In-vitro screening of cucurbitaceous plants for antidiabetic potential

Manish Shukla^{*,1,2,3,+}, Vinayak R Naik¹, Asha Kulkarni Almeida² & Arvind Saklani¹

¹Natural Products-Botany Department, Piramal Life Sciences Ltd, Goregaon (E), Mumbai 400 063, India

²High Throughput Screening Department, Piramal Life Sciences Ltd, Goregaon (E), Mumbai 400 063, India

³Amity Institute of Biotechnology, Amity University Lucknow Campus, Gomtinagar, Lucknow 226 010, India

E-mail: ⁺manishsrshukla@gmail.com

Received 15 October 2018; revised 25 February 2019

Natural products traditionally have played an important role in drug discovery and formed the basis of most early medicines. Medicinal plants and drugs derived from them have been explored extensively for their antidiabetic potential. Extensive literature survey revealed that the family cucurbitaceae of higher plants has contributed a lot in traditional system of medicines for developing antidiabetic formulations. The most discussed Momordica charantia and Cucumis sativus are some examples. However, many cucurbitaceous taxa are yet to be explored. The objectives of the present study are to gather data from literature on the antidiabetic potential of cucurbitaceous plants with their traditional usage and *in-vitro* screening of different extracts and fractions of collected cucurbitaceous plants for their antidiabetic activity in the glucose utilization assay (GUA) on L6 cell line. Based on literature survey, a list of 32 plant species of cucurbitaceae family was prepared, which have been reported for antidiabetic activity or mentioned in ethnomedicinal and traditional system of medicines for antidiabetic potential. A total of 15 crude extract and their 75 fractions were prepared from 9 collected cucurbitaceous plants and their parts and screened against differentiated rat skeletal (L6) muscle cells in glucose uptake assay. Eight extracts/fractions from 4 plants (Cucumis callosus fruit, Luffa echinata fruit, Coccinia indica fruit and Cucurbita species aerial part) were found active in antidiabetic screening. The best antidiabetic activity was found in chloroform fraction of Luffa echinata fruit. After bioactivity guided column fractionation of this active fraction, the fraction M010/S/3/5 showed maximum activity in glucose uptake assay. EC_{50} was calculated as 0.59 µg/mL showed potent antidiabetic compound. Present study revealed that there is huge potential in cucurbitaceous plants for developing antidiabetic drug.

Keywords: Antidiabetic activity, Cucurbitaceous plants, Ethnomedicinal use, *In-vitro* screening **Abbreviations:** Cpm-counts per minute, KDa-kilodalton, o/n-overnight, ppt-pellet, Sup.-supernatant **IPC Code:** Int. Cl.¹⁹ : A61P 3/10, A01C 11/04, A61K 36/185, A47K 3/34

Diabetes mellitus is a group of metabolic disorders in which the body does not produce enough or does not properly use insulin, resulting in hyperglycemia. Type I is the result of the body's failure to produce enough insulin while Type II diabetes is a result of insulin

CORE

Diabetes Federation estimates that approximately 425 million adults around the world have diabetes. This total is expected to rise to 629 million by the year 2045. Insulin (Humulin, Novolin), Sulfonylureas, Alpha-glucosidase inhibitors, Biguanide class, Meglitinide class, Thiazolidinedione class, Dipeptidyl peptidase-4 inhibitors are the some of the antidiabetic drugs available in market for the treatment of Type II diabetes. Few of these drugs may cause hypoglycemia; patients may become resistant to these drugs, or develop gastrointestinal problems, and hepatotoxicity². Naturally derived antidiabetic drugs such as metformin have the advantage that they do not cause significant side effects and show less toxicity,

Metadata, citation and similar papers at core.ac.uk Illouhlncer

incha is rich in plant resources and traditional ayurvedic knowledge. There is a vast potential for natural product based discovery and development of drug candidates with good therapeutic efficacy and low toxicity³. Medicinal and aromatic plants have been widely used for treatment of many diseases in a traditional way for several generations. Selection of higher plants as candidates for drug development is based on the information from traditional medicine (ethnomedicine)⁴. Plants and plant derived bioactive compounds have an advantage in this area based on their long-term use by humans, and low human

^{*}Corresponding author

toxicity. Chemical diversity of secondary plant metabolites that results from plant evolution may be equal or superior to that found in synthetic combinatorial chemical libraries³.

A large number of plants used in the traditional medicine have now become a part of the modern world health care system. Natural products offer large structural diversity, and modern techniques for separation, structure elucidation, screening and combinatorial synthesis have led to revitalization of plant products as sources of new drugs⁵. As the Type II diabetes epidemic grows, so does the need for newer, better drugs. There are currently more than 30 diabetes drugs in nine classes in the market. Total 22 drugs were approved by FDA for diabetes during 1995-2008 but none of them is plant based drug⁶. Currently, plant based few compounds are in different stages of clinical trials for diabetes from Hoodia gordonii, Artemisia dracunculus, Berberis aristata & Momordica charantia⁷.

The number of higher plant species is estimated at 250,000. Of these, only about 6% have been screened for biologic activity and a reported 15% have been evaluated phytochemically⁴. About 43,879 species of higher plants have already been reported for their ethnomedicinal, chemical & pharmacologic uses⁸. Most common drug for diabetes Metformin is of plant origin⁴. Berberine which is obtained from *Berberis* aristata has been shown to have antidiabetic properties, although its mode of action is not known. Metabolic effects of berberine have been investigated in two animal models of insulin resistance and in insulin-responsive cell lines. Berberine reduced body weight and caused a significant improvement in glucose tolerance without altering food intake in *db/db* mice⁹. Cucurbitane glycosides, momordicosides Q, R, S, and T and karaviloside XI, were isolated from bitter melon (Momordica charantia) and exhibited beneficial effects to diabetes and obesity. Cucurbitane triterpenoids, the characteristic constituents of *M. charantia*, may provide leads as a class of therapeutics for diabetes and obesity¹⁰. According to a survey based on data from NAPRALERT (Natural Products Alert), about 1200 plants have been studied experimentally or used ethnopharmacologically to treat diabetes mellitus. Plant families most commonly represented for antidiabetic activity were Fabaceae, Asteraceae, Lamiaceae, Liliaceae, Poaceae & Euphorbiaceae¹¹. The extensive literature survey revealed that the family Cucurbitaceous of higher plants has contributed а lot in traditional Indian system of medicines for developing antidiabetic formulations¹². The Momordica charantia, popularly known as karela is one of the best examples. M. charantia was also used in traditional Indian and Chinese medicines to cure diabetes and antigluconeogenic activity of cucurbitacins from M. charantia has also been established^{12,13}. Citrullus colocynthis (Cucurbitaceae) was also described for ethnomedicinal use in diabetes and now well known for antidiabetic effects after pharmacological studies¹⁴.

Online literature search shows that there are at least 32 species of the family Cucurbitaceae that have been reported to possess antidiabetic potential (Table 1) and studied for their antidiabetic activity in pharmacological studies. Table 1 summarizes the details of cucurbitaceous plants evaluated for antidiabetic activity and their ethanomedicinal information. It was also found that alkaloid rich and bitter plants have a maximum possibility to show hypoglycemic effects. A large number of species belonging to family Cucurbitaceae are yet to be explored. Our objective was to screen unexplored plant species from Cucurbitaceae family with a view to identify the promising glucose uptake modulators. In the present study, *in-vitro* screening using glucose utilization bioassay in differentiated L6 myotubes was performed for evaluating antidiabetic activity in 9 species of family Cucurbitaceae.

Methodology

Plant collection and processing

The selection of plant species was carried out on the basis of literature available on ethnomedicinal, avurvedic and other traditional systems of medicines. through various databases online search and phytochemical works and the patent search on the species of interest for their antidiabetic properties. About 20 selected species that qualified our criteria of selection for further evaluation were targeted for collection. However, depending on the distribution pattern and availability finally 9 taxa from family Cucurbitaceae were collected from the State of Maharashtra, India. A total of 15 plant parts weighing 3-4 kg of fresh material of each were collected from the forests of Thane and different localities in Mumbai and surrounding areas (Table 2). The plant parts were dried separately in shade using dehumidifier. Taxonomically identified voucher

	Table 1 — Ethnomedicinal use of cucurbitaceous plants and their evaluation for antidiabetic activity							
S. No.	Plant	Parts used	Extracts/ Active constituents	Activity	Ethnomedicinal use			
1.	Benincasa hispida	Stem Fruit Stem	Chloroform extract Ethanol extract Aqueous extract	Hypoglycemic activity in normal male Wistar rats ²⁸ Decrease in glucose, triglyceride and insulin levels in plasma on dexamethasone induced insulin resistance in mice ²⁹ Significant reduction in the blood glucose levels in alloxan-induced diabetic rabbits ³⁰	Asthma, cough, hemorrhages, peptic ulcer, diabetes, epilepsy and nervous system disorder ¹⁶ ; Respiratory disease, heart diseases, diabetes mellitus, urinary diseases and gastrointestinal problems ³¹ ; Fruits are used as a laxative, diuretic, tonic, aphrodisiac, cardiotonic, urinary calculi, blood disease, insanity, epilepsy, schizophrenia and other psychologic disorders ³¹ ; Main ingredient in kusmanda lehyam, in Ayurvedic system of medicine, dyspepsia, vermifuge, burning sensation, heart disease, and urinary disease ³⁰ .			
2.	Bryonia alba	Root Root	Trihydroxyoctadec- adienoic acids Ethanol extract	Restores the disordered lipid metabolism of alloxan-diabetic rats ³² Hypoglycaemic activity in alloxan-induced diabetes in rats ³³	Constipation, stiffness of joints due to rheumatism, headache, bronchitis, pneumonia, measles, synovial inflammation and pneumonia ³⁴ .			
3.	Citrullus colocynthis	Fruit Fruit Seed	Petroleum ether extract Ethanol extract Aqueous extract Aqueous extract	Reduction in blood glucose levels in streptozotocin induced diabetic rats ³⁵ Decrease in the levels of total cholesterol, triglycerides, free fatty acids and phospholipids in serum and liver of treated diabetic rats ³⁶ Decrease of blood glucose from 132 to 93 mg/100 mL after 24 h of normoglycaemic rabbits ³⁷ Reduction in plasma level of AST (aspartate dehydrogenase) and LDH (lactic dehydrogenase) significantly in streptozotocin induced diabetic rats ³⁸	Asthma, bronchitis, ascites, ulcers, leucoderma, constipation, tumors and hypoglycemia, fruits are cooling, carminative, carthartic, antipyretic and anthelmintic ¹⁶ ; Diabetes, constipation, asthma, bronchitis, leprosy, jaundice, joint pain, cancer, mastitis, indigestion, dysentery, gastroenteritis and colic pain, common cold, cough, toothache, wounds, hypertension, hepatoprotective, leaves for the treatment of jaundice and asthma ¹⁴			
4.	Citrullus lanatus	Seed	Globulins	Significant anti-hyperglycaemic activity in male Wistar rats by the oral glucose tolerance test ³⁹	Ripe fruits as cooling, strengthening, diuretic, stomachic, purifies the blood, aphrodisiac, astringent, biliousness, sore eyes, scabies and itching, fruit juice as an antiseptic in typhus fever and purgative, seeds are tonic to the brain ⁴⁰ .			
5.	Coccinia grandis	Leaf Leaf	Aqueous extract Methanol extract	Antihyperglycemic effect in alloxan induced diabetic Wistar rats ⁴¹ Significant antihyperglycemic activity in Swiss albino mice on oral glucose tolerance tests ⁴²	Fresh root extract as antidiabetic ¹² ; Fruits in diabetes, aphrodisiac, biliousness and disease of the blood. Juice of whole plant is used in diabetes, anorexia, asthma, fever, dropsy, catarrh, epilepsy and gonorrhea, whole plant in diabetes mellitus. Fruit and leaves are prescribed in the treatment of snake-bite ⁴⁰			

	Table 1 — Ethnomedicinal use of cucurbitaceous plants and their evaluation for antidiabetic activity (Contd.)								
S. No.	Plant	Parts used	Extracts/ Active constituents	Activity	Ethnomedicinal use				
6.	Coccinia indica (Synonym: Coccinia grandis, Coccinia cordifolia)	Aerial parts Leaf Aerial parts	95% ethanolic extracts 60% Ethanolic extracts Ethanol extract Dried extract	Blood glucose lowering effect in alloxan diabetic albino rats ¹⁹ Decreased level of blood glucose and fatty acid in streptozotocin (SZT) induced diabetic rats ⁴³ Antihyperglycemic effects in STZ induced diabetes in Sprague–Dawley rats ¹⁷ In a clinical study, restored the raised activity of lipoprotein lipase and the levels of G-6 phosphotase and LDH in diabetic patients ⁴⁴	Antidiabetic property, used for treating diabetes mellitus in Ayurveda ¹⁷ ; Leaf extract and aerial parts have hypoglycemic and antihyperglycemic effect ^{17,45} ; Ayurveda and Unani system of medicine for treatment of diabetes, skin eruptions, tongues sore, earache, etc ⁴⁶				
7.	Cucumis callosus	Fruit	Ethanol extract	Antihyperglycemic effect in alloxan induced diabetic rat ⁴⁷	Prevent insanity, seeds are cooling and astringent and useful in bilious disorder ⁴⁰ ; <i>Cucumis callosus</i> is a wild relative of <i>Cucumis melo</i> ⁴⁸ .				
8.	Cucumis melo	Leaf	Methanol and aqueous extract	Anti-hyperglycemic activity in streptozotocin induced hyperglycemia model ⁴⁹	Leaves are used in flatulence, fever, cough, anemia, jaundice, leprosy, diabetes, antiobesity, constipation, ascites, bronchitis and amentia; Fruit pulp is liver tonic, cardio tonic, appetizer, anthelmintic, thermogenic, expectorant and intellect promoting; Roots are used as emetic and purgative ⁴⁹ ; Seed powder for diabetes ⁵⁰ .				
9.	Cucumis metuliferous	Fruit Fruit	Fruit pulp extract Glycoside fraction	Decrease in the blood glucose concentration in alloxan induced hyperglycemic rats ⁵¹ Significant dose-dependent reductions in blood glucose concentration in albino rats with alloxan-induced diabetes ⁵²	Roots are used to treat Appendicitis; Stomach ache ⁵³ .				
10.	Cucumis prophetarum	Fruit Fruit	Aqueous extract N-Trisaccharide	Effective antidiabetic activity in α -amylase assay and α -glucosidase assay ⁵⁴ Antihyperglycemic activity in streptozotocin(STZ)–nicotinamide (NA) induced type 2 diabetic rats ⁵⁵	Inflammatory-related problems ⁵⁴ .				
11.	Cucumis sativus	Fruit peel Fruit	Ethanolic extract	Antidiabetic activity in alloxan induced diabetes mellitus in male mice ²⁰ Anti-hyperglycemic effect by	Constipation, indigestion, seeds are tonic, anthelmintic and diuretic ¹⁶ ; Skin problems, anti-diarrheal, detoxicant and anti-gonorrheal agents ¹⁸ ; Fruit is				
		Fruit	Ethanolic extract	subcutaneous glucose tolerance tests on 27 healthy rabbits ⁵⁶ Hypoglycemic effects on alloxan induced diabetic rats ⁵⁷	are used in cooling tonic, diuretic and anthelmintic. Leaves along with cumin seeds administrated in throat affections ⁴⁰ .				
12.	Cucumis trigonus	Fruit	Aqueous extract	Beneficial effects in reducing the elevated blood glucose level and lipid profile of STZ-induced- diabetic rats ⁵⁸	Leprosy, fever, jaundice, diabetes, cough, bronchitis, anaemia, constipation and other abdominal disorders ⁵⁸ ; Fruit juice for treating diabetes ⁵⁰ .				
					(Conta.)				

	Table 1 —	Ethnomedi	cinal use of cucurbitace	ous plants and their evaluation for ant	idiabetic activity (Contd.)
S. No.	Plant	Parts used	Extracts/ Active constituents	Activity	Ethnomedicinal use
13.	Cucurbita ficifolia	Fruit Fruit	Aqueous extract Traditional preparations	Anti-hyperglycemic effect by subcutaneous glucose tolerance tests on 27 healthy rabbits ⁵⁶	Hemorrhoids, fever and wound cure ¹⁶
			Methanol extract	Hypoglycaemic effect similar to that of tolbutamide in healthy and mildly diabetic rabbits ⁵⁹ Antihyperglycemic activity in streptozotocin-induced experimental diabetes in rats ⁶⁰	
14.	Cucurbita maxima	Aerial parts Fruit powder	Methanol extract	Antidiabetic activity in Wistar albino rats against streptozotocin ⁶¹ Reduce blood glucose levels significantly in the 20 NIDDM diabetics patients ⁶²	Antitumor, antidiabetic, antihypertensive, antibacterial, anti- inflammatory and immunomodulatory effects ⁶¹ ; Fruit is used in diuretic, tonic, inflammations and boils. Fried seeds are used in anthelmintic, diuretic and tonic ⁴⁰ .
15.	Cucurbita moschata	Seeds Stem	Globulins Crude extract	Significant anti-hyperglycaemic activity in male Wistar rats by the oral glucose tolerance test ³⁹ Hypoglycaemic effect <i>in-vivo</i> in streptozotocia-induced diabetic	Folk medicine for measles, jaundice, insomnia, colic, and treatment of amoebas ⁶⁴ ; Leaf paste is used in biliousness and burning sensation, fruit is cooling astringent to the bowels
				mice ⁶³	laxative, good for teeth, throat, eyes, seeds are diuretic, tonic, bronchitis, fever, good for the kidney and the brains ⁴⁰ .
16.	Cucurbita pepo	Fruit peel	Ethanolic extract	Antidiabetic activity in alloxan induced diabetes mellitus in male mice ²⁰	Astringent, blood purification, leprosy, sore chests, bronchitis, hemoptysis and fever ¹⁶ ; Fruit is cooling, astringent to
		Fruit	Fruit powder	Hypoglycaemic effects in alloxan-induced diabetic rats ⁶⁵	the bowels, laxative, and good for teeth, throat and eyes. Leaf paste is used in biliousness and burning sensation. Seeds are diuretic, tonic, bronchitis, fever, good for the kidney and brains ⁴⁰ .
17.	Ibervillea sonorae	Root	Traditional preparations (freeze- dried decoction)	Significantly lowered the glycemia of mild alloxan-diabetic mice and rats, but did not in severe alloxan-diabetic rats ⁶⁶	Treatment of type 2 diabetes in México ⁶⁷ ; Roots are widely used as a topical antibiotic, cathartic, antirheumatic, and hypoglycaemic ⁶⁸ .
		Root	Aqueous extract	Antidiabetic properties by stimulating the glucose uptake in human preadipocytes by a PI3K- independant pathway ⁶⁷	
18.	Lagenaria siceraria	Fruit Aerial	Ethanol extract	Antihyperglycemic activity in induced in alloxan-induced diabetic rats ⁶⁹	Cardiotonic, general tonic and diuretic properties, diabetes mellitus ⁷⁰ ; General tonic in Ayurveda, cardiotonic ¹⁶ ;
		parts	Methanol extract	Antihyperglycemic activity on streptozotocin induced diabetes in rats ⁷⁰	Ulcers, pain, fever, asthma, bronchial disorders, fruit is traditionally used for its cardioprotective, cardiotonic,
		Fruit	Methanol extract	α -Glucosidase inhibitory activity ²²	general tonic, aphrodisiac, purgative, diuretic properties ⁷¹ .

	Table 1 — Ethnomedicinal use of cucurbitaceous plants and their evaluation for antidiabetic activity (Contd.)							
S. No.	Plant	Parts used	Extracts/ Active constituents	Activity	Ethnomedicinal use			
19.	Luffa acutangula	Fruit Fruit Fruit	Chloroform and Ethyl acetate extract Methanol extract	α -Glucosidase inhibitory activity ²² Increased mucosal glycoprotein and antioxidant enzyme level in gastric mucosa of streptozotocin (STZ) induced diabetic rats ²⁴	Jaundice, splenic enlargement and laxative ⁷² ; Jaundice, insect bites, fruit powder for swollen hemorrhoids, seeds is used for dysentery while the juice of roasted young fruit is used to cure headache; diuretic properties,			
		Fruit	Methanol and aqueous extract Ether, chloroform, ethanol and aqueous extracts	Antidiabetic activity in STZ induced diabetic rats ⁷² Antidiabetic activity ⁷³	expectorant, laxative, and purgative; hypoglycemic agent, bitter tonic; used in the enlargement of spleen. Roots for kidney stones, swelling of the lymph glands. Leaves are useful in dysentery, inflammation of spleen, ringworms, piles and leprosy ⁷⁴			
20.	Luffa aegyptica Syn: Luffa cylindrica	Leaf Seeds	Aqueous and Ethanol extract Ethanol extract	Significant antidiabetic activity in alloxan induced diabetic rats ⁷⁵ Decreased blood glucose level with a potency similar to that of the biguanide, metformin in STZ diabetic rats ⁷⁶	Leaf juice cures conjunctivitis ⁷⁷ ; Fruit in jaundice ⁷⁸ .			
21.	Luffa tuberosa	Fruit	Aqueous extract	Antidiabetic property in streptozotocin (STZ) induced diabetic rats ⁷⁹	Used for the treatment of diabetes mellitus ⁷⁹ ; Abortifacient ⁸⁰			
22.	Momordica balsamina	Seeds Fruit Various plant parts	Aqueous extract Fruit pulp powder and aqueous methanolic extract (90%) Aqueous and Organic extract	Significant antihyperglycemic potential in STZ-induced diabetes models in rats ⁸¹ Antidiabetic activity in streptozotocin (STZ) induced diabetic Wistar rats ⁸² Antidiabetic activity in <i>in vitro</i> studies using glucose utilisation method ¹	Snake bite ⁸³ ; Purgative, vermifuge and fruit is used in diabetes ⁸² .			
23.	<i>Momordica</i> <i>charantia</i>	Fruit Fruit Seed Fruit juice	95% ethanolic extracts Ethanolic extract, 21 cucurbitane compounds Ethyl acetate extract Acetone extract 	Blood glucose lowering activity in alloxan diabetic albino rats ¹⁹ Compounds 1, 10, 11, and 12 (at 25–100 μ M) showed concentration- dependent inhibition on glucose production from liver cells; compounds 11 and 12 (at 100 μ M) showed around 20–30% inhibition on PEPCK activity ¹³ α -Glucosidase inhibitory activity ²² Antilipolytic activity in isolated rat adipocytes ⁸⁴ In a clinical study, administration of 100 mL of fruit juice improved glucose tolerance in 73% of test subjects following an oral glucose tolerance test ⁸⁵	Anthelmintic, carminative, purgative, antiemetic, anaemia, jaundice, cholera, malaria and unripe fruit for diabetes ¹⁶ ; Fruit extract as antidiabetic ¹² ; Stem and root are used to treat toothaches, diarrhea, furuncle, and diabetes. Fruit is used to cure diarrhea, furuncle, heat stroke, and diabetes and seeds are used to remedy asynodia ¹³			

(Contd.)

	Table 1 — Ethnomedicinal use of cucurbitaceous plants and their evaluation for antidiabetic activity (Contd.)						
S. No.	Plant	Parts used	Extracts/ Active constituents	Activity	Ethnomedicinal use		
24.	Momordica cymbalaria	Fruit powder Fruit	Aqueous extract	Significant blood glucose lowering effect in alloxan-induced diabetic rats and reduced the level of cholesterol and triglycerides in diabetic rats ⁸⁶ Significant antihyperglycemic as well as antihyperlipidemic effects in the alloxan-induced diabetic rats ⁸⁷	Fruits for gastric ulcer, roots have been used by the natives of north Karnataka and Andhra Pradesh to treat gynecological ailments and also to induce abortions ⁸⁸		
25.	Momordica dioica	Fruit Fruit Fruit	Ethyl acetate and alcoholic extracts Aqueous extract Aqueous, hexane, chloroform, and ethanol extract	Antidiabetic activity in alloxan induced diabetic rats ⁸⁹ Oral hypoglycemic effect in rat model ⁹⁰ Fall in fasting blood glucose in glucose tolerance test in normal healthy rats ⁹¹	Antiseptic, anthelmintic, astringent, febrifuge and spermicidal ⁹² ; Fresh fruit juice is prescribed for hypertension and fruit cooked in oil is used for treating diabetes ⁹² , ⁹³ ; Fruits have diuretic, laxative, hepatoprotective, antivenomous, antihypertensive, anti- inflammatory, antiasthmatic, antipyretic, antileprosy, antidiabetic, and antidepressant properties. Leaves have antihelminthic, aphrodisiac, antihemorroidal, hepatoprotective, antibronchitic, antipyretic, antiasthmatic, and analgesic properties ⁹³		
26.	Momordica foetida	Various plant parts	Aqueous and Organic Extracts Foetidin	Antidiabetic activity in <i>in vitro</i> studies using glucose utilisation method ¹ Lowered blood glucose levels in normal but not in diabetic rats ⁹⁴	Diabetes, piles, haemorrhoid, gastroenteritis, snake bites, pregnancy, small pox, stomach ache, dropsy, fever, ear ache, anthelmintic, tumours ⁹⁵		
27.	Mukia madaraspatana (Synonym: Melothria Maderaspatana)	Entire plant Stem Roots Aerial parts	Ethanol extract Ethanol and aqueous extracts Methanol extract Ethanol extract	Blood glucose level decreased in alloxan induced male Wistar albino rats ⁹⁶ Hypoglycemic activity by increase in glucose uptake in L-6 skeletal muscle cells in vitro ⁹⁷ Normal blood glucose was achieved in alloxan induced diabetic rats ⁹⁸ Antihyperglycemic effects in STZ induced diabetes in Sprague– Dawley rats ¹⁷	Diuretic, antipyretic, stomachic gentle aperients and antiflatulent, antiasthmatic, anti-inflammatory, antidiabetic and antibronchitis, tooth-ache, vertigo and biliousness ^{99,} ¹⁰⁰ . Inflammatory diseases ¹⁰¹ ; Seeds, roots and leaf juice were used to treat diabetes ¹⁰²		
28.	Praecitrullus fistulosus	Fruit pee	l Ethanol extract	Antidiabetic activity in alloxan induced diabetes mellitus in male mice ²⁰	Leaves are used in blood pressure ¹⁰³		
29.	Sechium edule	Fruit	Ethyl acetate extract	$\alpha\text{-}Glucosidase \ inhibitory \ activity^{22}$	Kidneys, circulatory systems and inflammatory diseases ¹⁶ .		
30.	Telfairia occidentalis	Seed Leaf Seed	Ethanol extract Ethanol extract Globulins	Hypoglycemic effects in alloxan diabetic rats ¹⁰⁴ Significant reduction in blood glucose level in alloxan-induced diabetic rats ¹⁰⁵ Anti-hyperglycaemic activity in male Wistar rats by the oral glucose tolerance test ³⁹	Cholesterolemia, liver problems and impaired immune system ¹⁰⁵		

	Table 1 — Ethnomedicinal use of cucurbitaceous plants and their evaluation for antidiabetic activity (Contd.)							
S. No.	Plant	Parts used	Extracts/ Active constituents	Activity	Ethnomedicinal use			
31.	Trichosanthes cucumerina	Seeds Whole plant Aerial parts Fruit	95% Ethanolic extracts; Aqueous extract; Hot water extract Ethyl acetate extract	Blood glucose lowering activity in alloxan diabetic albino rats ¹⁹ Improved glucose tolerance and tissue glycogen in non insulin dependent diabetes mellitus induced rats ¹⁰⁶ Improvement in glucose tolerance and increase in liver glycogen and adipose tissue triglyceride levels in normal and streptozotocin–induced diabetic rats ¹⁰⁷ α -Glucosidase inhibitory activity ²²	Hepatoprotective, antidiabetic, cytotoxic, anti inflammatory and larvicidal effects ¹⁰⁸ ; stem decoction, aerial parts and leaves were used in the treatment of diabetes and inflammatory diseases ¹⁰⁶ ; Anthelmintic, bronchitis, cathartic, headache and boils, seeds are antifebrile, anthelmintic and useful for stomach disorder ¹⁶			
32.	Trichosanthes dioica	Leaf Leaf	Aqueous extract Aqueous extract	Reduced blood glucose significantly in streptozotocin induced hyperglycemic rats ¹⁰⁹ Hypoglycemic effects in streptozotocin (STZ)-induced sub- and mild-diabetic rats ¹¹⁰	Epilepsy, alopecia, skin disease and diabetes mellitus ¹⁰⁹ ; Fresh fruit juice is used as cooling and laxative. Fruit is also used in spermatorrhoea. Leaves are aperients, tonic and febrifuge; used in the cases of enlarge liver and spleen. Fruit is febrifuge, laxative, antibilious ⁴⁰			

S. No.	Plant Name	Plant Part	Dry weight (g)	Extracts	Extract Yield (g)
1.	Trichoanthes cucumerina	Aerial	250	M001/A	10.940
2.	Mukia maderaspatana	Aerial	50	M002/A	3.794
3.	Momordica dioica	Aerial	150	M003/A	8.984
4.	Trichoanthes cucumerina	fruits	100	M004/A	17.027
5.	Benincasa hispida	Aerial	250	M005/A	9.641
6.	Cucumis callous	Aerial	115	M006/A	4.411
7.	Cucumis callous	fruits	20	M007/A	2.871
8.	Lagenaria siceraria	Aerial	250	M008/A	11.433
9.	Luffa echinata	Aerial	300	M009/A	4.541
10.	Luffa echinata	fruits	60	M010/A	9.100
11.	Coccinia indica	Aerial	345	M011/A	15.686
12.	Coccinia indica	fruits	25	M012/A	2.294
13.	Cucurbita sp.	Aerial	235	M013/A	9.376
14.	Cucurbita sp.	fruits	25	M014/A	2.499
15.	Trichoanthes cucumerina	(whole plant)	100	M015/A	28.155

specimens were deposited in the herbarium of Natural Products Botany Department, Piramal Life Sciences Ltd, Mumbai.

Extraction and fractionation

Dried plant materials were pulverized to a course powder. The pulverized material was taken for extraction. The dried coarse powder (100 g) was soaked in 1 L DCM (dichloro methane): MeOH (Methanol) (1:1) in a flask for 8 h at room temprature. The extract is filtered with Whatman filter paper and the filtrate-1 was collected. The same extraction procedure was repeated one more time with remaining residue and filtrate-2 was collected. The filtrate-1 & filtrate-2 were pooled and the organic crude extracts (A) were concentrated by using rotary vacuum evaporator (BUCHI, Switzerland) at 40° C & further dried in speed vac (Savant, Germany) at an ambient temperature for overnight. The plant marc was reextracted sequentially with water and was frozen dried (H). All the dried extracts were stored at room temprature. (22–24^oC). The crude DCM: MeOH extract (A) (1 g) was dissolved in 25 mL of water: methanol (9:1). The sequential fractionation was performed in separatory funnel using different organic solvents viz. petroleum ether (B), chloroform (S) and ethyl acetate (C) (4 X 25 mL) with a view to separate the range of highly polar to non-polar compounds. Solvent fractions were concentrated by using rotary vacuum evaporator at 40^oC and aqueous alcoholic fraction (D) was lyophilized using Freeze dryer (Edwards, Germany). All the crude extracts (A) and their fractions (B, S, C, D & H) were dissolved in DMSO (dimethyl sulfoxide) (20 mg/mL) and taken for screening for antidiabetic activity in glucose utilization assay (GUA). All the organic solvents used for extraction and fractionation were of analytical grade and supplied by Merck, Mumbai.

Cell culture and glucose uptake assay

L6, rat skeletal muscle (myoblast) cells were obtained from ATCC (American type culture collection) and used for screening of antidiabetic compounds in GUA. L6 cells are adherent in property and fuse in culture to form multinucleated myotubes and striated fibres. Growth medium used for L6 cell line was MEM- α (minimum essential medium α modification) (HyClone), with 10% FBS (fetal bovine serum). Trypsin- EDTA treatment was performed to disrupt the cell monolayers at confluency. Cells were incubated with layer of Trypsin-EDTA at 37°C for 30 s and resuspended in 10 mL of fresh growth media. Number of cells were counted using haemocytometer and quantity of cells were calculated to add to new T-175 flask (Nunc, Denmark) or 24 well culture plates (Nunc, Denmark). Cultures were incubated at 37°C in 5% CO₂ environment.

L6 cells were seeded into 24 well culture plates at the density of 25 x 10^4 cells /well in MEM- α with 10% serum & 0.7% antibiotic (penicillin-streptomycin), and were cultured for 48 h in 5% CO_2 at 37°C. For differentiation, L6 myoblasts were cultured in MEM- α containing 2% FBS for 4 days to promote the fusion into myotubes and about 80-90% of the myoblasts were fused into myotubes¹⁵. Differentiated myotubes were serum starved for 4 h and then incubated with the plant extracts and fractions for overnight. Sample treatment was done by adding 2.5 µL of extracts and fractions or rosiglitazone (positive control) to the medium in the respective wells. After 18 h of plant extract treatment, 200 nM insulin was added after aspiration of media from plates and incubated for 25 min at 37° C. Then 22 µL per well radioactive glucose solution (2-Deoxy-D-[1-14C] Glucose from

Amersham, UK) was added. Mixed the content by gentle tapping from the sides and incubated for 15 min at 37°C. Thereafter, wells were washed twice with cold KRPH (Krebs-Ringer Phosphate Hepes) buffer after aspiration of the solution from the well. Then 0.1% SDS was added in each well and allowed 15 min for lysis. Each well was scrapped & transferred in scintillation vial with scintillation fluid and scintillation counting was performed. measured using Packard Tri-Carb Cpm was Liquid Scintillation Counter. The compounds that promoted the glucose consumption more than 2-fold relative to 200 nM insulin were considered as active compounds.

Bioactivity guided fractionation

HPTLC (high performance thin laver chromatography) analysis was performed for active extracts to optimize the best solvent system for chromatographic separation on TLC Silica gel 60 F₂₅₄ plates (Merck, Germany). 10% Methanol in chloroform, 5% methanol in chloroform and 20% ethyl acetate in petroleum ether solvent systems were used for better resolution of compounds. Resolved components were visualized under UV light and also on exposure to vanillin sulphuric acid spray reagent. Column chromatography was employed for the purification of active solvent fraction of plant crude extract. Combi Flash Sq 16 X (Isco) with RediSep 12 g Flash column was used for chromatography. Extract was dissolved in MeOH & CHCl₃ and adsorbed with equal amount of silica gel with 200-400 mesh size. Dried it on rotavapor and loaded in column of combi flash. Elution was with the concomitant performed increase in concentration of methanol and all the eluted fractions were subjected to TLC (Thin Layer Chromatography) analysis. guided fractionation Bioassay was performed for assessing the antidiabetic activity of each fraction and then next round of separation was done for each active fraction. A fractionation process was performed several times and many sub-fractions were obtained. GUA was performed for each sub fraction eluted and grouped according to their chemical profiles analyzed by TLC.

Statistical analysis

Data collection, tabulation and initial analysis were performed by using Microsoft Excel 2007 and GraphPad Prism 4.0 was utilized for analysis of results, graph preparations and calculation of EC_{50} .

Results

Plant extracts and fractions

The 15 plant parts from 9 plant species of family Cucurbitaceae produced a total of 15 crude extracts (Table 2) and 75 fractions using different organic solvents (Table 3). Extraction from *Trichosanthes cucumerina* whole plant produced maximum crude extract yield of about 28.15 g from 100 g of plant

	Table 3 — Fractionation of plant extracts and yield					
S. No.	Fractions	Solvent used	Yield (mg)			
1	M001/B	Petroleum ether	253			
2	M001/S	Chloroform	208			
3	M001/C	Ethyl acetate	52			
4	M001/D	Aqueous alcoholic	354			
5	M001/H	DCM-MeOH sequential water	653			
6	M002/B	Petroleum ether	207			
7	M002/S	Chloroform	195			
8	M002/C	Ethyl acetate	61			
9	M002/D	Aqueous alcoholic	249			
10	M002/H	DCM-MeOH sequential water	3436			
11	M003/B	Petroleum ether	110			
12	M003/S	Chloroform	126			
13	M003/C	Ethyl acetate	150			
14	M003/D	Aqueous alcoholic	395			
15	M003/H	DCM-MeOH sequential water	3416			
16	M004/B	Petroleum ether	673			
17	M004/S	Chloroform	73			
18	M004/C	Ethyl acetate	39			
19	M004/D	Aqueous alcoholic	5			
20	M004/H	DCM-MeOH sequential water	11591			
21	M005/B	Petroleum ether	269			
22	M005/S	Chloroform	125			
23	M005/C	Ethyl acetate	56			
24	M005/D	Aqueous alcoholic	213			
25	M005/H	DCM-MeOH sequential water	3240			
26	M006/B	Petroleum ether	266			
27	M006/S	Chloroform	88			
28	M006/C	Ethyl acetate	72			
29	M006/D	Aqueous alcoholic	14			
30	M006/H	DCM-MeOH sequential water	4086			
31	M007/B	Petroleum ether	183			
32	M007/S	Chloroform	231			
33	M007/C	Ethyl acetate	35			
34	M007/D	Aqueous alcoholic	403			
35	M007/H	DCM-MeOH sequential water	2535			
36	M008/B	Petroleum ether	188			
			(Contd.)			

material while minimum crude extract yield was obtained from *Luffa echinata* aerial part of about 4.54 g from 300 g of plant material. One gram crude extract of each plant sample was taken for fractionation and the yield of each fraction along with solvent used is listed in Table 3. All the crude extracts and their fractions (total 90 samples)

S. No.	Fractions	Solvent used	Yield (mg)
37	M008/S	Chloroform	86
38	M008/C	Ethyl acetate	62
39	M008/D	Aqueous alcoholic	346
40	M008/H	DCM-MeOH sequential water	2485
41	M009/B	Petroleum ether	157
42	M009/S	Chloroform	54
43	M009/C	Ethyl acetate	49
44	M009/D	Aqueous alcoholic	220
45	M009/H	DCM-MeOH sequential water	4024
46	M010/B	Petroleum ether	77
47	M010/S	Chloroform	219
48	M010/C	Ethyl acetate	248
49	M010/D	Aqueous alcoholic	225
50	M010/H	DCM-MeOH sequential water	4503
51	M011/B	Petroleum ether	453
52	M011/S	Chloroform	59
53	M011/C	Ethyl acetate	38
54	M011/D	Aqueous alcoholic	446
55	M011/H	DCM-MeOH sequential water	3738
56	M012/B	Petroleum ether	191
57	M012/S	Chloroform	4
58	M012/C	Ethyl acetate	15
59	M012/D	Aqueous alcoholic	21
60	M012/H	DCM-MeOH sequential water	2502
61	M013/B	Petroleum ether	289
62	M013/S	Chloroform	60
63	M013/C	Ethyl acetate	67
64	M013/D	Aqueous alcoholic	312
65	M013/H	DCM-MeOH sequential water	3939
66	M014/B	Petroleum ether	217
67	M014/S	Chloroform	83
68	M014/C	Ethyl acetate	48
69	M014/D	Aqueous alcoholic	16
70	M014/H	DCM-MeOH sequential water	3328
71	M015/B	Petroleum ether	406
72	M015/S	Chloroform	35
73	M015/C	Ethyl acetate	35
74	M015/D	Aqueous alcoholic	182
75	M015/H	DCM-MeOH sequential water	3716

were taken for primary screening in GUA for antidiabetic activity.

In-vitro screening

All the 90 plant extracts and their fractions were evaluated with GUA in differentiated L6 myotubes for antidiabetic activity. Samples were dissolved in DMSO at the concentration of 20 mg/mL before primary screening. Out of 90 extracts screened, 8 extracts from 4 plant species i.e., Cucumis callosus fruit, Luffa echinata fruit, Coccinia indica fruit and Cucurbita species aerial part were found active in primary screening in glucose uptake assay for antidiabetic activity (Fig. 1). All 8 active extracts in preliminary screening (M007/S, M010/A, M010/S, M010/C, M012/A, M012/S, M012/C & M013/S) were taken for repeat screening or secondary screening in dose dependent manner at concentrations 30, 10, 3 and 1 μ g/mL. All of these 8 extracts from 4 plant species showed antidiabetic activity at 30 and 10 $\mu g/mL$ conc and 3 extracts (M010/A, M010/S & M012/C) from 2 plant species were found active at 3 μ g/mL conc (Fig. 2). These screening results indicate that chloroform fraction of Cucumis callosus fruit (M007/S), chloroform and ethyl acetate fraction of Luffa echinata fruit (M010/S & M010/C), chloroform and ethyl acetate fraction of Coccinia

Fig. 1 — Active plant extracts and their fractions in primary antidiabetic screening in glucose uptake assay (GUA)

Fig. 2 — Dose dependent repeat analysis of extracts and fractions active in primary screening in GUA

indica fruit (M012/S & M012/C) and chloroform fraction of *Cucurbita* sp. aerial part (M013/S) exhibited activity in GUA. Almost all the fractions of *Luffa echinata* fruit extract (M010) demonstrated higher antidiabetic activity in GUA.

Antidiabetic activity after bioassay guided fractionation

Sequential fractionation was performed with different solvents and analyzed for antidiabetic activity at each step. The most active chloroform fraction of Luffa echinata fruit extract (M010/S) was taken for column fractionation and flash chromatography was carried out using combi flash Sq 16x. Total 7 pooled fractions (M010/S/1, M010/S/2, M010/S/3, M010/S/4, M010/S/5, M010/S/6 & M010/S/7) after chromatography were screened again for antidiabetic activity and fractions 3 (M010/S/3) & 4 (M010/S/4) were shown activity at 10 & 1 μ g/mL conc in GUA (Fig. 3). Both the fractions (M010/S/3 & M010/S/4) exhibited significant increase in bioactivity at 10 µg/mL conc. Most active sub-fraction M010/S/3 was taken for fractionation again using flash chromatography to get pure compound. Collected 39 tubes were pooled into 5 fractions (M010/S/3/1, M010/S/3/2, M010/S/3/3, M010/S/3/4 & M010/S/3/5) after TLC analysis. Of these 5 fractions, fraction 5 (M010/S/3/5) has shown maximum antidiabetic activity in GUA at 10 and 1 µg/mL conc (Table 4). Bioassay guided column fractionation of active extract lead to the purification and isolation of fraction 4 (M010/S/3/4) & fraction 5 (M010/S/3/5). Fraction 5 (M010/S/3/5) showed maximum glucose uptake in GUA and was comparable with insulin and rosiglita zone.

EC₅₀ of most active fraction M010/S/3/5

Most active fraction M010/S/3/5 was taken again for measuring activity in GUA at 8-point dilutions for

Fig. 3 — Antidiabetic activity in GUA after CombiFlash fractionation of most active extract M010/S (chloroform fraction of *Luffa echinata* fruit)

Table 4	Table 4 — Fractionation and antidiabetic activity of most active fraction 3 of M010/S (chloroform fraction of <i>Luffa echinata</i> fruit)							
S. No.	Fractions	Solvent Used	Conc (µg/ml)	Fold increase over ctrl	Rosiglitazone, fold increase at 30 μM	Antidiabetic Activity		
1	M010/S/3/1	CombiFlash Fr. CHCl3:MeOH	10	1.4	2.1	Not active		
		CombiFlash Fr. CHCl3:MeOH	1	1.1	2.1	Not active		
2	M010/S/3/2	CombiFlash Fr. CHCl3:MeOH	10	3.4	2.1	Active		
		CombiFlash Fr. CHCl3:MeOH	1	2.7	2.1	Active		
3	M010/S/3/3	CombiFlash Fr. CHCl3:MeOH	10	3	2.1	Active		
		CombiFlash Fr. CHCl3:MeOH	1	2.5	2.1	Active		
4	M010/S/3/4	CombiFlash Fr. CHCl3:MeOH	10	2.7	2.1	Active		
		CombiFlash Fr. CHCl3:MeOH	1	2.8	2.1	Active		
5	M010/S/3/5	CombiFlash Fr. CHCl3:MeOH	10	3.4	2.1	Active		
		CombiFlash Fr. CHCl3:MeOH	1	2.8	2.1	Active		
	Insulin ctrl				1.3			

Fig. 4 — EC₅₀ of the most active fraction M010/S/3/5 of *Luffa* echinata fruit

calculating EC_{50} . Fraction M010/S/3/5 has shown higher antidiabetic activity at 10, 3, 1 & 0.3 µg/mL conc on comparison to rosiglitazone (Fig. 4). Purified fraction 5 (M010/S/3/5) demonstrated significantly increased antidiabetic activity in GUA on comparison to positive control rosiglitazone. EC_{50} was calculated for the most active fraction M010/S/3/5 and found to be as 0.59 μ g/mL (Fig. 4). EC₅₀ value has shown that the fraction M010/S/3/5 could become more potent antidiabetic compound than the rosiglitazone. Purified and most active fraction M010/S/3/5 (chloroform fraction of Luffa echinata fruit extract) could be further purified and isolated using HPLC (High Performance Liquid Chromatography) and taken for structure elucidation using NMR (Nuclear Magnetic Resonance Spectroscopy) and MS (Mass Spectroscopy).

Discussion and Conclusion

The family cucurbitaceae of higher plants have about 130 genera and about 800 species and contains many plants which have medicinal importance. Dhiman et al., 2012 reviewed extensively about medicinal value of the family cucurbitaceae for their use in traditional medicine and pharmacological studies. Momordica charantia, Cucurbita ficifolia, Citrullus colocynthis, Lagenaria siceraria, Benincasa hispida and Trichosanthes cucumerina plants from family Cucurbitaceae have been mentioned for the treatment for diabetes in his review¹⁶. Apart from this many other literature and some patents are available for antidiabetic activity of Cucurbitaceous plants. A comprehensive list of 32 plant species of Cucurbitaceae family has been tabulated based on ethnomedicinal use and their evaluation for antidiabetic activity (Table 1). Cucumis sativus, Coccinia indica and Momordica charantia are some of the plants from cucurbitaceae family are mentioned extensively in Ayurvedic system of medicine for their antidiabetic properties and also reported in many other literatures including Pub Med and USPTO. Medicinal plants have been used extensively by native population for cure of various diseases and formed the principal constituent for Indian traditional medicine system. Herbal formulations of Momordica charantia and Coccinia grandis were used by tribal people of Sikkim and Darjeeling Himalayas for treating diabetes¹². A wide range of plant- derived compounds have been demonstrated for their possible use in the treatment of Type II diabetes.

There are immense examples of cucurbitaceous plants known for their antidiabetic properties and used in traditional medicinal system in many countries. Present study also emphasized the importance of cucurbitaeous plants for the treatment of Type II diabetes. *Cucumis callosus* fruit, *Luffa echinata* fruit, *Coccinia indica* fruit and *Cucurbita species* aerial part

were found beneficial for antihyperglycemic activity in in-vitro studies on L6 myotubes in GUA. First time we are reporting about antidiabetic activity of chloroform fractions of Luffa echinata and Cucumis callosus fruit in in-vitro studies. Coccinia indica¹⁷ and *Cucumis sativus*¹⁸ have been accounted earlier by many researchers for their antihyperglycemic activity and our results also showed that the fruit of Coccinia indica and Cucumis callosus have antidiabetic activity in GUA. Hypoglycemic effects of Coccinia indica in alloxan diabetic albino rats have also been reported¹⁹. Some herbal formulations are also available for Type II diabetes using Coccinia indica extract. Several species of Cucurbita such as C. pepo²⁰, C. maxima and C. $moschata^{21}$ were mentioned for antidiabetic property in ethnomedicine or tested therapeutically for antidiabetic activity in pharmacological studies. Cucurbit fruits of the plants Luffa acutangula, Momordica charantia, Lagenaria siceraria, Sechium edule and Trichosanthes cucumerina from the family Cucurbitaceae have been reported for α -glucosidase inhibitory activity²². Marles and Farnsworth, 1995 have presented a comprehensive literature review on antidiabetic plants and constituents from NAPRALERT database up to 1995. They have reported about 1200 plant species used for the treatment of diabetes and/ or investigated for antidiabetic activity. This list of antidiabetic plants also include about 30 plant species from Cucurbitaceae family²¹ and some these plant species are also evaluated in our studies.

Numerous species of Luffa is used by traditional native practitioners for treatment of various diseases and also reported by many researchers. Methanolic extract of Luffa echinata seeds showed antioxidant activity, anti-inflammatory and analgesic effect in *in-vivo* model²³ whereas methanolic extract of Luffa acutangula has been reported to be effective in treatment of gastric ulcers in diabetic rats²⁴. Luffa acutangula fruit extract has also been demonstrated antidiabetic and hepatoprotective activity in *in-vitro* and histopathological studies²⁵. Here, first time we reported the antidiabetic activity of chloroform extract of Luffa echinata fruit in in-vitro studies, whereas aqueous and alcoholic extract of Luffa echinata fruits are also described for antiarthritic activity on Freund's adjuvant induced arthritic rats²⁶. Cucurbitaceae family have enormous medicinal value and reported for anxiolytic, carminative, antioxidant, anthelmintic, laxative,

purgative and antidiabetic activity in various literature²⁷. Our studies also uphold this view that members of family Cucurbitaceae have many therapeutically important chemical constituents and could be explored extensively for their antidiabetic properties. It will also be of interest to evaluate further about antidiabetic activity of Luffa echinata fruit which could lead to the development of novel plant based compound for the treatment of Type II diabetes. After taking hint from traditional knowledge or folk medicine if we perform targeted screening of some specific group of plants then it will be more fruitful and rapid for identification of new leads and definitely better than random screening for all plants. Interestingly we have many plants reported for diabetes in Indian literature. The present study was a step towards selecting few plant species from a family known to have antidiabetic potential in traditional medical literature and study those using modern scientific tools. The study demonstrated that there is a huge potential in the family Cucurbitaceae as far as its antidiabetic potential is concerned. The promising results on the 4 species i.e. Cucumis callosus fruit, Luffa echinata fruit, Coccinia indica fruit and Cucurbita species aerial part, out of 9 selected in glucose uptake assay have proved this. One species Luffa echinata fruit, which showed remarkably high antidiabetic activity in our study is to be investigated further and might be interesting one. The study supported the view that the natural products continue to play dominant role in the discovery of leads for the development of drugs for alleviating human diseases. We believe that a target based approach for screening bioactivity of compounds from medicinal plants will expedite the drug discovery process and might contribute towards identification of interesting/novel chemical scaffolds with antidiabetic activity.

Acknowledgements

We are thankful to the Head, Natural Products department, Piramal Life Sciences, Mumbai for facilities and to Mr Nilesh Malpure and Ms Ruchi Singh for technical support.

References

- 1 van de Venter M, Roux S, Bungu LC, Louw J, Crouch NR et al, Antidiabetic screening and scoring of 11 plants traditionally used in South Africa, J Ethnopharmacol, 119(1) (2008) 81-86.
- 2 Vagula M & Devi SS, Hepatotoxicity of antidiabetic drugs, US Pharm, 33 (5) (2008) 3-9.

- 3 Jachak SM & Saklani A, Challenges and opportunities in drug discovery from plants, *Curr Sci*, 92 (2007) 1251-1257.
- 4 Fabricant DS & Farnsworth NR, The value of plants used in traditional medicine for drug discovery, *Environ Health Perspect*, 109 (2001) 69-75.
- 5 Saklani A & Kutty SK, Plant derived compounds in clinical trials, *Drug Discovery Today*, 13 (2008) 161-171.
- 6 http://www.centerwatch.com/patients/drugs/druglsal.html
- 7 http://www.prousintegrity.com
- 8 https://www.napralert.org/
- 9 Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ et al, Berberine, a natural plant product, activates AMP-Activated Protein Kinase with beneficial metabolic effects in diabetic and insulin-resistant states, *Diabetes*, 55 (2006) 2256–2264.
- 10 Tan M, Ye J, Turner N, Hohnen-Behrens C, Ke C *et al*, Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway, *Chem Biol*, 15 (2008) 263–273.
- 11 Lewis WH & Elvin-Lewis MPF, Medical Botany: Plants affecting Human Health, 2nd edition, John Wily & Sons Inc, (2003) 343-345.
- 12 Chhetri DR, Parajuli P & Subba GC, Antidiabetic plants used by Sikkim and Darjeeling Himalayan tribes, *J Ethnopharmacol*, 99 (2005) 199-202.
- 13 Chen JC, Lau CB, Chan JY, Fung KP, Leung PC *et al*, The antigluconeogenic activity of cucurbitacins from *Momordica charantia*, *Planta Med*, 81(4) (2015) 327-332.
- 14 Hussain AI, Rathore HA, Sattar MZ, Chatha SA, Sarker SD et al, Citrullus colocynthis (L.) Schrad (bitter apple fruit): A review of its phytochemistry, pharmacology, traditional uses and nutritional potential, J Ethnopharmacol, 155(1) (2014) 54-66.
- 15 Anandharanjan R, Pathmanathan K, Shankernarayanan NP, Vishwakarma RA & Balakrishnan A, Upregulation of Glut-4 and PPAR-γ by an isoflavone from *Pterocarpus marsupium* on L6 myotubes: a possible mechanism of action, *J Ethnopharmacol*, 97 (2005) 253-260.
- 16 Dhiman K, Gupta A, Sharma DK, Gill NS & Goyal A, A Review on the medicinally important plants of the family Cucurbitaceae, *Asian J Clin Nutr*, 4(1) (2012) 16-23.
- 17 Balaraman AK, Singh J, Dash S & Maity TK, Antihyperglycemic and hypolipidemic effects of *Melothria maderaspatana* and *Coccinia indica* in Streptozotocin induced diabetes in rats, *Saudi Pharm J*, 18(3) (2010) 173-178.
- 18 Mukherjee PK, Nema NK, Maity N & Sarkar BK, Phytochemical and therapeutic potential of cucumber, *Fitoterapia*, 84 (2013) 227-236.
- 19 Kar A, Choudhary B K & Bandyopadhyay N G, Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats, *J Ethnopharmacol*, 84(1) (2003) 105-108.
- 20 Dixit Y & Kar A, Protective role of three vegetable peels in alloxan induced diabetes mellitus in male mice, *Plant foods for hum nutr*, 65(3) (2010) 284-289.
- 21 Marles RJ & Farnsworth NR, Antidiabetic plants and their active constituents, *Phytomedicine*, 2(2) (1995) 137-189.
- 22 Sulaiman SF & Ooi KL, Antioxidant and α-glucosidase inhibitory activities of cucurbit fruit vegetables and identification of active and major constituents from phenolic-

rich extracts of Lagenaria siceraria and Sechium edule, J Agric Food Chem, 61(42) (2013) 10080-10090.

- 23 Sharma T, Arora R & Gill NS, Evaluation of free radical scavenging, anti-inflammatory and analgesic potential of *Luffa echinata* seed extract, *J Med Sci*, 12(4) (2012) 99-106.
- 24 Pimple BP, Kadam PV & Patil MJ, Protective effect of *Luffa acutangula* extracts on gastric ulceration in NIDDM rats: role of gastric mucosal glycoproteins and antioxidants, *Asian Pac J Trop Med*, 5(8) (2012) 610-615.
- 25 Abid M, Phytochemical and pharmacological evaluation of fruit extracts of *Luffa acuntagula* Roxb. *Var.* amara. (Cucurbitaceae). Ph D Thesis, Department of Pharmacology, V.L. College of Pharmacy, Raichur, (2005) 1-156.
- 26 Chandel HS, Singh S & Kushwaha R, Evalution of antiarthritic activity on *Luffa echinata* Roxb. on rats, *Asian J Biomed Pharm Sci*, 3(21) (2013) 36-41.
- 27 Saboo SS, Thorat PK, Tapadiya GG & Khadabadi SS, Ancient and recent medicinal uses of cucurbitaceae family, *Int J Therapeutic Applications*, 9 (2013) 11-19.
- 28 Jayasree T, Chandrsekhar N & Dixit R, Evaluation of hypoglycemic effect of chloroform extracts of stem of *Benincasa hispida* in male Wistar rats, *Int J Pharm Phytopharmacol Res*, 1(2) (2011) 67-72.
- 29 Kalure AU, Et of ethanolic fruits extract of *Benincasa hispida* on dexamethasone induced insulin resistance in mice. MSc thesis, KLE University, Belgaum (2011).
- 30 Mohana Rupa L & Mohan K, Hypoglycaemic effect of aqueous extract of *Benincasa hispida* in rabbits, *Inter Ayur Med J*, 1(5) (2013) 1-5.
- 31 Al-Snafi AE, The Pharmacological importance of *Benincasa* hispida. A review, J Pharma Sci Res, 4(12) (2013) 165-170.
- 32 Karageuzyan K G, Vartanyan GS, Agadjanov MI, Panossian AG & Hoult JRS, Restoration of the disordered glucose-fatty acid cycle in alloxan-diabetic rats by trihydroxyoctadecadienoic acids from *Bryonia alba*, a native Armenian medicinal plant, *Planta Med*, 64(05) (1998) 417-422.
- 33 Singh R, Rajasree PH & Sankar C, Screening for antidiabetic activity of the ethanolic extract of *Bryonia alba* roots, *Int J Pharm Biol Sci*, 2(3) (2012) 210-215.
- 34 Joshi V & Joshi RP, Some plants used in ayurvedic and homoeopathic medicine, J Pharmacogn Phytochem, 2(1) (2013).
- 35 Jayaraman R, Shivakumar A, Anitha T, Joshi VD & Palei NN, Antidiabetic effect of petroleum ether extract of Citrullus colocynthis fruits against streptozotocin-induced hyperglycemic rats, *Rom J Biol Plant Biol*, 4 (2009) 127-34.
- 36 Dallak M, In vivo, hypolipidemic and antioxidant effects of *Citrullus colocynthis* pulp extract in alloxan-induced diabetic rats, *Afr J Biotechnol*, 10(48) (2011) 9898-9903.
- 37 Abdel-Hassan IA, Abdel-Barry JA & Mohammeda ST, The hypoglycaemic and antihyperglycaemic effect of *Citrullus colocynthis* fruit aqueous extract in normal and alloxan diabetic rabbits, *J Ethnopharmacol*, 71(1) (2000) 325-330.
- 38 Al-Ghaithi F, El-Ridi MR, Adeghate E & Amiri MH, Biochemical effects of *Citrullus colocynthis* in normal and diabetic rats, *Mol Cell Biochem*, 261(1) (2004) 143-149.
- 39 Teugwa CM, Boudjeko T, Tchinda BT, Mejiato PC & Zofou D, Anti-hyperglycaemic globulins from selected

Cucurbitaceae seeds used as antidiabetic medicinal plants in Africa, *BMC Complementary Altern Med*, 13(1) (2013) 1.

- 40 Rahman AHMM, Ethno-medico-botanical investigation on cucurbits of the Rajshahi Division, Bangladesh, *J Med Plants Studies*, 1(3) (2013) 118-125.
- 41 Attanayake AP, Jayatilaka KAPW, Pathirana C & Mudduwa LKB, Efficacy and toxicological evaluation of *Coccinia grandis* (Cucurbitaceae) extract in male Wistar rats, *Asian Pac J Trop Dis*, 3(6) (2013) 460-466.
- 42 Sutradhar BK, Islam J, Shoyeb A, Khaleque HN, Sintaha M et al, An evaluation of antihyperglycemic and antinociceptive effects of crude methanol extract of *Coccinia grandis* (L.) J. Voigt. (Cucurbitaceae) leaves in Swiss Albino mice, *Adv Nat Appl Sci*, 5(1) (2011) 1-5.
- 43 Baizid Alam Shibib MAA, Hasan AM & Rahman R, A creeper, *Coccinia indica*, has anti-hyperglycaemic and anti-ureogenic effects in diabetic rats, *J Pak Med Assoc*, 62 (2012) 1145.
- 44 Kamble SM, Kamlakar PL, Vaidya S & Bambole VD, Influence of *Coccinia indica* on certain enzymes in glycolytic and lipolytic pathway in human diabetes, *Indian J Med Sci*, 52(4) (1998) 143-146.
- 45 Venkateswaran S & Pari L, Effect of *Coccinia indica* on blood glucose, insulin and key hepatic enzymes in experimental diabetes, *Pharm Biol*, 40(3) (2002) 165-170.
- 46 Chopra RN, Nayar SL & Chopra IC, Glossary of Indian Medicinal Plants, CSIR, New Delhi, (1956).
- 47 Verma J, Rathore DS, Agarwal S & Tripathi V, Effects of *Citrullus colocynthis* and *Cucumis callosus* extract on blood glucose levels in alloxan-induced diabetic rats, *Suresh Gyan Vihar University Int J Environ, Sci and Tech*, 1 (1) (2015) 50-55.
- 48 John KJ, Scariah S, Nissar VM, Latha M, Gopalakrishnan S et al, On the occurrence, distribution, taxonomy and genepool relationship of *Cucumis callosus* (Rottler) Cogn., the wild progenitor of *Cucumis melo* L. from India, *Genet Resour Crop Evol*, 60(3) (2013) 1037-1046.
- 49 Babulreddy N, Sahoo SP, Ramachandran S & Dhanaraju MD, Anti-hyperglycemic activity of *Cucumis melo* leaf extracts in streptozotocin induced hyperglycemia in rats, *Int J*, 2(4) (2013) 22-27.
- 50 Dutta J & Kalita MC, Ethno anti diabetic plants used by a few tribes of rural Kamrup District, Assam, *Int J Pharm Sci Res*, 4 (2013) 3663-9.
- 51 Jimam NS, Omale S, Wannang NN & Gotom B, Evaluation of the hypoglycemic activity of *Cucumis metuliferus* (Cucurbitaceae) fruit pulp extract in normoglycemic alloxan induced hyperglycemic rats, *J Young Pharm*, 2(4) (2010) 384-387.
- 52 Gotep J, Glycosides fraction extracted from fruit pulp of *Cucumis metuliferus* E. Meyer has antihyperglycemic effect in rats with alloxan-induced diabetes, *J Nat Pharm*, 2 (2) (2011).
- 53 Ribeiro A, Romeiras MM, Tavares J & Faria MT, Ethnobotanical survey in Canhane village, district of Massingir, Mozambique: medicinal plants and traditional knowledge, *J Ethnobiol Ethnomed*, 6(1) (2010) 1.
- 54 Kavishankar GB & Lakshmidevi N, Antidiabetic and antioxidant potency evaluation of different fractions obtained

from Cucumis prophetarum fruit, *Pharm Biol*, 53(5) (2015) 689-694.

- 55 Kavishankar GB & Lakshmidevi N, Anti-diabetic effect of a novel N-Trisaccharide isolated from *Cucumis prophetarum* on streptozotocin–nicotinamide induced type 2 diabetic rats, *Phytomedicine*, 21(5) (2014) 624-630.
- 56 Roman-Ramos R, Flores-Saenz JL & Alarcon-Aguilar FJ, Anti-hyperglycemic effect of some edible plants, *J Ethnopharmacol*, 48(1) (1995) 25-32.
- 57 Sharmin R, Khan MRI, Akhtar MA, Alim A, Islam MA *et al*, Hypoglycemic and hypolipidemic effects of cucumber, white pumpkin and ridge gourd in alloxan induced diabetic rats, *J Sci Res*, 5(1) (2013) 161-170.
- 58 Salahuddin MD & Jalalpure SS, Antidiabetic activity of aqueous fruit extract of *Cucumis trigonus* Roxb. in streptozotocin-induced-diabetic rats, *J Ethnopharmacol*, 127(2) (2010) 565-567.
- 59 Román RR, Lara AL, Alarcón FA & Flores JS, Hypoglycemic activity of some antidiabetic plants, *Arch Med Res*, 23(3) (1992) 105-9.
- 60 Xia T & Wang Q, Antihyperglycemic effect of *Cucurbita ficifolia* fruit extract in streptozotocin-induced diabetic rats, *Fitoterapia*, 77(7) (2006) 530-533.
- 61 Saha P, Bala A, Kar B, Naskar S, Mazumder UK et al, Antidiabetic activity of *Cucurbita maxima* aerial parts, *Res J Med Plant*, 5(5) (2011) 577-586.
- 62 Chen Z, Wang X, Jie Y, Huang C & Zhang G, Study on hypoglycemia and hypotension function of pumpkin powder on human, *Jiangxi Chinese Medicine*, 25 (1994) 50.
- 63 Chang CI, Hsu CM, Li TS, Huang SD, Lin CC et al, Constituents of the stem of *Cucurbita moschata* exhibit antidiabetic activities through multiple mechanisms, *J Funct Foods*, 10 (2014) 260-273.
- 64 Slane V, Herbal Medicinal Plants, Plants of Saint Lucia, (1987).
- 65 Sedigheh A, Jamal MS, Mahbubeh S, Somayeh K, Mahmoud RK *et al*, Hypoglycaemic and hypolipidemic effects of pumpkin (*Cucurbita pepo* L.) on alloxan-induced diabetic rats, *Afr J Pharm Pharmacol*, 5(23) (2011) 2620-2626.
- 66 Alarcon-Aguilar FJ, Campos-Sepulveda AE, Xolalpa-Molina S, Hernandez-Galicia E & Roman-Ramos R, Hypoglycaemic activity of *Ibervillea sonorae* roots in healthy and diabetic mice and rats, *Pharm Biol*, 40(8) (2002) 570-575.
- 67 Zapata-Bustos R, Alonso-Castro Á J, Gómez-Sánchez M & Salazar-Olivo LA, *Ibervillea sonorae* (Cucurbitaceae) induces the glucose uptake in human adipocytes by activating a PI3K-independent pathway, *J Ethnopharmacol*, 152(3) (2014) 546-552.
- 68 Rivera-Ramírez F, Escalona-Cardoso GN, Garduno-Siciliano L, Galaviz-Hernández C & Paniagua-Castro N, Antiobesity and hypoglycaemic effects of aqueous extract of *Ibervillea sonorae* in mice fed a high-fat diet with fructose, *Bio Med Res Int*, (2011).
- 69 Deshpande JR, Choudhari AA, Mishra MR, Meghre VS, Wadodkar SG *et al*, Beneficial effects of *Lagenaria siceraria* (Mol.) Standley fruit epicarp in animal models, *Indian J Exp Biol*, 46(4) (2008) 234.
- 70 Saha P, Mazumder UK, Haldar PK, Sen SK & Naskar S, Antihyperglycemic activity of *Lagenaria siceraria* aerial

parts on streptozotocin induced diabetes in rats, *Diabetol Croat*, 40(2) (2011) 49-60.

- 71 Kubde MS, Khadabadi SS, Farooqui IA & Deore SL, *Lagenaria siceraria*: phytochemistry, pharmacognosy and pharmacological studies, *Rep Opin*, 2(3) (2010) 91-98.
- 72 Pimple BP, Kadam PV & Patil MJ, Antidiabetic and antihyperlipidemic activity of *Luffa acutangula* fruit extracts in streptozotocin induced NIDDM rats, *Asian J Pharm Clin Res*, 4(2) (2011) 156-63.
- 73 Priyanka SP, Patel MM & Bhavsar CJ, Comparative antidiabetic activity of some herbal plants extracts, *Pharma Sci Monit*, 1(1) (2010) 12-19.
- 74 Manikandaselvi, S, Vadivel V & Brindha P, Review on Luffa acutangula L.: Ethnobotany, Phytochemistry, Nutritional Value and Pharmacological Properties, Int J Curr Pharm Rev Res, 7(3) (2016) 151-155.
- 75 Chaurasia S, Saxena RC, Chaurasia ID & Shrivastav R, Antidiabetic activity of *Luffa aegyptiaca* (Mill) in alloxan induced diabetic rats, *J Chem Pharm Res*, 3 (2011) 522-525.
- 76 El-Fiky FK, Abou-Karam MA & Afify EA, Effect of *Luffa aegyptiaca* (seeds) and *Carissa edulis* (leaves) extracts on blood glucose level of normal and streptozotocin diabetic rats, *J Ethnopharmacol*, 50(1) (1996) 43-47.
- 77 Pradhan BK & Badola HK, Ethnomedicinal plant use by Lepcha tribe of Dzongu valley, bordering Khangchendzonga Biosphere Reserve, in north Sikkim, India, *J Ethnobiol Ethnomed*, 4(1) (2008) 1.
- 78 Suthari S, Sreeramulu N, Omkar K & Raju VS, The climbing plants of northern Telangana in India and their ethnomedicinal and economic uses, *Indian J Plant Sci*, 3(1) (2014) 86-100.
- 79 Yeligar VC, Murugesh K, Dash DK, Nayak SS, Maiti BC *et al*, Evaluation of antidiabetic and antihyperlipidemic activity of *Luffa tuberosa* (Roxb.) fruits in streptozotocin induced diabetic rats, *Nat Prod Sci*, 13(1) (2007) 17.
- 80 Choudhary MC & Upadhyay R, Ethanomedicinal observation of cucurbits from Hoshangabad district, *Shodh Anusandhan Samachar*, 2(1) (2011) 8-15.
- 81 Bhardwaj N, Gauttam V & Kalia A, Evaluation of antidiabetic activity of *Momordica balsamina* Linn seeds in experimentally-induced diabetes, *J Chem Pharm Res*, 2(5) (2010) 701-707.
- 82 Faujdar S, Gauttam V & Kalia AN, Antidiabetic potential of Momordica balsamina L. fruit pulp and its extracts in streptozotocin induced diabetic wistar rats, Int J Ayur Herb Med, 2 (5) (2012) 741-751.
- 83 Panghal M, Arya V, Yadav S, Kumar S & Yadav JP, Indigenous knowledge of medicinal plants used by Saperas community of Khetawas, Jhajjar District, Haryana, India, J *Ethnobiol Ethnomed*, 6(1) (2010) 1.
- 84 Wong CM, Ng TB & Yeung HW, Screening of *Trichosanthes kirilowii*, *Momordica charantia* and *Cucurbita maxima* (family cucurbitaceae) for compounds with antilipolytic activity, *J Ethnopharmacol*, 13(3) (1985) 313-321.
- 85 Welihinda J, Karunanayake EH, Sheriff MHH & Jayasinghe KSA, Effect of *Momordica charantia* on the glucose tolerance in maturity onset diabetes, J *Ethnopharmacol*, 17(3) (1986) 277-282.

- 86 Rao BK, Kesavulu MM, Giri R & Rao CA, Antidiabetic and hypolipidemic effects of *Momordica cymbalaria* Hook. fruit powder in alloxan-diabetic rats, *J Ethnopharmacol*, 67(1) (1999) 103-109.
- 87 Kameswararao B, Kesavulu MM & Apparao CH, Evaluation of antidiabetic effect of *Momordica cymbalaria* fruit in alloxan-diabetic rats, *Fitoterapia*, 74(1) (2003) 7-13.
- 88 Dhasan PB, Jegadeesan M & Kavimani S, Antiulcer activity of aqueous extract of fruits of *Momordica cymbalaria* Hook f. in Wistar rats, *Pharmacog Res*, 2(1) (2010) 58.
- 89 Reddy GT, Kumar BR & Mohan GK, Anithyperglycemic activity of *Momordica dioica* fruits in alloxan-induced diabetic rats, *Niger J Nat Prod Med*, 9(1) (2005) 33-34.
- 90 Fernandopulle BMR, Karunanayake EH & Ratnasooriya WD, Oral hypoglycaemic effects of *Momordica dioica* in the rat, *Med Science Res*, 22(2) (1994) 137–139.
- 91 Singh R, Seherawat A & Sharma P, Hypoglycemic, antidiabetic and toxicological evaluation of *Momordica dioica* fruit extracts in alloxan induced diabetic rats, *J Pharmacol Toxicol*, 6(5) (2011) 454–467.
- 92 Bawara B, Dixit M, Chauhan NS, Dixit VK & Saraf DK, Phyto-pharmacology of *Momordica dioica* Roxb. ex. Willd: A Review, *Int J Phytomed*, 2 (2010) 01-09.
- 93 Talukdar SN & Hossain MN, Phytochemical, phytotherapeutical and pharmacological study of *Momordica* dioica, J Evidence-Based Complementary Altern Med, (2014) 1-11.
- 94 Marquis VO, Adanlawo TA & Olaniyi AA, The effect of foetidin from *Momordica foetida* on blood glucose level of albino rats, *Planta Med*, 31(04) (1977) 367-374.
- 95 Omotayo FO & Borokini TI, Comparative phytochemical and ethnomedicinal survey of selected medicinal plants in Nigeria, *Sci Res Essays*, 7(9) (2012) 989-999.
- 96 Vadivelan R, Dhanabal SP, Patil M, Shanish A, Elango K et al, Antidiabetic activity of Mukia maderaspatana (L) Roem in alloxan induced diabetic rats, Res J Pharmacol Pharmacodynamics, 2(1) (2010), 78-80.
- 97 Kaur M & Duraiswamy B, Evaluation of anti-diabetic activity of stem bark of Mukia maderaspatana. In Proceedings of the 2nd Indian Pharmaceutical Association Students' Congress, Bangalore, India, (2009).
- 98 Wani VK, Dubey RD, Verma S, Sengottuvelu S & Sivakumar T, Antidiabetic activity of methanolic root extract of *Mukia maderaspatana* in alloxan induced diabetic rats, *Int J Pharm Technol Res*, 3 (2011) 214-220.
- 99 Chopra RN, In; Glossary of Indian Medicinal Plants, National Institute of Science Communication and Information Resources (CSIR), New Delhi. 165 (2002).
- 100 Kirthikar KR & Basu BD, Indian Medical Plants. Vol I. Bishen Singh and Mahendra Singh, Dehradun, India (1980) 604-605.
- 101 Gomathy G, Vijay T, Sarumathy K, Gunasekaran S & Palani S, Phytochemical screening and GC-MS analysis of *Mukia maderaspatana* (L.) leaves, *J Appl Pharm Sci*, 2 (12) (2012) 104-106.
- 102 Petrus AJA, Ethnobotanical and pharmacological profile with propagation strategies of *Mukia maderaspatana* (L.) M. Roem.–A concise overview, *Indian J Nat Prod Resour*, 4(1) (2013) 9-26.

- 103 Sultana S, Indigenous knowledge of folk herbal medicines by the women of district Chakwal, Pakistan, *Ethnobotanical Leaflets*, (1) (2006) 26.
- 104 Eseyin OA, Ebong P, Ekpo A, Igboasoiyi A & Oforah E, Hypoglycaemic effect of the seed extract of *Telfairia occidentalis* in rat, *Pak J Biol Sci*, 10(3) (2007) 498-501.
- 105 Eseyin OA, Igboasoiyi AC, Oforah E, Nkop N & Agboke A, Hypoglycaemic activity of *Telfairia occidentalis* in rats, *J Pharmacy Bioresou*, 2(1) (2005) 36-42.
- 106 Kirana H & Srinivasan BP, *Trichosanthes cucumerina* Linn. improves glucose tolerance and tissue glycogen in non insulin dependent diabetes mellitus induced rats, *Indian J Pharmacol*, 40(3) (2008) 103-106.
- 107 Arawwawala M, Thabrew I & Arambewela L, Antidiabetic activity of *Trichosanthes cucumerina* in normal and streptozotocin–induced diabetic rats, *Int J Biol Chem Sci*, 3(2) (2009) 56.
- 108 Sandhya S, Vinod KR, Sekhar JC, Aradhana R & Nath VS, An updated review on *Trichosanthes cucumerina* L., *Int J Pharm Sci Rev and Res* 1(2) (2010) 56-60.
- 109 Adiga S, Bairy KL, Meharban A & Punita ISR, Hypoglycemic effect of aqueous extract of *Trichosanthes* dioica in normal and diabetic rats, *Int J Diabetes in* Developing Countries, 30(1) (2010) 38.
- 110 Rai PK, Jaiswal D, Singh RK, Gupta RK & Watal G, Glycemic properties of *Trichosanthes dioica* leaves, *Pharmaceutical Biology*, 46(12) (2008) 894-899.