Organophosphorus reagents as extractants: Part 2—Synergic effect of triphenylphosphine oxide on the extraction of $Co(II)/Zn(II)$ from binary mixtures $Co(II)/Zn(II)$ from binary mixtures
with $Cr(III)$, Ag(I), Hg(II), Mg(II) with $Cr(III)$, or AI(III) using 8-hydroxyquinoline

Tarlok S Lobana* & Pushvinder K Bhatia Department of Chemistry, Guru Nanak Dev University,
Amritsar 143 005 Received 3 November 1989; revised and accepted 5 January 1990

Suitable combinations of 8-hydroxyquinoline (HQ) and triphenylphosphine oxide (Ph_3PO) show synergism of 10-12% in the extraction of $Co(II)$ and $Zn(II)$ compared to the use of HQ alone. At the synergic points, $Co(II)/Zn(II)$ are separated from their binary mixtures with Cr(III), Ag(I), Hg(II), Mg(II) or Al(III). The recovery is $95-97\%$ and the nature of the species is $CoQ₂(Ph₃PO)$ and $ZnQ_2(Ph_3PO)$ ₂ respectively for Co(II) and $Zn(II)$. The effects of pH of solutions, dilution of the phases and various anions are studied.

Organophosphorus reagents like trioctylphosphine oxide (TOPO) and tributylphosphine oxide (TBPO) have been reported to act as synergists in the extraction of $Co(II)$ or $Zn(II)$ using β -diketones, 1-phenyl-3-methyl-4-(trifluoroacetyl)pyrazol-5-one and 8-hydroxyquinoline¹⁻⁸. However, separations of Co(II) or Zn(II) from binary or ternary mixtures have not been attempted. Since the aryl substituents show higher extractions⁹, we decided to use Ph_3PO alongwith HQ for liquid-liquid extraction studies of $Co(II)$ and Zn(II).

Experimental

Stock solutions of $HQ(0.1M)$ and $Ph_3PO^{10}(0.2M)$ were made in CHCl₃; those of $CoCl₂.6H₂O(0.01M)$ and $ZnSO_4$.7H₂O (0.01*M*) were made in water. For studying the effect of other metal ions, solutions of different molarities were prepared. Each solution was standardised using $0.01M$ EDTA with xylenol orange as the indicator¹¹. A stock solution of o -phenanthroline *(0.05M)* was also prepared. All the solvents and materials were of reagent grade and purified before use.

Procedure for extraction

 $With HQ: To a 0.01 M solution of $\text{Co}^{2+}(1 \text{ ml})$, 4 ml of$ distilled water was added and the resulting mixture

was equilibrated (15 min) with 5 ml of HQ. For the Zn^{2+} system, the quantities used were: 1 ml of $0.01 M Zn^{2+}$ solution, 7 ml of distilled water, 5ml of HQ and 3 ml of o -phenanthroline (o -phenanthroline avoids precipitation of HQ as its hydrate in $CHCl₃$ layer). The metal contents were determined from the organic and aqueous layers. For the organic layer, stripping with I ml of cone. HCl and 5ml of distilled water transferred the metal ions to the aqueous phase.

With Ph₃PO: Co(II) showed no extraction, while for Zn(II) the procedure was the same as above except that no addition of o-phenanthroline was required.

With Ph3PO and HQ: The following solutions were used: (i) Co^{2+} (1 ml), HO (5 ml), Ph₃PO (5 ml) and distilled water (9 ml) (ii) Zn^{2+} (1 ml), HQ (5 ml), Ph₃PO (5 ml) , o -phenanthroline (3 ml) and distilled water (12 ml) ml). Rest of the procedure was the same as indicated above. For the separation of $Co(II)/Zn(II)$ from binary mixtures, the volumes used were: (i) $Co²⁺$ solution (1 ml), metal salt solution (1 ml), HQ (5 ml, *0.09M),* Ph₃PO (5 ml, 0.05*M*), distilled water (9 ml).

(ii) Zn^2 ⁺ solution (1 ml), metal salt solution (1 ml), HQ (5 ml, 0.09 M), Ph₃PO (5 ml, 0.01 M), o-phen (3 ml) and distilled water (12 ml).

 $Co(II)$ was estimated spectrophotometrically using sodium N, N-diethyldithiocarbamate¹²; $Zn(II)$ by EDTA¹¹, Hg(II) and Ag(I) by $KSCN¹¹$ and other metal ions by $0.1M$ EDTA (xylenol orange indicator $)$ ¹¹.

The distribution coefficient (K_d) was calculated using the relation:

 $K_d = ($ Amount of Co(II)/Zn(II) in organic layer per ml)/(Amount of $Co(II)/Zn(II)$ in aqueous layer per ml)

Results and discussion

The extraction of $Co(II)/Zn(II)$ into CHCl₃ by HQ increased with the increase in molarity of HQ [for Co(II), increase in [HQ] from 0.01 to O.IOMincreased % E from 11.7 to 97.4 and K_d from 0.13 to 32.63; for Zn(II), increase in (HQ] from 0.01 to O.15M increased % E from 14.9 to 96.3 and K_d from 0.17 to 25.75]. From the plots of log K_d versus log [HQ], the nature of the extracted species was found to be $CoQ₂$ in the 0.09-0.10*M* concentration range and ZnQ_2 .HQ in *0.09-0.15M* concentration range.

There was no extraction of $Co(II)$ with $Ph₃PO$ under the experimental conditions, while Zn(II) showed poor extraction (\sim 40% at 0.2*M* Ph₃PO) (Ph₃PO, 0.05-0.20*M;* K_d , 0.07 to 0.67; %E, 6.7-39.9). The nat-

ure of the species was found to be $ZnSO_4(Ph,PO)$, on the basis of log K_d versus log[Ph₃PO] plot. Due to the unequal sizes of P and O in PO, the π -bonding is weak and thus greater charge density concentration on oxygen enhances its affinity for relatively softer χ n(II) as compared to Co(II).

Significantly, when a combination of $0.0\frac{h}{M}$ HQ and $0.05M$ Ph₃PO was used, Co(II) showed 97.5% extraction, registering a synergism of 10% (for $0.09M$ HQ alone, $\%$ E was 86.9) (Table 1). Whereas increase in concentration of HQ from 0.080 to $0.090M$ led to an increase in the extraction of $Co(II)$, there was no effect on the extraction of $Co(II)$ when concentration of Ph₃PO was varied in the vicinity of $0.05M$ at constant HQ concentration (0.09*M*). The nature of the extracted species is believed to be $CoQ_2(Ph_3PO)$.

(a) Variation of Ph₃PO concentration in the vicinity of $0.05M$ caused no effect on extraction.

I ' • ;11;il_ll· r

In the extraction of $Zn(II)$, a combination of HO $(0.09M)$ and Ph₃PO(0.01*M*) showed synergism of about 12%,(% E, 95.0). There was no measurable extraction of $Zn(II)$ with 0.01 M Ph₃PO when used alone. and extraction with HQ (0.09M) alone was 83.6% . The nature of the species is suggested to be $ZnQ_2(Ph_3PO)_2$. The higher slopes of 2.5 for HQ (at constant concentration of Ph_3PO) and 3 for Ph_3PO (at constant HQ concentration) might be due to the presence of the excess reagents in the organic phase.

 $Co(II)/Zn(II)$ was separated from the binary mixtures $M(II)$ -Cr(III), $M(II)$ - $M(II)$, $M(II)$ -Al(III), $M(II)$ -Ag(I) and M(II)-Hg(II) (M = Co, Zn) at the synergic points using combinations of $0.09M$ HO and $0.05M$ Ph₃PO for Co(II) and $0.09M$ HQ and $0.01M$ Ph,PO for Zn(II). On adding the following salts (mg/ml), the K_d and $\%$ E values (single extraction) for Co(II) and Zn(II) were found to be \sim 32 (\sim 97) and \sim 19(\sim 95) respectively: CrCl₃.6H₂O (5.20); MgSO. 4.7H₂O (2.43); AlCl₃.6H₂O (5.38); AgNO₃(10.78) and $HgCl₂(20.06)$. Co(II) interferred in the extraction of Zn(II) and vice-versa; a ten-fold increase in the concentration of the metal salt added had the same effect. The extraction became quantitative when slightly higher HQ concentration (i.e. 0.092M) was used. $Hg(II)$ and $Ag(I)$ got transfered to the organic layer alongwith $Co(II)/Zn(II)$. The stripping of the organic layer with conc. HCl released Co(II) to the aqueous phase, while $Hg(I)/Ag(I)$ remained in the organic phase. Further stripping of the organic layer with cone. $HNO₃$ facilitated release of $Hg(II)/Ag(I)$ to the aqueous layer.

The anions tested $(NO₃⁻, CH₃COO⁻, SO₄⁻$ and Cl^-) caused no interference. Further, there was no effect of dilution on the extraction, even when organic to aqueous phase ratio was I:80. The extraction was maximum in the pH range 4.0-10.0 and poor at $pH = 2.0$ [22.4%, Co(II); 15.3%, Zn(II)]. Here the pH of the solution was varied by using Robinson-Britton buffer (CH₃COOH-NaOH).

Acknowledgement

Financial assistance from the CSIR, New Delhi (Scheme No. 1(1095/87-EMR.II) and research facilities to (PVKB) by the Guru Nanak Dev University, Amritsar are gratefully acknowledged.

References

- I Wang S M & Li N c..1 *inorg nucl Chern,* 31 (1969) 755.
- 2 Wang S M & Walker W R, *J inorg nucl Chem*, 28 (1966) 875.
- 3 Casey R J & Faraday M. *.I inorg nuc/ Chern,* 29 (1967) 1139.
- 4 WalkerW R& Farell M *S,./inorgnuc/Chem,* 28(1966) 1485.
- 5 Shigematsu T, *Bull chem Soc Japan*, 43 (1970) 793.
- 6 Umetani S, Matsui M, Kuzunishi T & Nishkawa Y, *Bull Inst Chem Res, Kyoto Univ, 60 (1982) 254; Chem Abstr, 129940j* (1983).

934

- 7 Shigematsu T, *Bull/nst Chon Res, Kyoto Vnil',* 45 (1967) 2908; *Chem Ahstr,* 69 (1968) 70584s,
- 8 Akawa H & Kawamoto H, Nippon Kagaku Zasshi, 92 (1971) *1156; Chern Ahstr,* 76 (\972) IQ4508g,
- 9 (a) Lobana T S & Sandhu S S, *Coord Chem Rev*, 42 (1982) 283,
	- (b) Lobana T S & Bhatia P V K. *Indian ^J Chrm,* 29A (1990) 93,

J.

- 10 Lobana T S, *Nat Acad Sci Leu (Allahabad),* 8 (1985) 271; *Chrm Ahstr,* 106 (1987) 19651Or.
- 11 Basette J, Denny R C, Jeffery G H & Mendham J, *Vogel's text book 'of quantitative inorganic analysis* ELBS and Longman, London) 1978,265,
- 12 Sandell E B & Onishi H (eds), *Photometric determination of* traces of metal, Vol. 3, Part 1, 4th Edn (John Wiley, NY) 1978, 420,