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The local predictability of underwater acoustic signals plays an important role in underwater acoustic signal processing, 
as it is the basis for solving non-stationary signal detection. A prediction model of underwater acoustic signals based on 
extreme-point symmetric mode decomposition (ESMD) and extreme learning machine (ELM) is proposed. First, underwater 
acoustic signals are decomposed by ESMD to obtain a set of intrinsic model functions (IMFs). After IMFs are grouped, the 
training samples and forecast samples are obtained. Then, prediction model for training samples is established by using 
ELM to obtain the input layer, output layer weight vector and offset matrix. The trained ELM is used to predict the forecast 
sample to obtain component. Finally, the reconstructed IMFs and residuals are the final prediction results. The experimental 
results show that the proposed model is a good predictive model having better prediction accuracy and smaller error. 
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Introduction 
In underwater acoustic signal processing, the ship 

radiation noise signal in seawater has always been one 
of the focuses of people's research. The ship radiation 
noise signal is produced by nonlinear of marine 
environment and hull dynamic structure and contains  
a large number of ship features, such as target 
orientation, distance and depth1. An important feature 
of the underwater acoustic signal is local predictability. 
The feature plays an important role in underwater 
acoustic signal processing, as it is the basis for solving 
non-stationary signal detection2. Volterra series theory 
is used to establish a nonlinear dynamic model of the 
underwater acoustic signal3,4. The signal is predicted by 
one-step prediction and multi-step prediction, for 
obtaining the better prediction effect. The radial basis 
function (RBF) neural network is used to establish the 
prediction model of underwater acoustic signal with 
better prediction effect5-7. 

Empirical mode decomposition (EMD)8 is widely 
used in the decomposition of time series. It can 
decompose the signal into a number of different 
frequencies of the intrinsic mode functions (IMFs). 
But the mode mixing will appear in the process  
of decomposition, affecting decomposition results9. 
Extreme-point symmetric mode decomposition 
(ESMD)10 is development of the well-known Hilbert-
Huang transform. ESMD continues the idea of 
empirical mode decomposition. It improves the 

interpolation method of the envelope and is a better 
time-frequency processing method. ESMD can be 
used effectively in the science research and 
engineering applications associated with data analysis 
from atmospheric sciences, oceanic sciences, informatics, 
and so on11. Recently, the time series are usually 
predicted by BP neural network and RBF neural 
network12,13. This method has many disadvantages, 
such as calculation complexity, adjusted manually 
parameters in neural network, slow convergence rate 
and ease of falling into local minimum. Aiming at 
these disadvantages, Huang et al. proposed a single-
hidden layer feed forward neural networks (SLFNs), 
called extreme learning machine (ELM) learning 
algorithm in 200614. At present, ELM is widely used 
in the prediction of time series. The short-term wind 
is forecast by ELM15. ELM combined with fruit fly 
optimization algorithm (FOA) is used to forecast 
stock price16. Li et al. forecast wind power time series 
with an improved ELM, and get better results17. 

In this paper, a prediction model based on ESMD 
and ELM is proposed in view of their advantages to 
predict underwater acoustic signal. 
 
Materials and Methods 
 
Extreme-point symmetric mode decomposition 

ESMD is improved on the basis of EMD. The 
signal is decomposed by EMD to obtain a set of IMFs 
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and residuals. The decomposition process can be 
expressed as: 
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where, R is residuals, and cj is the IMF component. 
The IMF component is extracted from high frequency 
to low frequency. So the complex signal is 
smoothened. 

In EMD, the enveloping outer enclosure of the 
signal is determined by cubic spline interpolation. 
However, the point of repetition of extreme points is 
used to be internal curve interpolation in extreme-
point symmetric mode decomposition. Adjacent and 
equal extreme points are added as one extreme point 
to the signal decomposition. ESMD allows a number 
of residual extremes when the signal is decomposed, 
because those residual components can reflect the 
trend of data. This process can be understood as an 
adaptive global mean (AGM). The last remaining 
model is optimized by the ideal of least square 
method. Then the best sieving coefficient in the 
decomposition18,19 is determined. Compared with the 
EMD method, the problem of mode mixing is solved 
effectively. 
 

The ESMD algorithm is as follows: 
(1) Find all the local extreme points (maxima points 

and minima points) of the signal Y, and numerate 
them by (1 )iE i n  . 

(2) Connect all the adjacent iE  with line segments, 

and mark their midpoints by (1 1)iF i n   . 

(3) Add left and right boundary midpoint 0F  and nF  
through a certain approach. 

(4) Construct p interpolating curves 
1 2, , , ( 1)pL L L p L  

with all these n+1 midpoints, and calculate their 
mean value: 
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(5) Repeat the above four steps on Y L until 

L    (  is a permitted error) or the sifting 

times attain a preset maximum number K, and the 
first mode is obtained. 

(6) Repeat the above five steps on the 1Y M  residual 

and get 2 3,M M L until the last residual R with no 
more than a certain number of extreme points. 

(7) Change the maximum number K on a finite 
integer interval  min max,K K  and repeat the above 

six steps. Calculate the variance 2  of Y R  and 
plot a figure with 0   and K, where 0 is the 
standard deviation of Y.  

(8) Find the number 0K  which accords with 

minimum 0   on  min max,K K . Then use this 

0K  to repeat the previous six steps and output the 
whole modes. At this time, the last residual R is 
an optimal AGM curve. 

 
Extreme learning machine 

ELM is developed by single-hidden layer feed 
forward neural networks (SLFNs)20. ELM greatly 
improves the learning speed and generalization 
performance of the network and has many advantages, 
such as ease in selecting parameters, not falling into 
local minimum, and so on. In recent years, it has been 
widely used in time series prediction and a good 
predictive effect is achieved21. The structure of 
SLFNs is shown in Fig. 1. 

For N different samples ( , )i ix t , where

1 2[ , , , ]T N
i i i int t t t R L  and 1 2[ , , , ]T N

i i i inx x x x R L , 

standard SLFNs with N% hidden layers, and activation 
function ( )g x  are mathematically modeled as: 
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where  1 2, , ,
T

i i i inw w w w L is the weight vector 

connecting the i th hidden nodes and input nodes; 

 1 2, , ,
T

i i i im    L is the weight vector connecting 

the i th hidden node and output nodes; ib is the 

 
 

Fig. 1 — The structure of SLFNs 
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threshold of the i th hidden node, and jo is output 

value of the node. 
The standard SLFNs with N%hidden nodes and 

activation function  g x  can approximate these N 

samples with zero error that is
1

0
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j jj
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:
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The above formula can be expressed as a matrix: 
 

H T    … (5) 
 

where  
 

 1 1 1

1 1 1 1

1 1

, , , , , , , ,

( ) ( )

( ) ( )

N
N N

N N

N N
N N N N

H w w b b x x

g w x b g w x b

g w x b g w x b




    
 
 
      

: :

: :

: : :

K K K

L

M L M

L

  … (6) 

 

1
T

T

N






 
 

  
 
  :

M

 

1
T

T
N

t

T

t

 
   
  

M

 

… (7) 

 

The hidden layer matrix H is a definite matrix, so 
training SLFNs is equivalent to solving the least 

squares solution 


 which makes H T  13: 
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The above formula is written as a matrix13: 
 

H T

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where H  is the Moore-Penrose generalized 
inverse of matrix H. 
 

The algorithm of ELM is as follows: 
(1) Randomly initializate the input layer weight iw  

and bias ib . 
(2) Calculate the hidden layer matrix H. 
(3) Calculate the output layer weight vector  . 
 

Prediction model of ESMD-ELM 
First, the signal is decomposed by ESMD to obtain 

a set of IMFs. After IMFs are grouped, the training 

samples and forecast samples are obtained. Then, 
prediction model for training samples is established 
by using ELM to obtain the input layer, output layer 
weight vector and offset matrix. The trained ELM is 
used to predict the forecast sample to obtain 
component. Finally, the reconstructed IMFs and 
residuals are the final prediction results. The block 
diagram of ESMD-ELM prediction model is shown in 
Fig. 2. The algorithm of ESMD-ELM is as follows: 
(1) Load the original data, decompose the data by 

ESMD, and obtain IMFs and residuals. 
(2) Divide the data of each IMF component and 

residual into training samples and test samples, 
and residual into training and test sample 
establish the ELM prediction model. 

(3) Determine the number of input layers, output 
layers and hidden layers of the ELM model. 

(4) The established ELM model is used to predict 
each component. The reconstructed IMFs and 
residuals are the final prediction results. 

 
Results and Discussion 

In this paper, normalized pre-treatment ship 
radiated noise signal is adopted. Its sample rate and 
length is 20 kHz and 2048 points, respectively. 
Onethousand points are randomly selected as 
experimental data, and its time domain waveform is 
shown in Fig. 3. 

The underwater acoustic signal is decomposed by 
the ESMD software developed by Wang et al.22. The 
minimum number of residual modal points and  
the maximum number of iterations are 4 and 40, 
respectively. The minimum number of shifts for the 

 
 

Fig. 2 — The block diagram of ESMD-ELM prediction model 
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output of the minimum variance ratio is calculated as 
four. ESMD is performed at the best number of 
sieving coefficient. The results of ESMD are shown in 
Figure 4. 

Seven IMFs components and one remainder are 
obtained by ESMD. IMF1-IMF3 preserves the high 
frequency components of the original underwater 
acoustic signal. IMF7 and R are low frequency 
components. The remainder R represents the global 
optimal AGM curve.  

The IMF1-IMF7 and residuals were predicted by 
ELM prediction model. The number of nodes in the 
input layer is 5, the number of nodes in the hidden 
layer is 15, and the number of nodes in the output 
layer is 1. The first five values of each component are 
used to predict the sixth value. One thousand data can 

be divided into 990 sets of data, where the former 800 
sets of data are used as the test data, and the latter 190 
sets of data are used as the forecast data. Activation 
function g (x) is radial basis function. The prediction 
results are accumulated to give final prediction 
results, which are shown in Figure 5. 

It can be seen from Figure 5 that the fitting degree 
of the actual value and the predictive value is higher. 
Figure 6 shows the comparison results of BP neural 
network prediction model and ELM neural network 
prediction model under the same conditions. 

To verify the prediction result, the RMS error 
(RMSE) and mean absolute error (MAE) are used to 
estimate the result of prediction model. RMS error 
can be used to measure the deviation between the 
observed value and the true value, which reflects the 

 
Fig. 3 — The time domain waveform of underwater acoustic
signal 
 

 
Fig. 4 — The results of ESMD 

 

Fig. 5 — The prediction results of ESMD-ELM 
 

 

Fig. 6 — The prediction results of BP and ELM 
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discrete degree of the data. The mean absolute error 
can reflect the actual situation of the prediction error. 
 

The RMS error (RMSE) is 
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The mean absolute error (MAE) is  
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where 
pr edY  is forecast data, and r ealY  is original 

data. Compared with the three models, the RMS error 
and the mean absolute error of each model are shown 
in Table 1. 

As shown in Table 1, the RMSE and MAE of the 
BP neural network prediction model are 0.0956 and 
0.00756, respectively, and the RMSE and MAE of the 
ELM prediction model are 0.0524 and 0.00270 
respectively, which shows that the ELM neural 
network has better accuracy than the BP neural 
network. The RMSE and MAE of ESMD-ELM 
prediction model are 0.0308 and 0.000953 
respectively, which further improves the prediction 
precision and reduces the prediction error. Therefore, 
the model with ESMD and ELM neural network 
proposed in this paper is a better prediction model. 
 

Conclusion 
In this paper, a hybrid prediction model of 

extreme-point symmetric mode decomposition and 
extreme learning machine is proposed to predict the 
underwater acoustic signal. Extreme-point symmetric 
mode decomposition can effectively eliminate the 
aliasing phenomenon when the underwater acoustic 
signal is decomposed. Compared with the traditional 
BP neural network, the extreme learning machine 
chooses the weights of the hidden layer randomly in 
the process of determining the network parameters, 
reduces the adjustment time of the network 
parameters, has strong non-linear learning ability, and 

can be better fitting the underwater acoustic signal. 
The experimental results show that the proposed method 
can effectively predict the underwater acoustic signal. 
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