Liquid Junction Potentials Across Aqueous Saturated Calomel Electrode/Some Aquo-organic Solvents Interface

JAYATI DATTA, SUBRATA SINHA & KIRON K KUNDU*

Physical Chemistry Laboratories, Jadavpur University, Calcutta 700 032 Received 7 March 1988; revised and accepted 27 May 1988

The liquid junction potentials (E_j) generated at the boundaries of saturated KCl solution of aqueous saturated calomel electrode [SCE (W)] and mixed aqueous organic solvents have been determined within the framework of tetraphenylarsonium tetraphenylboride (TATB) reference electrolyte extra-thermodynamic assumption. The organic solvents comprise protic methanol (MeOH) and ethanol (EtOH), aprotic dioxane (D) and dipolar aprotic acetonitrile (ACN), N,N-dimethylformamide (DMF) and dimethyl sulphoxide (DMSO). The E_j values increase almost monotonically in the cases of DMF and DMSO and remain almost invariant till 50 wt % MeOH and EtOH, while in ACN and D, the values lie in between. The contribution to E_j values is mainly from difference of ion-solvent interactions in these mixed solvents, which becomes significant only in the organic-rich compositions.

We have recently reported¹ the E_i values across SCE (W)/solvents like protic methanol (MeOH), ethylene glycol (EG) and dipolar aprotic acetonitrile (ACN), N,N-dimethylformamide (DMF), dimethyl sulphoxide (DMSO) and propylene carbonate (PC) employing tetraphenylarsonium tetraphenylboride (TATB) reference electrolyte extra-thermodynamic assumption²⁻⁴. It was observed that E_i values though fairly small (below 40 mV) in protic solvents, were fairly large (within 100-200 mV) in dipolar aprotic solvents. This was attributed to solvent-solvent interactions across the liquid junctions. In view of extensive applications of SCE (W) in aquo-organic mixtures it was considered worthwhile to extend our studies to some of these mixed solvents. Herein we report E_i values across the interface of aqueous SCE (W)/aquo-organic mixtures of protic MeOH and EtOH, aprotic dioxane and dipolar aprotic ACN, DMF and DMSO of different compositions. The method consisted of emf measurements of the double cell of the type (A)

$$-SCE(W) ||KCl(c), S/AgCl-Ag-AgCl/KCl(c), W||SCE(W)+$$
(A)

The required ΔG_{t}^{o} (Cl⁻) values based on TATB assumption are known for these aquo-organic mixtures in literature⁵⁻¹⁰.

Materials and Methods

The solvents, other than dioxane (D) were of similar quality and purified by literature procedures^{1,9,11}. Dioxane (GR, E Merck) was purified as described earlier¹². Potassium chloride (AR, BDH) was used after usual pretreatment. Ag-AgCl electrodes were prepared by thermo-electrolytic method as described by Ives and Janz¹³. Aqueous saturated calomel electrodes SCE (W) with porous pin liquid junction were obtained from Elico (India). The bias potentials of the electrodes used were less than ± 0.5 mV. The experimental set up and procedure were similar to those described earlier¹. The ΔE values of the double cell (A) were measured at 25°C by a digital multimeter (EC, Model M 618, 4B).

Aqueous mixtures of organic solvents of different compositions were prepared by mass dilution. Concentrations of stock solution of KCl in water as well as in each of the solvents were checked by argentometric titration. Solutions of required concentrations in each solvent were prepared by proper dilution.

Results

Since the double cell (A) was formed by coupling of the cell in water (W) and that in solvent (S) in opposition, the measured emf (ΔE) of the cell (A), at any molarity (C) of the electrolyte KCl is given by Eq.(1)

$$\begin{split} \Delta E &= {}_{w}E - {}_{s}E \\ &= ({}_{w}E_{cal} - {}_{w}E^{o}_{Ag-AgCl} + k \log {}_{w}a_{Cl}^{-}) \\ &- ({}_{w}E_{cal} - E_{j} - {}_{s}E^{o}_{Ag-AgCl} + k \log {}_{s}a_{Cl}^{-}) \\ &= E_{j} - \Delta G^{o}_{t}(Cl^{-})/F + k \log ({}_{w}C_{Cl}^{-}/{}_{s}C_{Cl}^{-}) \\ &+ k \log ({}_{w}\gamma_{Cl}^{-}/{}_{s}\gamma_{Cl}^{-}) \qquad \dots (1) \end{split}$$

where k = 2.303 RT/F, subscripts s and w refer to the solvent and water respectively and E_j is the liquid junction potential across saturated aqueous KCl/ aquo-organic mixture at zero ionic strength relative to that in water. If the concentrations of KCl in the

two cells were the same, say C and the activity coefficient term is expressed in Debye-Huckel form (2)

$$\log \gamma_{\rm Cl}^{-} = -S_{\rm f} c^{1/2} + bc -\log (d_{\rm s} - 0.001 \,{\rm Mc} + 0.002 \,{\rm M_s c}) \dots (2)$$

where the terms have usual significance, we have an extrapolation function $\Delta E'$ defined by Eq. (3)

$$\Delta \mathbf{E}' = \Delta \mathbf{E} + \Delta \mathbf{G}_{t}^{o} (\mathbf{C}\mathbf{l}^{-}) / \mathbf{F} - \mathbf{k}_{w} \Delta_{s} \mathbf{S}_{f} \mathbf{c}^{1/2}$$
$$- \mathbf{k}_{w} \Delta_{s} \log (\mathbf{d}_{s} - 0.001 \text{ Mc} + 0.002 \text{ M}_{s} \mathbf{c})$$
$$= \mathbf{E}_{j} + \mathbf{k}_{w} \Delta_{s} \text{ bc} \qquad \dots (3)$$

where ${}_{w}\Delta_{s}$ denotes the difference of the quantities in the solvent from that in water. Evidently, the plot of $\Delta E'$ against c on extrapolation to c = 0 would yield E_{i} on the molar scale.

The ΔE values and the corresponding values of the extrapolation function $\Delta E'$ at different concentrations in the respective solvents are given in Table 1. ΔG_t^0 (Cl⁻) values in different solvents required for the computation of E_j values as per Eq. (2), obtained from literature¹⁴⁻¹⁹, are also given in Table 1. The plots of $\Delta E'$ against c are linear, which

			es of ΔE and $\Delta E'$ (in volts) at Various C 50 wt % [$\Delta G_t^{o^c}$ (Cl ⁻) = 3.80 kJ mol ⁻¹]					
$c \pmod{dm^{-3}}$	ΔΕ	ΔΕ΄	$\overline{c \pmod{dm^{-3}}}$	ΔΕ	ΔΕ΄	$\overline{c \pmod{dm^{-3}}}$	ΔΕ	ΔΕ΄
,				$OH - H_2O$				
0.10	-0.014	-0.004	0.10	-0.041	-0.004	0.10	-0.060	0.001
0.08	-0.014	-0.004	0.08	-0.040	-0.003	0.08	-0.060	0.002
0.06	-0.014	-0.004	0.06	-0.040	-0.003	0.06	-0.060	0.003
0.04	0.013	-0.003	0.04	-0.040	-0.002	0.04	-0.061	0.004
0.02	-0.013	-0.002	0.02	-0.039	0.000	0.02	-0.060	0.007
0.01	-0.012	0.000	0.01	-0.038	0.002	0.01	-0.061	0.007
10 wt % [$\Delta G_t^{o^c}$ (Cl ⁻) = 0.532 kJ mol ⁻¹]		30 wt % $[\Delta G_t^{o^c}(Cl^-) = 1.895 \text{ kJ mol}^{-1}]$			50 wt % [$\Delta G_t^{o^c}(Cl^-) = 5.075 \text{ kJ mol}^{-1}$]			
$c \pmod{dm^{-3}}$	ΔE	ΔΕ΄	$\overline{c \pmod{dm^{-3}}}$	ΔE	ΔΕ΄	$\overline{c \pmod{dm^{-3}}}$	ΔE	ΔΕ΄
			Et	$OH - H_2O$				
0.10	-0.007	-0.003	0.10	-0.024	-0.008	0.10	-0.045	0.000
0.08	-0.008	-0.002	0.08	-0.025	-0.008	0.08	-0.045	0.001
0.07	-0.008	-0.002	0.06	-0.024	-0.007	0.07	-0.046	0.001
0.06	-0.007	-0.002	0.04	-0.024	-0.005	0.06	-0.045	0.002
0.04	-0.008	-0.001	0.02	-0.024	-0.004	0.04	-0.046	0.003
0.02	-0.006	0.000	0.01	-0.023	-0.004	0.02	-0.046	0.004
20 wt % [$\Delta G_t^{o^c}(Cl^-) = 4.787 \text{ kJ mol}^{-1}$]			30 wt % $[\Delta G_t^{o^c}(Cl^-) = 7.815 \text{ kJ mol}^{-1}]$			50 wt % [$\Delta G_t^{o^c}$	$(Cl^{-}) = 9.869$	kJ mol ⁻¹]
			(1 1 - 3)	ΔE	A T7/	$\overline{c \pmod{dm^{-3}}}$	ΔE	ΔE΄
$c \pmod{dm^{-3}}$	ΔE	$\Delta E'$	$c (mol dm^{-3})$	ΔE	$\Delta E'$	$c \pmod{dm^{-3}}$	ΔE	ΔE
c (mol dm ⁻³)	ΔE	ΔE		ΔE oxane – H ₂ O	ΔE	c (moi dm ³)	ΔE	ΔΕ
c (mol dm ⁻³) 0.10			Die	$xane - H_2O$		c (mol dm ⁻²)		ΔE 0.105
0.10	-0.013	0.037	Dic 0.10	$\begin{array}{l} \text{oxane} - \text{H}_2\text{O} \\ -0.022 \end{array}$	0.056	0.08	- 0.046 - 0.046	
0.10 0.08		0.037 0.037	Dic 0.10 0.08	-0.022 -0.022		0.08 0.07	-0.046	0.105
0.10	-0.013 -0.013	0.037	Dic 0.10	$\begin{array}{l} \text{oxane} - \text{H}_2\text{O} \\ -0.022 \end{array}$	0.056 0.055	0.08	- 0.046 - 0.046	0.105 0.105
0.10 0.08 0.06	-0.013 -0.013 -0.014	0.037 0.037 0.039 0.036	Dic 0.10 0.08 0.06	$\begin{array}{c} \text{bxane} - \text{H}_2\text{O} \\ -0.022 \\ -0.022 \\ -0.022 \\ -0.022 \end{array}$	0.056 0.055 0.054 0.054	0.08 0.07 0.06	-0.046 -0.046 -0.048	0.105 0.105 0.104
0.10 0.08 0.06 0.04	-0.013 -0.013 -0.014 -0.014	0.037 0.037 0.039	Dic 0.10 0.08 0.06 0.04	$\begin{array}{c} \text{bxane} - \text{H}_2\text{O} \\ -0.022 \\ -0.022 \\ -0.022 \end{array}$	0.056 0.055 0.054	0.08 0.07 0.06 0.04	-0.046 -0.046 -0.048 -0.049	0.105 0.105 0.104 0.104
$\begin{array}{c} 0.10 \\ 0.08 \\ 0.06 \\ 0.04 \\ 0.02 \\ 0.01 \end{array}$	$\begin{array}{c} - \ 0.013 \\ - \ 0.013 \\ - \ 0.014 \\ - \ 0.014 \\ - \ 0.014 \\ - \ 0.012 \end{array}$	$\begin{array}{c} 0.037\\ 0.037\\ 0.039\\ 0.036\\ 0.036\\ 0.038\end{array}$	Dia 0.10 0.08 0.06 0.04 0.02 0.01	$\begin{array}{c} \text{oxane} - \text{H}_2\text{O} \\ - 0.022 \\ - 0.022 \\ - 0.022 \\ - 0.022 \\ - 0.022 \\ - 0.021 \\ - 0.022 \end{array}$	$\begin{array}{c} 0.056 \\ 0.055 \\ 0.054 \\ 0.054 \\ 0.055 \\ 0.054 \end{array}$	0.08 0.07 0.06 0.04 0.02	-0.046 -0.046 -0.048 -0.049 -0.050 -0.052	0.105 0.105 0.104 0.104 0.103 0.102
0.08 0.06 0.04 0.02	$\begin{array}{c} - \ 0.013 \\ - \ 0.013 \\ - \ 0.014 \\ - \ 0.014 \\ - \ 0.014 \\ - \ 0.012 \end{array}$	$\begin{array}{c} 0.037\\ 0.037\\ 0.039\\ 0.036\\ 0.036\\ 0.038\end{array}$	Dia 0.10 0.08 0.06 0.04 0.02 0.01	$\begin{array}{c} \text{oxane} - \text{H}_2\text{O} \\ - 0.022 \\ - 0.022 \\ - 0.022 \\ - 0.022 \\ - 0.022 \\ - 0.021 \\ - 0.022 \end{array}$	$\begin{array}{c} 0.056 \\ 0.055 \\ 0.054 \\ 0.054 \\ 0.055 \\ 0.054 \end{array}$	$\begin{array}{c} 0.08\\ 0.07\\ 0.06\\ 0.04\\ 0.02\\ 0.01 \end{array}$	-0.046 -0.046 -0.048 -0.049 -0.050 -0.052	$\begin{array}{c} 0.105\\ 0.105\\ 0.104\\ 0.104\\ 0.103\\ 0.102 \end{array}$
0.10 0.08 0.06 0.04 0.02 0.01 20 wt % [Δ G _t ^{oc}	$\begin{array}{c} -0.013\\ -0.013\\ -0.014\\ -0.014\\ -0.014\\ -0.012\\ (\mathrm{Cl}^{-})=3.962\end{array}$	0.037 0.037 0.039 0.036 0.036 0.038 2 kJ mol ⁻¹]	Did 0.10 0.08 0.06 0.04 0.02 0.01 50 wt % [ΔG_t^{oc} c (mol dm ⁻³)	$\begin{array}{c} \text{bxane} - \text{H}_2\text{O} \\ - 0.022 \\ - 0.022 \\ - 0.022 \\ - 0.022 \\ - 0.021 \\ - 0.022 \\ (\text{Cl}^-) = 8.79 \\ \hline \Delta \text{E} \end{array}$	0.056 0.055 0.054 0.054 0.055 0.054 8 kJ mol ⁻¹]	$\begin{array}{c} 0.08\\ 0.07\\ 0.06\\ 0.04\\ 0.02\\ 0.01\\ \end{array}$	$\begin{array}{c} -0.046 \\ -0.046 \\ -0.048 \\ -0.049 \\ -0.050 \\ -0.052 \end{array}$	0.105 0.105 0.104 0.104 0.103 0.102 3 kJ mol ⁻¹
$\begin{array}{c} 0.10\\ 0.08\\ 0.06\\ 0.04\\ 0.02\\ 0.01\\ \hline 20 \text{ wt } \% \left[\Delta {G_t^{o^c}} \right] \\ \hline c (\text{mol dm}^{-3}) \end{array}$	$-0.013 \\ -0.013 \\ -0.014 \\ -0.014 \\ -0.014 \\ -0.012 \\ (Cl^{-}) = 3.962 \\ \Delta E$	0.037 0.037 0.039 0.036 0.036 0.038 2 kJ mol ⁻¹]	Die 0.10 0.08 0.06 0.04 0.02 0.01 $50 \text{ wt } \% [\Delta G_t^{oc}]^{oc}$ $\overline{c \pmod{dm^{-3}}}$	$\begin{array}{c} \text{bxane} - \text{H}_2\text{O} \\ - 0.022 \\ - 0.022 \\ - 0.022 \\ - 0.022 \\ - 0.021 \\ - 0.022 \\ (\text{CI}^-) = 8.79 \\ \hline \Delta \text{E} \\ \text{ACN} - \text{H}_2\text{O} \end{array}$	0.056 0.055 0.054 0.054 0.055 0.054 8 kJ mol ⁻¹] ΔE'	$\begin{array}{c} 0.08\\ 0.07\\ 0.06\\ 0.04\\ 0.02\\ 0.01\\ \end{array}$	$\begin{array}{c} -0.046 \\ -0.046 \\ -0.048 \\ -0.049 \\ -0.050 \\ -0.052 \end{array}$	0.105 0.105 0.104 0.104 0.103 0.102 3 kJ mol ⁻¹
$\begin{array}{c} 0.10\\ 0.08\\ 0.06\\ 0.04\\ 0.02\\ 0.01\\ \hline 20 \text{ wt } \% \left[\Delta {G_t^{o^c}} \right. \\ \hline c (\text{mol dm}^{-3})\\ \hline 0.10 \end{array}$	-0.013 - 0.013 - 0.014 - 0.014 - 0.014 - 0.014 - 0.012 (Cl-) = 3.962 - 0.009	$ \begin{array}{r} 0.037 \\ 0.037 \\ 0.039 \\ 0.036 \\ 0.038 \\ 2 \text{ kJ mol}^{-1} \\ \hline \Delta E' \\ 0.031 \\ \end{array} $	Die 0.10 0.08 0.06 0.04 0.02 0.01 $\frac{50 \text{ wt } \% [\Delta G_t^{\text{oc}}}{c \pmod{4}} \int_{c}^{c} (\text{mol } \text{dm}^{-3})}$ A 0.10	$\begin{array}{c} \text{bxane} - \text{H}_2\text{O} \\ - 0.022 \\ - 0.022 \\ - 0.022 \\ - 0.022 \\ - 0.021 \\ - 0.022 \\ (\text{Cl}^-) = 8.79 \\ \hline \Delta \text{E} \\ \text{ACN} - \text{H}_2\text{O} \\ - 0.032 \end{array}$	$0.056 \\ 0.055 \\ 0.054 \\ 0.054 \\ 0.055 \\ 0.054 \\ 8 \text{ kJ mol}^{-1}] \\ \Delta E' \\ 0.056$	$0.08 \\ 0.07 \\ 0.06 \\ 0.04 \\ 0.02 \\ 0.01 \\ 60 \text{ wt } \% \left[\Delta G_t^{o^c} \left(\frac{1}{c (\text{mol dm}^{-3})} \right) \right]$	$-0.046 - 0.046 - 0.048 - 0.049 - 0.050 - 0.052$ $(Cl^{-}) = 10.23 \Delta E$	$0.105 \\ 0.105 \\ 0.104 \\ 0.104 \\ 0.103 \\ 0.102 \\ 3 \text{ kJ mol}^{-1} \\ \Delta E' \\ 0.059 \\ 0$
$\begin{array}{c} 0.10\\ 0.08\\ 0.06\\ 0.04\\ 0.02\\ 0.01\\ \hline 20 \text{ wt } \% \left[\Delta {G_t^{o^c}} \right. \\ \hline c (\text{mol dm}^{-3})\\ \hline 0.10\\ 0.08\\ \end{array}$	-0.013 - 0.013 - 0.014 - 0.014 - 0.014 - 0.014 - 0.012 (Cl-) = 3.962 - 0.009 - 0.008	$\begin{array}{c} 0.037\\ 0.037\\ 0.039\\ 0.036\\ 0.036\\ 0.038\\ 2 \text{ kJ mol}^{-1} \end{array}$ $\Delta E'$ 0.031 0.032	Die 0.10 0.08 0.06 0.04 0.02 0.01 $\frac{50 \text{ wt } \% [\Delta \text{ Ge}_{t}^{\text{oc}}}{c \pmod{dm^{-3}}}$ A 0.10 0.08	$\begin{array}{c} \text{bxane} - \text{H}_2\text{O} \\ - 0.022 \\ - 0.022 \\ - 0.022 \\ - 0.022 \\ - 0.021 \\ - 0.022 \\ (\text{Cl}^-) = 8.79 \\ \hline \Delta \text{E} \\ \text{ACN} - \text{H}_2\text{O} \\ - 0.032 \\ - 0.032 \\ - 0.032 \end{array}$	$0.056 \\ 0.055 \\ 0.054 \\ 0.054 \\ 0.055 \\ 0.054 \\ 8 \text{ kJ mol}^{-1}] \\ \Delta E' \\ 0.056 \\ 0.057 \\ 0.057 \\ 0.056 \\ 0.057 \\ 0.056 \\ 0.057 \\ 0.056 \\ 0.057 \\ 0.056 \\ 0.057 \\ 0.056 \\ 0.057 \\ 0.056 \\ 0.057 \\ 0.056 \\ 0.057 \\ 0.056 \\ 0.057 \\ 0.056 \\ 0.057 \\ 0.056 \\ 0.057 \\ 0.056 \\ 0.057 \\ 0.056 \\ 0.057 \\ 0.056 \\ 0.057 \\ 0.057 \\ 0.056 \\ 0.057 \\ 0.057 \\ 0.056 \\ 0.057 \\ 0.057 \\ 0.056 \\ 0.057 \\ 0.057 \\ 0.056 \\ 0.057 \\ 0.057 \\ 0.056 \\ 0.057 \\ 0.057 \\ 0.057 \\ 0.057 \\ 0.056 \\ 0.057 \\ $	$0.08 0.07 0.06 0.04 0.02 0.01 \frac{60 \text{ wt } \% [\Delta G_t^{o^c} (C_t^{o^c})]}{c (mol dm^{-3})} 0.06350.0500$	$-0.046 - 0.048 - 0.049 - 0.050 - 0.052$ $(Cl^{-}) = 10.23$ $\Delta E - 0.044$	$0.105 \\ 0.105 \\ 0.104 \\ 0.104 \\ 0.103 \\ 0.102 \\ 3 \text{ kJ mol}^{-1} \\ \Delta E'$
$\begin{array}{c} 0.10\\ 0.08\\ 0.06\\ 0.04\\ 0.02\\ 0.01\\ \hline 20 \text{ wt } \% \left[\Delta {G_t^{o^c}} \right. \\ \hline c (\text{mol dm}^{-3})\\ \hline 0.10\\ 0.08\\ 0.06\\ \hline \end{array}$	$-0.013 \\ -0.013 \\ -0.014 \\ -0.014 \\ -0.014 \\ -0.012 \\ (Cl^{-}) = 3.962 \\ \Delta E \\ -0.009 \\ -0.008 \\ -0.009 \\ -0.$	$\begin{array}{c} 0.037\\ 0.037\\ 0.039\\ 0.036\\ 0.036\\ 0.038\\ 2 \text{ kJ mol}^{-1} \end{array}$ $\Delta E'$ $\begin{array}{c} 0.031\\ 0.032\\ 0.032\\ 0.032 \end{array}$	Die 0.10 0.08 0.06 0.04 0.02 0.01 $\frac{50 \text{ wt } \% [\Delta \text{ Ge}_{\text{t}}^{\text{oc}}]^{\text{c}}}{\text{c (mol dm}^{-3})}$ A 0.10 0.08 0.06	$\begin{array}{c} \text{bxane} - \text{H}_2\text{O} \\ -0.022 \\ -0.022 \\ -0.022 \\ -0.022 \\ -0.021 \\ -0.022 \\ (\text{Cl}^-) = 8.79 \\ \hline \Delta \text{E} \\ \text{ACN} - \text{H}_2\text{O} \\ -0.032 \\ -0.032 \\ -0.032 \\ -0.032 \end{array}$	$0.056 \\ 0.055 \\ 0.054 \\ 0.054 \\ 0.055 \\ 0.054 \\ 8 \text{ kJ mol}^{-1}] \\ \Delta E' \\ 0.056 \\ 0.057 \\ $	$0.08 \\ 0.07 \\ 0.06 \\ 0.04 \\ 0.02 \\ 0.01 \\ 60 \text{ wt } \% \left[\Delta G_t^{o^c} \left(\frac{1}{c (\text{mol dm}^{-3})} \right) \right]$	$-0.046 - 0.048 - 0.049 - 0.050 - 0.052$ $(Cl^{-}) = 10.23$ $\Delta E - 0.044 - 0.044$	$0.105 \\ 0.105 \\ 0.104 \\ 0.103 \\ 0.102 \\ 3 \text{ kJ mol}^{-1} \\ \Delta E' \\ 0.059 \\ 0$
$\begin{array}{c} 0.10\\ 0.08\\ 0.06\\ 0.04\\ 0.02\\ 0.01\\ \hline 20 \text{ wt } \% \left[\Delta {G_t^{o^c}} \right. \\ \hline c (\text{mol dm}^{-3}) \\ \hline 0.10\\ 0.08\\ 0.06\\ 0.04\\ \end{array}$	$-0.013 \\ -0.013 \\ -0.014 \\ -0.014 \\ -0.012 \\ (Cl^{-}) = 3.962 \\ \Delta E \\ -0.009 \\ -0.008 \\ -0.009 \\ -0.008 \\ -0.$	$\begin{array}{c} 0.037\\ 0.037\\ 0.039\\ 0.036\\ 0.036\\ 0.038\\ 2 \text{ kJ mol}^{-1} \end{array}$ $\Delta E'$ $\begin{array}{c} 0.031\\ 0.032\\ 0.032\\ 0.033\\ \end{array}$	Die 0.10 0.08 0.06 0.04 0.02 0.01 $50 \text{ wt } \% [\Delta \text{Ge}_{t}^{\text{oc}}$ $\overline{\text{c} (\text{mol dm}^{-3})}$ A 0.10 0.08 0.06 0.04	$\begin{array}{c} \text{bxane} - \text{H}_2\text{O} \\ - 0.022 \\ - 0.022 \\ - 0.022 \\ - 0.022 \\ - 0.021 \\ - 0.022 \\ \hline \\ (\text{Cl}^-) = 8.79 \\ \hline \\ \Delta\text{E} \\ \text{ACN} - \text{H}_2\text{O} \\ - 0.032 \\ - 0.032 \\ - 0.032 \\ - 0.032 \\ - 0.032 \\ \hline \end{array}$	$\begin{array}{c} 0.056\\ 0.055\\ 0.054\\ 0.054\\ 0.055\\ 0.054\\ 8 \text{ kJ mol}^{-1} \end{array}$ $\begin{array}{c} \Delta E'\\ 0.056\\ 0.057\\ 0.057\\ 0.058\\ \end{array}$	$0.08 0.07 0.06 0.04 0.02 0.01 \frac{60 \text{ wt \%} [\Delta G_t^{o^c} (C_t^{o^c})]}{c (mol dm^{-3})} 0.0635 0.0500 0.0400 0.0200$	$-0.046 - 0.048 - 0.049 - 0.050 - 0.052$ $(Cl^{-}) = 10.23$ ΔE $-0.044 - 0.044 - 0.043 - 0.043 - 0.043$	$0.105 \\ 0.105 \\ 0.104 \\ 0.103 \\ 0.102 \\ 3 \text{ kJ mol}^{-1} \\ \Delta E' \\ 0.059 \\ 0.059 \\ 0.061 \\ 0.063 \\ 0.063 \\ 0.063 \\ 0.063 \\ 0.005 \\ 0.005 \\ 0.005 \\ 0.061 \\ 0.063 \\ 0.063 \\ 0.005 \\ 0$
$\begin{array}{c} 0.10\\ 0.08\\ 0.06\\ 0.04\\ 0.02\\ 0.01\\ \hline 20 \text{ wt } \% \left[\Delta {G_t^{o^c}} \right. \\ \hline c (\text{mol dm}^{-3})\\ \hline 0.10\\ 0.08\\ 0.06\\ \hline \end{array}$	$-0.013 \\ -0.013 \\ -0.014 \\ -0.014 \\ -0.014 \\ -0.012 \\ (Cl^{-}) = 3.962 \\ \Delta E \\ -0.009 \\ -0.008 \\ -0.009 \\ -0.$	$\begin{array}{c} 0.037\\ 0.037\\ 0.039\\ 0.036\\ 0.036\\ 0.038\\ 2 \text{ kJ mol}^{-1} \end{array}$ $\Delta E'$ $\begin{array}{c} 0.031\\ 0.032\\ 0.032\\ 0.032 \end{array}$	Die 0.10 0.08 0.06 0.04 0.02 0.01 $\frac{50 \text{ wt } \% [\Delta \text{ Ge}_{\text{t}}^{\text{oc}}]^{\text{c}}}{\text{c (mol dm}^{-3})}$ A 0.10 0.08 0.06	$\begin{array}{c} \text{bxane} - \text{H}_2\text{O} \\ -0.022 \\ -0.022 \\ -0.022 \\ -0.022 \\ -0.021 \\ -0.022 \\ (\text{Cl}^-) = 8.79 \\ \hline \Delta \text{E} \\ \text{ACN} - \text{H}_2\text{O} \\ -0.032 \\ -0.032 \\ -0.032 \\ -0.032 \end{array}$	$0.056 \\ 0.055 \\ 0.054 \\ 0.054 \\ 0.055 \\ 0.054 \\ 8 \text{ kJ mol}^{-1}] \\ \Delta E' \\ 0.056 \\ 0.057 \\ $	$0.08 0.07 0.06 0.04 0.02 0.01 \frac{60 \text{ wt \%} [\Delta G_t^{o^c} (C_t^{o^c})]}{c (mol dm^{-3})} 0.0635 0.0500 0.0400$	$-0.046 - 0.048 - 0.049 - 0.050 - 0.052$ $(Cl^{-}) = 10.23$ ΔE $-0.044 - 0.044 - 0.043$	$0.105 \\ 0.105 \\ 0.104 \\ 0.103 \\ 0.102 \\ 3 \text{ kJ mol}^{-1} \\ \Delta E' \\ 0.059 \\ 0.059 \\ 0.061 \\ 0.061 \\ 0.061 \\ 0.005 \\ 0.061 \\ 0.005 \\ 0.061 \\ 0.005 \\ 0.061 \\ 0.005 \\ 0.061 \\ 0.005 \\ 0.061 \\ 0.005 \\ 0.061 \\ 0.005 \\ 0.061 \\ 0.005 \\ 0.061 \\ 0.005 \\ 0.061 \\ 0.005 \\ 0.061 \\ 0.005 \\ 0.061 \\ 0.005 \\ 0.061 \\ 0.005 \\ 0$

20 wt % $[\Delta G_t^{o^c}(Cl^-) = 2.514 \text{ kJ mol}^{-1}]$			50 wt % $[\Delta G_t^{o^c}(Cl^-) = 12.166 \text{ kJ mol}^{-1}]$			70 wt % $[\Delta G_t^{o^c}(Cl^-) = 18.866 \text{ kJ mol}^{-1}]$		
$c (mol dm^{-3})$	ΔΕ	ΔE'	$\overline{c \pmod{dm^{-3}}}$	ΔΕ	ΔΕ΄	$c \pmod{dm^{-3}}$	ΔΕ	$\Delta E'$
			D	$MF - H_2O$				
0.10	-0.011	0.015	0.10	-0.066	0.056	0.0884	-0.069	0.119
0.08	-0.010	0.016	0.08	-0.066	0.057	0.0700	-0.070	0.119
0.06	-0.007	0.018	0.06	-0.067	0.056	0.0638	-0.070	0.119
0.04	-0.009	0.016	0.04	-0.067	0.057	0.0500	-0.071	0.119
0.02	-0.007	0.019	0.02	-0.065	0.059	0.0300	-0.071	0.120
0.02								
0.02	- 0.006	0.020	0.01	-0.064	0.061	0.0100	-0.067	0.126
	-0.006		0.01 40 wt % [$\Delta G_t^{o^c}$			0.0100 60 wt % [$\Delta G_t^{o^c}$ (
0.01	-0.006						Cl ⁻) = 15.96	1 kJ mol-
0.01 20 wt % [$\Delta G_t^{o^c}$]	-0.006 (Cl ⁻) = 2.85^{9}	kJ mol ⁻¹]	$\frac{40 \text{ wt } \% \left[\Delta G_t^{o^c}\right]}{c \pmod{dm^{-3}}}$	$(C1^{-}) = 7.885$	kJ mol ⁻¹]	60 wt % [$\Delta G_t^{o^c}$ (Cl ⁻) = 15.96	1 kJ mol-
0.01 20 wt % [$\Delta G_t^{o^c}$] c (mol dm ⁻ $\frac{1}{s}$)	-0.006 $(Cl^{-}) = 2.85^{\circ}$ ΔE	$kJ \text{ mol}^{-1}$	$-\frac{40 \text{ wt } \% \left[\Delta G_t^{\text{oc}}\right]}{c (\text{mol } \text{dm}^{-3})}$	$(Cl^{-}) = 7.885$ ΔE	kJ mol ⁻¹]	60 wt % [$\Delta G_t^{o^c}$ (Cl ⁻) = 15.96	1 kJ mol-
0.01 20 wt % [$\Delta G_t^{o^c}$] c (mol dm ⁻ $\frac{1}{3}$) 0.1J	-0.006 $(Cl^{-}) = 2.85^{\circ}$ ΔE $- 0.012$	kJ mol ⁻¹] ΔΕ΄ 0.017	$\frac{40 \text{ wt \%} [\Delta G_t^{\text{oc}}}{c (\text{mol dm}^{-3})}$ DN 0.142	$(C1^{-}) = 7.885$ ΔE $MSO - H_2O$	kJ mol ⁻¹] ΔE΄	$\frac{60 \text{ wt } \% \left[\Delta G_t^{o^c}\right]}{c \pmod{dm^{-3}}}$	$\frac{\text{Cl}^-) = 15.96}{\Delta \text{E}}$	1 kJ mol⁻ ΔE′
0.01 20 wt % [$\Delta G_t^{o^c}$] c (mol dm ⁻ $\frac{1}{s}$)	-0.006 $(Cl^{-}) = 2.85^{\circ}$ ΔE	$kJ \text{ mol}^{-1}$	$-\frac{40 \text{ wt } \% \left[\Delta G_t^{\text{oc}}\right]}{c (\text{mol } \text{dm}^{-3})}$	$(C1^{-}) = 7.885$ ΔE $MSO - H_2O$ - 0.023	kJ mol ⁻¹] ΔE΄ 0.057	$\frac{60 \text{ wt } \% [\Delta G_t^{o^c} (\Delta G_t^{o^c})]}{c (\text{mol } \text{dm}^{-3})}$ 0.0642	$Cl^{-}) = 15.96$ ΔE -0.045	1 kJ mol⁻ ΔE΄ 0.117
0.01 20 wt % $[\Delta G_t^{o^c}]$ c (mol dm ⁻³) 0.1J 0.08	-0.006 $(Cl^{-}) = 2.83^{\circ}$ ΔE -0.012 -0.008	kJ mol ⁻¹] ΔE' 0.017 0.021	$\frac{40 \text{ wt \%} [\Delta G_t^{\text{oc}}}{c (\text{mol dm}^{-3})}$ DN 0.142 0.100	$(C1^{-}) = 7.885$ ΔE $MSO - H_2O$ $- 0.023$ $- 0.024$	kJ mol ⁻¹] ΔE΄ 0.057 0.056	$\frac{60 \text{ wt } \% [\Delta G_t^{o^c} (c_t^{o^c})]}{c (mol \ dm^{-3})}$ 0.0642 0.06	$Cl^{-}) = 15.96$ ΔE -0.045 -0.045	1 kJ mol ΔE΄ 0.117 0.117
0.01 20 wt % $[\Delta G_t^{o^c}]$ c (mol dm ⁻³) 0.1J 0.08 0.06	-0.006 $(Cl^{-}) = 2.85^{\circ}$ ΔE -0.012 -0.008 -0.008	kJ mol ⁻¹] ΔE' 0.017 0.021 0.021	$\frac{40 \text{ wt \%} [\Delta G_t^{\text{oc}}}{c (\text{mol dm}^{-3})}$ DN 0.142 0.100 0.080	$(C1^{-}) = 7.885$ ΔE $MSO - H_2O$ $- 0.023$ $- 0.024$ $- 0.022$	kJ mol ⁻¹] ΔE' 0.057 0.056 0.058	$\frac{60 \text{ wt } \% \left[\Delta G_t^{o^c}\right]}{c \ (\text{mol } \text{dm}^{-3})}$ $\frac{0.0642}{0.06}$ 0.05	$Cl^{-}) = 15.96$ ΔE -0.045 -0.045 -0.046	1 kJ mol [−] ΔE΄ 0.117 0.117 0.116

Table 1–Values of ΔE and $\Delta E'$ (in volts) at Various Concentrations–(*Contd*)

Cosolvent	wt % cosolvent	$\begin{array}{l} \Delta G_t^{o\ c}(K^{ \scriptscriptstyle +}) \\ (kJ\ mol^{ -1}) \end{array}$	$\begin{array}{l} \Delta G_t^{o\ c}(Cl^-) \\ (kJ\ mol^{-1}) \end{array}$	$E_{j}\left(mV\right)$	$\begin{array}{c} \mathbf{E_{j}}\left(\boldsymbol{\gamma_{i}}-\mathbf{solv}\right)\\ (\mathbf{mV}) \end{array}$	$\begin{array}{c} E_{j}\left(solv\right) \\ (mV) \end{array}$
MeOH ^a	20	2.6	1.1	- 1	- 8	7
	50	5.8	3.8	1	-10	11
	70	7.9	6.6	8	- 7	15
	100	9.6 ^g	13.2 ^g	30 ^h	38 ·	- 8
EtOH ^b	10	0.8	0.5	1	- 1	2
	30	1.9	1.9	- 3	0	- 3
	50	3.1	5.1	6	10	- 4
	100	16.4 ^g	20.2 ^g	37 ^h	39	-2
Dc	20	-1.8	4.8	36	34	2
	30	-2.7	7.8	45	55	-10
	50	-0.8	9.9	48	56	- 8
ACNd	20	1.6	4.0	37	28	.9
	50	-0.7	8.8	61	49	12
	60	-0.4	10.2	66	55	11
	100	8.1 ^g	42.1 ^g	95 ^h	176	-81
DMF⁵	20	-0.2	2.5	20	14	6
	50	- 3.3	12.2	60	81	-21
	70	- 5.2	18.9	120	125	- 5
	100	- 10.3 ^g	48.3 ^g	199 ^h	304	-105
DMSO	20	-0.5	2.9	23	18	5
01100	40	-1.7	7.9	61	50	11
	60	- 5.4	16.0	119	111	8
	100	- 13.0 ^g	40.3 ^g	182 ^h	277	-95

(a-f) $\Delta G_t^o(K^+)$ and $\Delta G_t^o(Cl^-)$ values for the aqueous mixtures were obtained from (a) ref. 5; (b) ref. 6; (c) ref. 7; (d) ref. 8; (e) ref. 9; (f) ref. 10.

(g) $\Delta G_t^o(K^+)$ and $\Delta G_t^o(Cl^-)$ values for the pure solvents have been taken from ref. 3.

(h) E, values in pure solvents are taken from ref. 1.

on extrapolation to c = 0 yield the desired E_j values, which are given in Table 2. The values are correct to within ± 2 mV. The extrapolated E_j values being at infinite dilution of the test solution, are independent of ion-ion interactions. However, the effect on E_j of the concentration of the test electrolyte in the solvent side, which are usually small, could be accounted for by limiting or extended form of Debye-Huckel equation. The E_j values thus obtained are plotted against wt % of the cosolvent in Fig. 1.

Discussion

It is evident from Table 1 and Fig. 1 that E_j values are by no means a linear function of the wt % of the cosolvents. Thus while E_j values in the aqueous mixtures of dipolar aprotic DMF and DMSO show a more or less monotonic increase with increase in organic solvent proportion, in protic EtOH and Me-OH, E_j values are nearly invariant till 50 wt % cosolvent. The junction potentials generated in ACNand dioxane-H₂O systems on the other hand attain values nearly in between.

For a better understanding of the nature of E_j composition profiles in these solvent systems, analysis of the overall E_j values in terms of the individual components [vide Eq. (1)] should be of interest. As indicated by Senanayake and Muir¹⁴, current' theories¹⁴⁻¹⁷ on the origin and formation of E_j relate that the magnitudes of E_j for the junction (B)

AX in S₁ (c₁ mol dm⁻³)/MZ in S₂ (c₂ mol dm⁻³) ... (B)

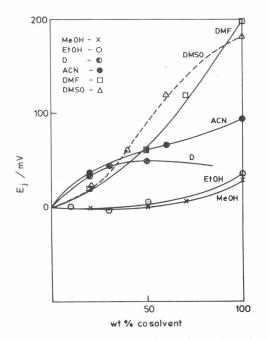


Fig. 1–Variation of E_j with wt % of organic cosolvent in some aquo-organic solvents.

where $c_1 \ge c_2$ are given by the relation (4)

$$E_{j} = -(t_{A} - t_{X}) \frac{RT}{F} \ln \frac{(c \gamma \lambda)_{AX}}{(c \gamma \lambda)_{MZ}} - \frac{1}{F} [t_{A} \Delta G_{t}^{o}(A) - t_{X} \Delta G_{t}^{o}(X)] + E_{j} (\text{solv}) \qquad \dots (4)$$

The terms γ and λ in Eq. (4) represent the activity coefficients due to Debye-Hückel-type interactions and molar conductivity respectively. Thus the first term in Eq. (4) corresponds to $E_j (\gamma_i)$ and $E_j (\lambda_i)$ of Eq. (5) due to Senanayake and Muir¹⁴

$$\mathbf{E}_{j} = \mathbf{E}_{j}(\boldsymbol{\lambda}_{i}) + \mathbf{E}_{j}(\boldsymbol{\gamma}_{i}) + \mathbf{E}_{j}(\boldsymbol{\gamma}_{i} - \operatorname{solv}) + \mathbf{E}_{j}(\operatorname{solv}) \dots (5)$$

Since in the present case AX is KCl, S₁ is water and $t_{K^+} \approx t_{Cl^-} \approx 0.5$ in aqueous solutions even at high concentrations, for $dt_+/d\sqrt{c} \approx 0$ in the case of $t_+ \approx 0.5^{18}$, the first term of Eq. (4) can be tentatively taken to be zero and the component $E_j (\gamma_i - \text{solv})$ of Eq. (5) being equal to the second term of Eq. (4), therefore

$$E_{j}(\gamma_{i} - \text{solv}) = 0.5/F[\Delta G_{t}^{o}(K^{+}) - \Delta G_{t}^{o}(Cl^{-})] \dots (6)$$

Taking the required values of $\Delta G_{t}^{o}(K^{+})$ and ΔG_{t}^{o}

Taking the required values of ΔG_t^o (K⁺) and ΔG_t^o (Cl⁻) from literature⁵⁻¹⁰ (vide Table 2) E_j (γ_i – solv) values were computed for the solvents and are given in Table 2. Subtraction of these values from the experimentally observed E_j values yielded the values of E_j (solv) for all the solvents, which are presented in Table 2.

It is clear from the data in Table 2, that the term E_i $(\gamma_i - \text{solv})$ which stands for the difference of ion-solvent interactions of K⁺ and Cl⁻ in the respective solvents relative to that in water, contributes largely to the overall E_i value. Thus the nature of the E_i $(\gamma_i - \text{solv})$ -composition profiles (vide Fig. 2a) greatly resembles the corresponding E_i-composition profiles (vide Fig. 1) for the respective solvent systems. On the other hand, the contributions of E_i (solv) which stem from the solvent-solvent interactions as a result of mixing of the solvents across the phase boundary, are found to be fairly small in most of the cases. Moreover, their contributions being bereft of any simple correlation (vide Table 2 and Fig. 2b) with the protic or aprotic nature of the cosolvents especially for their aqueous mixtures, preclude any significant effect of the possible interactions between protic-protic and protic-aprotic cosolvent mixtures across the phase boundaries. In the case of pure solvents however, despite very large contributions of E_i (γ_i – solv), E_i (solv) values are also fairly significant, as is expected from the possible nonideal mixing of the hetero-solvent components at the respective phase boundaries.

Hence, it may be concluded that the liquid junction potentials at the hetero-solvent bondaries are

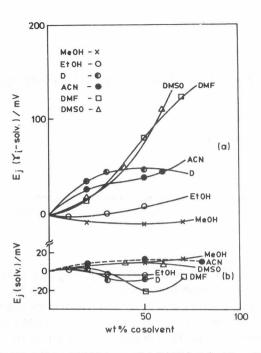


Fig. 2–Variation of (a) E_j (γ_i – solv), (b) E_j (solv) with wt % cosolvent in some aquo-organic solvents.

largely determined by the differences of free energies of transfer of the involved ions at the boundaries. Effects of solvent mixing at the boundaries lower the values than what are expected from ion-solvent interactions only or in other words E_j (solv) serves as a correction factor for E_j (γ_i – solv) term, which is obtained with the help of TATB assumption. These observations are in conformity with those of Senanayake and Muir¹⁴ who used a host of other salt bridges in some of these aquo-organic solvents. Furthermore, the results of the present study reveal that the use of the SCE (W) with saturated KCl as the bridge electrolyte should be preferable to other electrolytes as the first term in Eq. (4) seems to contribute little to E_j values. And thus it should rightly serve as a convenient reference electrode for various electrochemical measurements in different aquo-organic solvents, provided the E_j values are determined for the respective solvent systems on TATB assumption.

Acknowledgement

The authors express their thanks to the CSIR, New Delhi for financial assistance and a research associateship to one of them (JD).

References

- 1 Datta J, Bhattacharya S & Kundu K K, Aust J Chem, 36 (1983) 1779.
- 2 Alexandar R, Parker A J, Sharp J A & Waghorne W E, J am chem Soc, 94 (1972) 1148.
- 3 Cox B G, Hedwig C R, Parker A J & Watts D W, Aust J Chem, 27 (1974) 477.
- 4 Marcus Y, Pure & Appl Chem, 55 (1983) 977.
- 5 Popovych O, Analyt chem, 46 (1974) 2009.
- 6 Popovych O, Gibofsky A & Berne D H, Analyt Chem, 44 (1972) 811.
- 7 Bhattacharya A, Datta J, Das K & Kundu K K, Indian J Chem, 21A (1981) 9.
- 8 Das K, Das A K & Kundu K K, *Electrochim Acta*, **26** (1981) 479.
- 9 Das K, Bose K & Kundu K K, *Electrochim Acta*, **26** (1981) 473.
- 10 Das A K & Kundu K K, J soln Chem, 8 (1979) 259.
- 11 Bose K & Kundu K K, Can J Chem, 55 (1977) 3961.
- 12 Datta J & Kundu K K, Can J Chem, 59 (1981) 3149.
- 13 Ives G J & Janz G J, *Reference electrodes* (Academic Press, London) 1961.
- 14 Senanayake G & Muir D M, *J electroanal Chem*, **237** (1987) 149.
- 15 Alfenaar M, De Ligny C L & Remijnse A G, Rec Trav Chim, Phys-Bas, 86 (1967) 986.
- 16 Izutsu K, Nakamura T, Kitano T & Hirasawa G, Bull chem Soc, Japan, **51** (1978) 783.
- 17 Goldberg S S & Popovych O, Aust J Chem, 36 (1983) 1967.
- 18 Robinson R A & Stokes R H, Electrolyte solutions (Butterworths, London) 1959.