Cyclic sulphur-nitrogen compounds and phosphorus reagents: Part IV¹—Reactions of phosphiniminocyclotrisulphurtrinitride, (R) Ph₂PN-S₃N₃ (R = phenyl- and morpholino-) with Ph₃P and (OC₄H₈N) Ph₂P: six-membered to eight-membered ring $(6\rightarrow 8)$ conversions

C J Thomas & M N Sudheendra Rao*

Department of Chemistry, Indian Institute of Technology, Madras 600 036

Received 26 May 1989; revised and accepted 28 August 1989

Triphenylphosphine (A) reacts slowly with $Ph_3PN-S_3N_3(I)$ both in CH_3CN and C_6H_6 to produce the known disubstituted eight-membered heterocycle, $1,5-(Ph_3PN)_2S_4N_4(III)$. The recently reported $1,5-[(OC_4H_8N)Ph_2PN]_2S_4N_4$ (IV) is obtained in better yield (ca. 70%) from the reaction between $(OC_4H_8N)Ph_2PN-S_3N_3(II)$ and $(OC_4H_8N)Ph_2P(B)$ in acetonitrile. However, reactions in benzene of (I) with $(OC_4H_8N)Ph_2P$ and of (II) with Ph_3P afford an inseparable mixture of (III) and (IV). Reaction temperature appears to be critical in these ring transformation reactions.

We have reported² that (morpholino)diphenylphosphine exerts a cooperative effect on the reactions of S_4N_4 and Ph_3P and produces the heterocycle, 1,5-(Ph₃PN)₂S₄N₄(III) (ref. 3) ih better yield. No explanation was advanced at that time for this observation. Also, we find that Ph₃PN-S₃N₃ undergoes a nucleophilic attack by amines of suitable strength to give compound (III) in good yield¹. These findings as well as our recent observation of the ring contraction^{4, 5} at room temperature $1,5-[(R)Ph_2PN]_2S_4N_4$ of to (R)Ph₂PN-S₃N₃ in solution (Scheme-1) prompted us to verify experimentally the possibility of observing ring expansion reaction of phosphiniminocyclotrithiazenes in presence of phosphines as nucleophiles to get 1,5-bis(phosphinimino)tetrathiazenes. We report in this paper a detailed study of the reactions of $Ph_3PN-S_3N_3$ (I) and (OC₄H₈N) $Ph_2PN-S_3N_3$ (II) with Ph_3P and $(OC_4H_8N)Ph_2P$, which offer the first examples of the reactions we sought for.

Scheme 1—Ring contraction of (IV) to (II) in solution at room temperature.

Materials and Methods

Samples of (OC₄H₈N)Ph₂P (ref. 6), Ph₃PN-S₃N₃ (ref. 3) and $(OC_4H_8N) Ph_2PN-S_3N_3$ (ref. 4) were prepared and recrystallized according to the literature methods. Triphenylphosphine (Fluka) was used as such. Solvents employed in this study (CH₃CN, C₆H₆, CH₂Cl₂ and Et₂O) were purified by standard procedures7 before use. All the reactions were performed in an atmosphere of dry, oxygen free nitrogen gas. All the products isolated in this study: $1,5-(Ph_3PN)_2S_4N_4$ (refs 3, 8, 9), $1,5-[(OC_4H_8N)Ph_2PN]_2S_4N_4$ (ref. 4), Ph₃P(S) (refs 3, 10) and $(OC_4H_8N)Ph_2P(S)$ (refs 4, 11) are known compounds, whose characterisation data have been reported in literature. In the present study, they were characterized by comparing their physical (m.p.*, colour, solubility), infrared and NMR (1Hand ³¹P-†) spectral data with those of authentic samples prepared by reported procedures.

Only four representative reactions have been described in detail and the results of all other reactions have been summarised in Table 1.

^{*} The 1,5-bis(phosphinimino)tetrasulphurtetranitride derivatives decompose prior to melting.

[†] Spectrum was recorded at -30° C for 1,5-[(OC₄H₈N) - Ph₂PN]₂S₄N₄ due to its decomposition in solution at room temperature.

Table 1—Reac	tions of Ph ₃ PN-S ₃ N ₃ (I) a	nd (OC ₄ H ₈ N)Ph ₂ PN-S	3N3(II) with	$Ph_3P(A)$	and $(OC_4H_8N)Ph_2P(B)$
Reactants		Reaction solvent, temperature and period			Products isolated with yield*
(R)Ph ₂ PN-S ₃ N ₃ (g);(mmol)	(R)Ph ₂ P (g);(mmol)	(ml)	(°C)	(d/h)	-
R = Phenyl- (0.09); (0.22)	R = Phenyl- (0.11); (0.42)	CH ₃ CN (10);	(45);	(9h.)	III (0.04g, 52%) Ph ₃ PS (0.05g)
R = Phenyl- (0.20); (0.48)	R = Phenyl- (0.25); (0.95)	C ₆ H ₆ (10);	(30);	(4d.)	III (0.07g, 40%) Ph ₃ PS (0.10g)
R = Phenyl- (0.26); (0.63)	R = Morpholino-(0.34); (1.26)	CH ₃ CN (10);	(30);	(2d.)	III (0.15g, 65%) (OC ₄ H ₈ N)Ph ₂ PS (0.10g)
R = Phenyl- (0.40); (0.97)	R = Morpholino- (0.52); (1.92)	CH ₃ CN (10);	(45);	(15h.)	III (0.21g, 59%) (OC ₄ H ₈ N)Ph ₂ PS (0.20g)
R = Phenyl- (0.40); (0.97)	R = Morpholino-(0.52); (1.92)	C ₆ H ₆ (10);	(45);	(15h.)	III (0.19g, 53%) (OC ₄ H ₈ N)Ph ₂ PS (0.21g)
R = Phenyl-(0.32); (0.77)	R = Morpholino- (0.21); (0.77)	C ₆ H ₆ (10);	(45);	(15h.)	III (0.07g, 20%)† (OC ₄ H ₈ N)Ph ₂ PS (0.07g)
R = Morpholino-(0.14); (0.33)	R = Morpholino-(0.18); (0.66)	CH ₃ CN (10);	(45);	(2d.)	$(OC_4H_8N)Ph_2PS$ (0.08g)
R = Morpholino-(0.27); (0.64)	R = Morpholino- (0.35); (1.30)	C ₆ H ₆ (10);	(30);	(2d.)	II (0.06g) (OC ₄ H ₈ N)Ph ₂ PS (0.07g)
R = Morpholino-(0.15); (0.36)	R = Phenyl- (0.19); (0.72)	CH ₃ CN (10);	(30);	(3d.)	III (0.06, 46%) Ph ₃ PS (0.07g)
R = Morpholino-().24g); (0.57)	R = Phenyl- (0.30); (1.15)	CH ₃ CN (10);	(45);	(10h.)	III (0.07g, 35%) Ph ₃ PS (0.05g)
R = Morpholino-(0.23g); (0.55)	R = Phenyl-(1.29); (1.10)	C ₆ H ₆ (10);	(30);	(3d.)	III + IV $(0.12g)$ Ph ₃ PS $(0.08g)$

 $III = 1,5-(Ph_3PN)_2S_4N_4$; $IV = 1,5-[(OC_4H_8N)Ph_2PN]_2S_4N_4$.

* Yields of III and IV were calculated on the basis of the sulphur content of (R)Ph₂PN-S₃N₃.

[†] The starting material, Ph₃PN-S₃N₃ (0.08g), was also isolated.

1. Reactions of $Ph_3PN-S_3N_3(I)$ with $Ph_3P(A)$ in CH_3CN at room temperature

To a stirred solution of Ph₃P (0.25 g, 0.95 mmol) in CH₃CN (10 ml) at room temperature (ca. 30°C), Ph₃PN-S₃N₃ (0.20 g, 0.48 mmol) was added all at once. Only after the entire red solid went into solution (ca. 30 h) the formation of a cream yellow precipitate started. The reaction mixture was stirred for 12 h and filtered to separate the precipitate, which was washed with CH₃CN (2 × 3ml) and Et₂O (5 ml), dried *in vacuo* and characterized as 1,5-(Ph₃PN)₂S₄N₄ (0.12 g, 62%) (m.p. 150°C, lit³. 151°C; ³¹P-NMR: δ 23.8 and 18.2, lit.⁹ 23.6 and 18.1 ppm). The filtrate on concentration and cooling at 0°C for 24 h gave Ph₃P(S) (0.11 g) (m.p. 161°C; ³¹P-NMR: δ 42.8 lit.⁹ 42.6 ppm). No other product was isolated from the residual reaction mixture.

2. Reaction of $Ph_3PN-S_3N_3$ (I) with $Ph_3P(A)$ in C_6H_6 at $45^{\circ}C$

Triphenylphosphine (0.50 g, 1.91 mmol) was added, all at a time, to a stirred solution of $Ph_3PN-S_3N_3$ (0.40 g, 0.97 mmol) in C_6H_6 (15 ml) at 45°C (hot water bath). After three hours, the

formation of a pale pinkish solid was observed. The reaction mixture was filtered after 12 h and the solid obtained was washed with CH_3CN (2 × 4 ml), dried *in vacuo* and characterized as 1,5-(Ph₃PN)₂S₄N₄ (0.20 g; 57%). From the filtrate Ph₃P(S) (0.21 g) was isolated.

3. Reaction of $(OC_4H_8N)Ph_2PN-S_3N_3(II)$ with $(OC_4H_8N)Ph_2P(B)$ in CH_3CN

(Morpholino)diphenylphosphine (0.42 g, 1.54 mmol) and (OC₄H₈N)Ph₂PN-S₃N₃(II) (0.33 g, 0.78 mmol) were stirred in CH₃CN (10 ml) at room temperature (ca. 30°C). The initial red colour of the reaction mixture started fading only after 18 h. At this stage, the reaction flask was placed in a cold water bath (ca. 5°C), stirred fo another 8 h and filtered to get a cream yellow solid, which was characterized as 1,5-[(OC₄H₈N)Ph₂PN]₂S₄N₄(IV) (0.21 g, 70%) (m.p. 125°C, lit.⁴ 124°C; ³¹P-NMR: δ 31.6 and 27.1, lit.⁴ 31.6 and 27.0 ppm). The concentrated filtrate was passed through a silica gel column using CH₂Cl₂ as eluant and from the eluate (OC₄H₈N)Ph₂P(S) (0.12 g) (m.p. 108°C; ³¹P-NMR: δ 67.6, lit.⁴ 67.6 ppm) was isolated.

4. Reaction of $Ph_3PN-S_3N_3(I)$ with

 $(OC_4H_8N)Ph_2P(B)$ in C_6H_6 at room temperature Compound (I) (0.35 g, 0.85 mmol) and $(OC_4H_8N)Ph_2P$ (0.46 g, 1.70 mmol) were stirred in C_6H_6 (10 ml) at room temperature for about 40 h and filtered to isolate a flocculent pale pink precipitate which on washing with C_6H_6 (2 × 5 ml), CH₃CN (2 × 5 ml), and Et₂O (2 × 5 ml) left behind a pale yellow powdery solid (0.25 g), (m.p. 135±3°C; ³¹P-NMR: δ 31.5, 27.1, 23.6 and 18.1 ppm) identified as a mixture (2:3) of 1,5-(Ph₃PN)₂S₄N₄(III) and 1,5-[(OC₄H₈N)Ph₂PN]₂S₄N₄(IV) which could not be separated. The filtrate was concentrated and passed through a silica gel column using CH₂Cl₂ as eluant and the eluate on working up gave (OC₄H₈N)Ph₂P(S) (0.21 g).

Results and Discussion

The results obtained in this study have been summarised in Scheme 2. Contrary to the previous observation⁶, we find that $Ph_3PN-S_3N_3(I)$ reacts with $Ph_3P(A)$ in 1:2 molar ratio to give $1,5-(Ph_3PN)_2S_4N_4(III)$ and Ph_3PS . Reactions are slow at room temperature (ca. 30°C) and it takes about 3 days to obtain (III) in ca. 65% yield. Similar yields of (III) can be obtained when the reactions are carried out at 45°C for about 12 h (Table 1). Still higher temperatures were not tried as the monosubstituted $-S_3N_3$ heterocycles undergo thermal degradation under relatively mild conditions¹². (Morpholino)diphenylphosphinesulphide was the only product isolable from the reaction of $(OC_4H_8N)Ph_2PN-S_3N_3(II)$ with $(OC_4H_8N)Ph_2P(B)$ in CH₃CN at 45°C (Table 1). However, the same reaction in CH₃CN at lower temperature led to the isolation of 1,5-[$(OC_4H_8N)Ph_2PN]_2S_4N_4$ (see Materials and Methods). This is in accordance with our earlier observation of the facile ring contraction of (IV) to (II) which occurs at room temperature in solution³ (Scheme 1) in the absence of a phosphine.

Interestingly both the cross reactions—of (I) with B and of (II) with A—in CH₃CN give compound (III) and the sulphide of the attacking phosphine, while an inseparable mixture of (III) and (IV) is obtained from room temperature reactions in benzene. The same reactions when performed at 45°C yield only 1,5-(Ph₃PN)₂S₄N₄ which suggests that compound (IV) is thermally less stable. Although at present it is difficult to comprehend entirely the results observed in this study, it is certain that the nucleophilic attack on $-S_3N_3$ by the phosphine followed by ring opening of $-S_3N_3$ are the essential steps involved in these transformations.

It is noteworthy that in this study, 1,5-(Ph₃PN)₂S₄N₄ has been isolated from the reactions performed in benzene as well. Recent studies from our laboratory on the reactions of S₄N₄ and phosphines^{4, 5, 14} indicate that (phosphinimino)-S₃N₃ derivatives are readily isolated from

Scheme 2—Products from the reactions of $Ph_3PN-S_3N_3(I)$ and $(OC_4H_8N)Ph_2PN-S_3N_3(II)$ with Ph_3P and $(OC_4H_8N)Ph_2P$.

THOMAS et al.: SIX-MEMBERED TO EIGHT-MEMBERED RING CONVERSIONS IN CYCLIC S - N COMPOUNDS

CH₃CN medium. The previous study^{3, 13} has emphasized the use of CH3CN solvent for the isolation of 1,5-(Ph₃PN)₂S₄N₄ and benzene solvent for the isolation of Ph₃PN-S₃N₃. Our results described here and elsewhere^{4, 5, 14} seem to suggest that the reaction solvent does not play any critical role in these reactions.

Conclusion

The monosubstituted cyclotrithiazenes similar to S_4N_4 are attacked slowly by phosphines to give derivatives 1,5-bis(phosphinimino)tetrathiazene which suggests an additional pathway for their formation. The results help in rationalizing some of the complexities observed in the reactions of S_4N_4 with phosphines.

Acknowledgement

C.J.T. thanks the CSIR, New Delhi for a research fellowship. Use of various spectroscopic facilities at the Regional Sophisticated Instrumentation Centre, IIT Madras is gratefully acknowledged.

References

- 1 Part III. Anil J E & Rao M N S, Phosphorus and Sulfur, 37 (1988) 179.
- 2 Anil J E, Thomas C J & Rao M N S, Phosphorus and Sulfur, 30 (1987) 253.
- 3 Bojes J, Chivers T, Cordes A W, MacLean G & Oakley R T, Inorg Chem, 20 (1981) 16.
- Thomas CJ & Rao M NS, J chem Soc Dalton Trans, (1988) 1445
- 5 Thomas C J & Rao M N S (unpublished results).
- 6 Sisler H H & Smith N L, J org Chem, 26 (1961) 5145.
- 7 Perrin D D, Armarego W L F & Perrin D R, Purification of laboratory chemicals, 2nd edn (Pergamon Press, Oxford), 1980.
- 8 Witt M & Roesky H W, Z anorg allg Chem, 515 (1984) 51.
- 9 Chivers T, Oakley R T, Scherer O J & Wolmershauser G, Inorg Chem, 20 (1981) 914.
- 10 Crutchfield M M, Dungan C H, Letcher J H, Mark V & VanWazer J R, Topics in phosphorus chemistry, 5 (Interscience Publishers, New York) 1967.
- 11 Kamai G, Kharraisova F F & Erre E A, Zh obshch Khim, 42 (1972) 1295.
- 12 Chivers T, Cordes A W, Oakley R T & Swepston P N, Inorg Chem. 20 (1981) 2376.
- 13 Chivers T, Chem Rev, 85 (1985) 341.

5.0

13

14 Anil J E & Rao M N S, Inorg chim Acta, 164 (1989) 45.

المحمد المتعادين