity 
failures. In consideration of its capacity to describe all 
physical bifurcation instabilities (excluding flutter 
instability) and the relation between failure and 
energy burst, the second order work criterion can be 
recommended. 
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