Notes

On the HOMO-LUMO separation in the graph spectra of heterocyclobutadienes[†]

Bijay K Mishra*, (Miss) Suma C Varghese, (Miss) Rinku Roy & Rama K Mishra* Chemical Physics Group, P.G. Department of Chemistry, Sambalpur University, Jyoti Vihar 768 019

Received 4 April 1989, accepted 13 September 1989

The characteristic polynomials of heterocyclobutadienes have been generated, and their graph spectra have been analysed. The molecular stability/reactivity and the electronic spectra have been discussed in the light of HOMO-LUMO separation in the graph spectrum. The presence of zero in the graph spectrum which leads to instability of the molecule has been reinvestigated. Triaza- and tetraza-cyclobutadienes having no zero in their graph spectra have been found to be more unstable than cyclobutadiene with two zeros in the corresponding graph spectrum.

Longuet-Higgins¹ and Dewar² in the early sixties provided the inputs for the presence of zeros in the graph spectrum of an alternant hydrocarbon (AH) possessing a 4m-membered cycle. Later a more realistic approach was given by Wilcox³ and Graovac *et al.*⁴ independently. The chemical reactivity of a molecule is determined by the energy difference (ΔE) between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO)⁵. Decrease in HOMO-LUMO gap indicates high reactivity (and more instability)⁶ in the conjugated molecules. Furthermore the HOMO and LUMO, determine the chemical properties such as redox potentials, ionisation potentials etc. of conjugated system⁵.

Analysis of the graph spectrum of cyclobutadiene (a very reactive molecule) shows the presence of two zeros⁷. In the present report we have made an attempt to analyse the graph spectra of heterocyclobutadienes.

Molecular Stability/Reactivity

The characteristic polynomial of the graph (G) can be represented by the expression (1)

$$\mathbf{P}(\mathbf{G}:\mathbf{x}) = \sum_{m=0}^{N} \mathbf{a}_m \mathbf{X}^{N-m} \qquad \dots (1)$$

where the a_m 's are the coefficients of polynomial equation. Decartes theorem indicates the number

 (N_{+}) of positive eigenvalues in the graph spectrum⁷. N₀ (the number of zero eigenvalues in the graph spectrum) can also be found out from Eq. (1). Hence, the number of negative eigenvalues in the graph spectrum (N_{-}) can easily be calculated using relation (2)

 $N_{+} + N_{0} + N_{-} = N$... (2)

where N refers to the total number of conjugated atoms. The presence of N₀ suggests that the molecule is reactive^{1,7}, while N₊ > N₋ indicates the presence of excess bonding molecular orbitals (BMO) and the system is classified as electron-deficient one⁸. On the contrary N₋ > N₊ indicates that the system contains more of either antibonding molecular orbitals (ABMO) or non-bonding molecular orbitals (NBMO), and the system is classified as electronexcessive⁸. Trinajstić⁹ is of the opinion that if N₊ = N₋ (N₀ = 0) then the members of this class of compounds are less reactive than those in the classes N₊ > N₋, N₋ > N₊ and N₊ = N₋; N₀ \neq 0.

A graph (G) is said to be bipartite if its vertex set V can be divided into two distinct subsets V_1 and V_2 such that every vertex of V_1 finds a neighbour in V_2 through one edge and vice versa¹⁰. In the case of heterocyclobutadienes (C_3H_3X ; X = N, P, As, Sb, Bi; Table 1) the angular carbon atom and the heteroatom are placed in the vertex set V_1 and the two other angular carbon atoms are kept in the vertex set V_2 . Hence, without the loss of generality, one can say this graph is a bipartite one, and we call these graphs to be chemical bipartite graphs. Analysis of the spectrum of this type of graph reveals the presence of a single zero in the spectrum. Wagner¹¹ has calculated the resonance energy of monoazacyclobutadiene and showed that by introducing nitrogen into cyclobutadiene ring the stability of the former increases. Cyclobutadiene can be considered to be a bipartite graph and its spectrum contains two zeros (NBMO). By introducing one nitrogen atom into the cyclobutadiene ring, one of the two NBMOs would play the role of a HOMO12 and hence, the stability of the system increases13. Further, for monosubstituted cyclobutadiene we have observed that the weight (h) on X is distributed between BMO and ABMO molecules (2, 3 and 4, Table 1) or between two ABMOs (5 and 6) in a fixed proportion. In the first case, 2/3 of h would be reflected in BMO and 1/3 would be reflected in ABMO whereas in the second case 4/5 of h would be in the lower ABMO

[†]Dedicated to Prof. G.B. Behera, D.Sc. on his 50th birthday.

NO	TES

		Table 1-Graph sp	ectra of different mo	olecules	
Molecule		X ₁	\mathbf{X}_2	X3	X_4
C ₄ H ₄	1	2	0.0000	0.0000	- 2.0000
C ₃ H ₃ N	2	1.8006	0.2523	0.0000	- 1.6729
C ₃ H ₃ P	3	1.7558	0.2057	0.0000	- 1.6615
C ₃ H ₃ As	4	1.6631	0.0735	0.0000	- 1.6366
C ₃ H ₃ Sb	5	1.5657	0.0000	-0.0806	- 1.5851
C ₃ H ₃ Bi	6	1.5166	0.0000	-0.08616	- 1.5305
$C_2H_2N_2$	7*	1.6028	0.3800	0.0000	- 1.2228
C ₂ H ₂ NP	8*	1.5525	0.3380	0.0000	- 1.2105
C ₂ H ₂ NAs	9*	1.4496	0.2162	0.0000	-1.1858
C ₂ H ₂ NSb	10*	1.3462	0.05593	0.0000	- 1.1220
C ₂ H ₂ NBi	11*	1.2973	0.01758	0.0000	- 1.0394
$C_2H_2P_2$	12*	1.4983	0.3000	0.0000	-1.1982
C ₂ H ₂ PAs	13*	1.3862	0.1879	0.0000	- 1.1741
C ₂ H ₂ PSb	14*	1.2727	0.0384	0.0000	- 1.1111
C ₂ H ₂ PBi	15*	1.2192	0.0050	0.0000	- 1.0242
C ₂ H ₂ As ₂	16*	1.2510	0.1000	0.0000	- 1.1510
C2H2AsSb	17*	1.1098	0.0000	-0.0198	- 1.0900
C ₂ H ₂ AsBi	18*	1.0432	0.0000	-0.0382	- 1.0049
C ₂ H ₂ Sb ₂	19*	0.9313	0.0000	-0.1002	- 1.0311
C ₂ H ₂ SbBi	20*	0.8459	0.0000	-0.1000	-0.9459
C ₂ H ₂ Bi ₂	21*	0.7516	0.0000	-0.1000	-0.8516
$C_2H_2N_2$	22†	2.0967	0.5532	-0.2428	- 1.6471
CHN ₃	23	2.3925	0.3800	0.0903	- 1.7228
N ₄	24	2.9200	0.3828	0.3722	- 2.1600

*For 1.3-disubstituted heteroatoms.

+For 1.2-disubstituted heteroatoms.

and the rest 1/5 would be reflected in higher AB-MO. It is known that:

 $\Delta E = E_{LUMO} - E_{HOMO} \qquad \dots (3)$

The ΔE value suggests the molecular reactivity and stability of the system. In cyclobutadiene ΔE is zero, hence, the molecule is said to be more reactive and unstable. Analysing the graph spectrum of molecules **1-6** we observe that ΔE values, decrease in the order 2 > 3 > 5 > 6 > 4 > 1. In our earlier investigation¹⁴ we have shown that the stabilities of the above molecules follow a similar order on topological resonance energies (TRE). The Coulson-Rushbrooke pairing therom¹⁵ has been modified by Trinajstić⁹ and can be stated by Eq. (4)

$$X_i + X_{n+1-i} = h \text{ for } 1 \le i \le n \qquad \dots (4)$$

Equation (4) would hold good for a bipartite graph only when the weight of one set of vertices is equally weighted. But, for our unequally weighted heterocyclobutadienes Eq. (4) can be modified as Eq. (5)

$$X_i + X_{n+1-i} = 1/2 \sum_j h_j \pm a \text{ for } 1 \le i \le n$$
 ... (5)

where $|\mathbf{a}| = 0.1666 (\mathbf{h}_1 + \mathbf{h}_2) + 1.1547 q^{1/2} \cos \frac{\pi + \varphi}{3}$

$$\begin{split} \phi &= \cos^{-1} \left[(3/q)^{3/2} (r/2) \right] \\ q &= h_1 . h_2 - 1/3 (h_1 + h_2)^2 - 2(k_1^2 + k_2^2), \\ r &= 2(h_1 k_2^2 + h_2 k_1^2) + 1/3(h_1 + h_2) (h_1 . h_2 - 2k_1^2 - 2k_2^2) \\ &- 2/27(h_1 + h_2)^3. \end{split}$$

In the case of mono- and 1,3-disubstituted heterocyclobutadienes one of the eigenvalues is zero. Hence, one could write:

$$\Delta E = 1/2 \sum_{j} h_{j} \pm a \qquad \dots (6)$$

Equation (6) can easily be judged if we consider the molecules 1-21; Table 1. Based on the TREs of the molecules 1, 2, 7, 22, 23 and 24 the stabilities of these molecules follow the order¹⁶ 24 < 1 < 2 < 7 < 23 < 22. The spectra of molecules 1, 2 and 7 do posses a zero eigenvalue, but those of 22, 23 and 24 do not contain zero. TRE values predict 23 and 24 to be unstable. This fact can easily be

visualized through the ΔE values of the systems. The molecule, **22** has $N_{+} = N_{-} = 2$; $N_{0} = 0$, and the

motecule is relatively stable. But in the molecules 23 and 24, $N_+ = 3$, $N_- = 1$ and $N_0 = 0$. As per the suggestion given by Trinajstić⁹ $N_+ > N_-$ and $N_0 \neq 0$ indicate a reactive system. Now, based on our findings we also can say $N_+ > N_-$ and $N_0 = 0$ also signify a reactive class of compounds. So, considering the above logic the reactivity and the stability of a molecule should not be judged solely on the appearance of zero in the graph spectrum; instead the HUMO-LUMO gap should be considered as an equally important criterion.

On electronic transition

For Huckel MOs it may be assumed that the gap between the HOMO and LUMO is related to the $\pi - \pi^*$ transition energy. Accordingly the energy difference, ΔE , is considered to be approximately equal to the transition energy (hv). All the molecules (2-24) are considered to have closed shell structures and the ΔE is taken as the difference between x_2 and x_3 . For cyclobutadiene (1) there is no $\pi - \pi^*$ transition, rather either $\pi - n$ or $n - \pi^*$ transition occurs due to the presence of the zero eigenvalue and thus a NBMO generally comes into the picture. For this type of system, a low transition energy occurs between the concerned delocalised orbitals, and a higher λ_{max} value is inevitable.

Again from first order perturbation calculation^{17,18}, it has been observed that upon replacement of -CH = by - N = (or electronegative atom) both HOMO and LUMO are lowered in energy, while replacement of -CH = by a more electropositive atom raises the HOMO and LUMO. Accordingly data of Table 1 reveal that replacement of -CH = by -N =, -P = and -As = lowers the

HOMO and LUMO (for $\pi - \pi^*$ transition) and interestingly raises the LUMO only (for $n - \pi^*$ transition) when -CH = is replaced by -Sb = and -Bi =, but in the case of $\pi - \pi^*$ transition the corresponding LUMO falls.

References

- 1 Longuet-Higgins H C, J chem Phys, 18 (1950) 265.
- 2 Dewar M J S & Longuet-Higgins, Proc roy Soc (London), A214 (1952) 482.
- 3 Wilcox C F, Tetrahedron Lett (1968) 795.
- 4 Graovac A, Gutman I, Trinajstić N & Zivković T, Theoret Chim Acta, 26 (1972) 67.
- 5 Fukui K, Topics in current chemistry, Vol. 15 (Springer Verlag, Berlin) 1970, pp 1 and references therein.
- 6 Gutman I & Trinajstic N, Topics in current chemistry, Vol. 42 (Springer Verlag) 1973, pp 46.
- 7 Cvetković D, Gutman I & Trinajstić, J mol Struct, 28 (1975) 289.
- 8 Lloyd D, Carbocyclic non-benzenoid aromatic compounds (Elsevier, Amsterdam) 1966.
- 9 Trinajstić N, Croat Chem Acta, 49 (1977) 593.
- 10Deo N, Graph theory with applications to engineering and computer science, (Prentice Hall, India) 1986.
- 11 Wagner H U, Angew Chem (Int Edn), 12 (1973) 848.
- 12 Cvetković D, Gutman I & Trinajstić N, Croat Chem Acta, 44 (1972) 365.
- 13 Gutman I & Trinajstić N, Chem Phys Lett, 46 (1977) 591.
- 14 Mishra R K & Mishra B K, Chem Phys Lett, 151 (1988) 44.
- 15 Coluson C A & Rushbrooke G S, Proc Cambridge Phil Soc, 36 (1940) 193.
- 16 Singh S, Mishra R K & Mishra B K, Indian J Chem, 27A (1988)653.
- Heilbronner E & Bock H, Das HMO-model (Verlag Chemie, Weinheim) 1970.
- 18 Dewar M J S & Dougherty R C, The PMO theory of organic chemistry (Plenum Press, New York) 1975.