Carbon – 13 NMR relaxation studies of methyl methacrylate – *n*-butyl methacrylate copolymers

A S Brar* & G S Kapur

Department of Chemistry, Indian Institute of Technology, New Delhi 110 016 Received 17 June 1988; accepted 25 August 1988

Methyl methacrylate – *n*-butyl methacrylate copolymers of different compositions have been prepared at 70°C, using benzoyl peroxide as an initiator. Proton decoupled ¹³C NMR spectra of the samples have been recorded and spin lattice relaxation times (T_1) measured using FIRFT method. Effect of copolymer composition on the T_1 values has been discussed.

Nuclear magnetic resonance has been extensively applied to the complex dynamic problems presented by polymer chains. Carbon-13 NMR spin lattice relaxation measurements represent a powerful method for investigating molecular motion in polymers. Information about backbone motion and segmental internal rotation in polymers can be obtained from measurements of ¹³C-spin lattice relaxation times (T_1s) and nuclear Overhauser effects (NOEs)¹⁻⁴. The dependence of the T_1s and NOEs on the strength of the magnetic field, temperature and solvent have been reported by several investigators⁵⁻⁸. Various models have been developed in order to interpret spin lattice relaxation data for main chain and side chain carbons in polymers⁹⁻¹³. The simplest is the rigid isotropic model which is characterised by single correlation time⁹. Levy and Wang⁸ have reported the effect of solvent on the motion of main chain and side chain carbons in poly (*n*-butyl methacrylate). A literature survey reveals that no work so far has been reported on the ¹³C NMR relaxation studies of methyl methacrylate - n-butyl methacrylate copolymers, and hence the title investigation.

Materials and Methods

Methyl methacrylate – n-butyl methacrylate copolymers of varying compositions were prepared at 70°C using benzoyl peroxide as an initiator.

Proton decoupled ¹³C NMR spectra were recorded in CDCl₃ at 25°C on a 25 MHz Jeol FX-100 NMR spectrometer; chemical shifts are expressed in δ ppm downfield from TMS. Free induction decays were accumulated with 8K data points. T₁ measurements were performed using,

the $(\tau$ -180°-t-90°)x fast inversion recovery pulse sequence (FIRFT). A total of 11 τ values ranging from 0.01 to 20s were used to obtain a given T₁ data set. A least mean square analysis performed by the computer gave the reported T₁ values. Polymer solutions were deoxygenated by bubbling pure nitrogen through the samples. Molecular weights of the copolymers were determined by viscometry in chloroform at 30°C.

Results and Discussion

A representative proton decoupled ¹³C NMR spectrum of methyl methacrylate – *n*-butyl methacrylate copolymer is shown in Fig.1. Assignments of various carbon resonance signals have been made by comparing the ¹³C NMR spectrum of copolymer with those of poly(methyl methacrylate) and poly(*n*-butyl methacrylate). Chemical shifts of various carbon atoms on the copolymer (structure 1) are: $\delta 177.58$ (C=O), $\delta 64.57$ (C-1), $\delta 54.19$ (– CH₂–), $\delta 51.47$ (OCH₃), $\delta 44.97$, $\delta 44.55$ (quaternary carbons), $\delta 30.07$ (C-2), $\delta 19.16$ (C-3), $\delta 18.38$ (C-CH₃), $\delta 16.38$ (–*CH₃) and $\delta 13.57$ (C-4).

Copolymer composition, comonomer reactivity ratios and microstructure of this copolymer system has been described in our earlier publication¹⁴ and it has been observed that the chemical shifts for various carbons are not affected by the

Fig. 1–25 MHz proton decoupled ¹³C NMR spectrum of methyl methacrylate-*n*-butyl methacrylate copolymer in CDCl₃ at 25°C

MMA (mol %)	Table 1 – Spin la Mol wt $(M \times 10^{-5})$	ttice relaxation time (T ₁) data for methyl methacrylate – <i>n</i> -butyl methacrylate copolymers T ₁ (s)							
		C-1	C-2	C-3	C-4	-Ç-	-O <i>C</i> H ₃	>C=0	- <i>C</i> H ₂
30.0	4.26	0.06	0.31	0.83	1.75	0.50	0.69	0.77	
40.0	4.34	0.14	0.40	1.03	2.15	0.40	0.40	0.85	_
50.0	4.30	0.05	0.33	0.53	0.95	0.37	0.27	1.10	_
60.0	4.70		0.25	0.77	1.77	0.53	0.37	1.11	0.07
70.0	4.20		0.33	0.77	_	0.54	0.24	0.80	0.08

copolymer composition, only the peak intensities are affected.

Carbon-13 spin lattice relaxation times (T_1s) for various carbon atoms in the copolymer chain are given, for all the copolymer samples in Table 1. The T_1 value of the methylene carbon is very low due to the two directly attached protons and the relaxation is dominated by the dipole - dipole mechanism³. In the n-butyl side chain of n-butyl methacrylate unit, the value of T_1 increases from C-1 to C-4. This trend is observed in all the copolymer samples. The molecular anchor at oxygen of the ester group does restrict the motion of C-1, resulting in the long correlation time (τ_c) and small value of T_1 . Methylene carbons in the side chain, i.e. C-2 and C-3 show appreciable segmental motion resulting in their high values of T_1 . The methyl carbon in the side chain has a large degree of internal motion, resulting in the highest value of T_1 amongst the four carbons in the side chain.

The values of T_1 for the side chain carbons and methylene carbons are in good agreement with those given for poly (*n*-butyl methacrylate) by Levy and Wang⁸. Small variations may be due to the use of different solvents and magnetic field during the NMR measurements. The low value of T_1 for quaternary carbon indicates that the dipolar spin relaxation must arise from nearby protons⁸. The triad sequence concentration seems to affect the T_1 value of quaternary carbon. The T_1 value is the least for copolymer containing 50 mole per cent of methyl methacrylate and increases on either side of this concentration. In our earlier publication¹⁴, we have shown that at 50%methacrylate, methyl the concentration 112(211) and 221(122) triad (where 1 = methylmethacrylate and 2 = n-butyl methacrylate) is maximum and decreases on either side of this concentration. The maximum concentration of 112 and 221 triads corresponds to minimum T₁ value for the quaternary carbon.

To the best of our knowledge, Mark-Houwink constants for this copolymer system have not been reported, therefore we have taken these constants as equal to that for poly (methyl methacrylate) from the literature¹⁵. Mark-Houwink constants are: $K = 4.3 \times 10^{-3}$ ml/g, and a = 0.80. The molecular weights are given in Table 1. The values of molecular weights are in the order of million for all the samples.

Acknowledgement

The authors wish to thank the CSIR, New Del-

hi for financial support for this research programme.

References

- 1 Bovey F A & Jelinski L W, J phys Chem, 89 (1985) 571.
- 2 Henrichs P M, J polym Sci (Phys Ed), 21 (1983) 263.
- 3 Heatley F & Wood B, Polymer, 19 (1978) 1405.
- 4 Levy G C, Topics in carbon-13 NMR spectroscopy (John Wiley, New York) 1974.
- 5 Levy G C, Axelson D E, Schwartz R & Hochmann J, J Am chem Soc, 100 (1978) 410.
- 6 Heatley F & Begum A, Makromol Chem, 178 (1977) 1205.
- 7 Inoue Y & Konno T, Polymer J, 8 (1976) 457.

- 8 Levy G C & Wang D, Macromolecules, 19 (1986) 1013.
- 9 Bloembergen N, Purcell E N & Pound R V, *Phys Rev*, 73 (1948) 679.
- 10 Cole K S & Cole R H, J chem Phys, 9 (1941) 341.
- 11 Fuoss R M & Kirkwood J G, J Am chem Soc, 63 (1941) 385.
- 12 Schaefer J, Macromolecules, 6 (1973) 882.
- 13 (a) Valeur B, Monnerie L & Jarry J P, J polymer Sci (Phys Ed), 13 (1975) 675; (b) Valeur B, Jarry J P, Geny F & Monnerie L, J polym Sci (Phys Ed), 13 (1975) 667; and (c) Valeur B, Monnerie L & Jarry J P, J polym Phys, 13 (1975) 2251.
- 14 Brar A S & Kapur G S, Polymer J, 20 (1988) 811.
- 15 Brandrup J & Immergut E H, *Polymer handbook* (Interscience, New York) 1966.