# 4-Vinylpyridine complexes of group VIB metals: Syntheses, reactions and spectral features

A K M M Haque, S E Kabir<sup>\*</sup>, A B Kazi, K Kundu, M W Miah & S S Ullah Department of Chemistry, Jahangirnagar University, Savar, Dhaka (Bangladesh)

Received 31 January 1989; accepted 10 April 1989

Reactions of  $[M(CO)_6]$  or  $[M(CO)_3(MeCN)_3]$  (M = Cr, Mo or W) with 4-vinylpyridine lead to the complexes having the formulation  $[(4-CH_2 = CH-C_5H_4N)M(CO)_3]$  (I) in which 4-vinylpyridine is bonded to the metal atom through the six  $\pi$ -electrons of the heteroaromatic ring. Reaction of I (M = Cr) with HCl gas affords the N-protonated complex  $[4-CH_2 = CH-C_5H_4NH)Cr(CO)_3]$  Cl(II). Complexes (I) (M = Cr or Mo) also react with PPh<sub>3</sub> to give  $[M(CO)_3(PPh_3)_3]$  (III).

The synthesis of arene substituted derivatives of Group VIB metal carbonyls and their applications as reagents for organic synthesis or as precursors for new organometallic complexes have been known<sup>1</sup> for a long time. Although aromatic heterocycles such as thiophene and pyrrole have been reported<sup>2,3</sup> to coordinate to  $M(CO)_3$  groups, complexes of pyridine or substituted pyridine systems have remained mostly unexplored. We report herein the syntheses, reactions and spectral characteristics of some 4-vinylpyridine substituted derivatives of Group VIB metal carbonyls.

### Materials and Methods

Reactions were carried out under a dry nitrogen atmosphere or *in vacuo*. IR spectra were recorded on a PE 983 spectrophotometer, PMR spectra in CDCl<sub>3</sub> or CD<sub>2</sub>Cl<sub>2</sub> on a Varian XL-200 instrument and mass spectra on a high resolution mass spectrometer. Acetonitrile was freshly distilled over P<sub>2</sub>O<sub>5</sub>.[M(CO)<sub>6</sub>] (M = Cr, Mo or W) was commercially available. [M(CO)<sub>3</sub>(MeCN)<sub>3</sub>] was prepared following published procedures<sup>4-6</sup>.

## Preparation of complexes(I)

These were prepared by two methods (A) and (B).

Method A: A mixture containing  $[Cr(CO)_6]$  (1 g, 4.5 mmole), 4-vinylpyridine (1.44 g, 13.7 mmole) and heptane (50 ml) was degassed, sealed *in vacuo* and heated at 100-120° for 72 hr. The reaction mixture was cooled and the orange solution filtered through kiesel-guhr. After removal of solvent under reduced pressure the residue was chromatographed over a column of silica gel. Elution with pet. ether (40-60°)-diethyl ether (1:1, v/v) gave two bands. The first band upon removal of solvent under reduced pressure gave  $[(4-CH_2=CH-C_5H_4N)-Cr(CO)_3]$  as yellow crystals from pentane-diethyl ether (0.6 g, 55%), m.p. 118-20° (Found: C, 50.4; H, 3.2; N, 5.9.  $C_{10}H_7NO_3Cr$  requires C, 49.8; H, 3.0; N, 5.8%). The second band upon removal of solvent gave a small quantity of an uncharacterised material.

Complexes I (M=Mo), m.p. 109-11°, yield 60% (Found: C, 42.7; H, 2.8; N, 4.5.  $C_{10}H_7NO_3Mo$  requires C, 42.1; H, 2.5; N, 4.9%) and I (M=W), m.p. 136-38°, yield 40% (Found: C, 32.7; H, 2.4; N, 4.1.  $C_{10}H_7NO_3W$  requires C, 32.2; H, 1.9; N, 3.8%) were similarly prepared.

Method B: To a freshly prepared solution of  $[Cr(CO)_3(MeCN)_3]$  (1.18 g, 4.6 mmole) in acetonitrile (50 ml) was added 4-vinylpyridine (1.44 g, 13.7 mmole) and the reaction mixture refluxed for 2 hr. Work-up as described under (A) gave I (M=Cr) (0.79 g<sub>x</sub> 72%). Complexes I (M=Mo and W) were obtained in 68% and 56% yields respectively by this method.

## Reaction of I(M = Cr) with hydrogen chloride

Hydrogen chloride was bubbled through a solution of I(M = Cr)(0.5 g, 2.07 mmole) in hexane (50 ml). A pale yellow precipitate immediately separated out. After 4 hr, the precipitate was filtered,



washed with pentane and dried *in vacuo* to afford  $[(4-CH_2 = CHC_5H_4NH)(Cr(CO)_3]Cl$  (II) (0.92 g, 80%) as pale yellow crystals, m.p. 165-67° (Found: C, 44.5; H, 3.1; N, 5.2; C<sub>10</sub>H<sub>8</sub>NO<sub>3</sub>ClCr requires C, 44.2; H, 2.8; N, 5.3%).



Reaction of I(M = Cr) with triphenylphosphine

A solution of I (M = Cr) (0.5 g, 2.07 mmole) and triphenylphosphine (1.58 g, 6.21 mmole) in cyclohexane (50 ml) was heated to reflux under nitrogen for 4 hr. The colour of the solution turned pale yellow. The solvent was removed under reduced pressure and the solid thus obtained was washed several times with pentane to yield  $[Cr(CO)_3(PPh_3)_3]$  (ref. 7) (0.65 g, 66%), as pale yellow crystals. I (M = Mo) reacted with PPh<sub>3</sub> in a similar way to give [Mo(CO)<sub>3</sub>(PPh<sub>3</sub>)<sub>3</sub>] (ref. 8) (72%).

### **Results and Discussion**

 $[M(CO)_6]$  or  $[M(CO)_3(MeCN)_3]$  (M = Cr, Mo or W) react with 4-vinylpyridine to give the new complexes of the composition  $[(4-CH_2 = CH-C_5H_4N)M(CO)_3]$  (I) by the loss of three CO groups or the acetonitrile ligands. Elemental analyses were compatible with the assigned formulation I.

The IR spectra of I in cyclohexane exhibited two vCO modes in each of the complexes  $[(M=Cr), 1936 \text{ and } 1916 \text{ cm}^{-1}; (M=Mo), 1940 \text{ and } 1919 \text{ cm}^{-1} \text{ and } (M=W), 1930 \text{ and } 1916 \text{ cm}^{-1}]$  in agreement with the C<sub>3v</sub> symmetry. Similar vCO modes have been reported in the literature<sup>9-11</sup> for the arene and substituted arene-tricarbonyl complexes of Gr VIB metals.

PMR spectra indicated the presence of the 4-vinylpyridine ligand bonded to the metal through the heteroaromatic ring. Thus the PMR spectra I(M = Cr), CDCl<sub>3</sub>,  $\delta$  8.38 (d, J = 6.6 Hz, 2H), 7.07 (d, J = 6.6 Hz, 2H), 6.62 (dd, J = 17.3 and 10.8 Hz, 1H), 6.01 (d, J = 17.3 Hz, 1H), 5.63 (d, J = 10.8 Hz, 1H); I (M = Mo), CD<sub>2</sub>Cl<sub>2</sub>,  $\delta$  8.56 (d, J = 6.6 Hz, 2H), 7.22 (d, J = 6.6 Hz, 2H), 6.64 (dd, J = 17.6 and 10.8 Hz, 1H), 6.02 (d, J = 17.6 Hz, 1H), 5.64 (d, J = 10.8 Hz, 1H); I (M = W), CDCl<sub>3</sub>,  $\delta$  8.25 (d, J = 5.9 Hz,

2H), 7.55 (d, J = 5.9 Hz, 2H), 6.80 (dd, J = 17.5 and 11.5 Hz, 1H), 6.05 (d, J = 17.5 Hz, 1H), 5.60 (d, J = 11.5 Hz, 1H comprised of two doublets for the para substituted pyridine ring, a double doublet for  $H_c$  and doublets for both  $H_d$  and  $H_e$ . The double doublet for H<sub>c</sub> arises due to coupling of the nonequivalent  $H_d$  and  $H_e$ . The doublets at ~  $\delta$  6.0 and 5.6 are due to H<sub>d</sub> and H<sub>e</sub> respectively. The assignment is made on the basis of the large trans coupling constant  $[{}^{3}J(HCCH) \sim 17 \text{ Hz}]$  between the H<sub>d</sub> and H<sub>c</sub> protons. The observed values of cis and trans coupling constants are compatible with those observed for a vinylic system<sup>12</sup>. The chemical shifts for the vinylic protons remain almost unchanged while those of the pyridine ring protons are slightly shifted towards higher field indicating that complexation occurs through the six  $\pi$ -electrons of pyridine ring. The assigned structure is also consistent with the 18-electron rule formalism. The mass spectra of complexes (I) displayed the molecular ion peaks corresponding to the formulation [(CH<sub>2</sub> = CH- $C_5H_4NM(CO)_3$ ]. Other important peaks due to the sequential loss of three CO groups were also observed [I (M = Cr), m/z at 241 (M<sup>+</sup>), 213 (M<sup>+</sup>-CO), 185 (M<sup>+</sup>-2CO), 157 (M<sup>+</sup>-3CO), 105 {M<sup>+</sup>-(3CO + Cr); I (M=Mo), m/z at 285 (M<sup>+</sup>), 257 (M<sup>+</sup>-CO), 229 (M<sup>+</sup>-2CO), 201 (M<sup>+</sup>-3CO), 105  $\{M^+-(3CO+Mo)\}; I (M=W), m/z at 373 (M^+),$ 345 (M+-CO), 317 (M+-2CO), 289 (M+-3CO), 105  $\{M^+ - (3CO + W)\}$ ]. These fragmentation patterns are characteristic of metal carbonyl complexes13.

The complex I (M = Cr) reacts with HCl gas at ambient temperature to give the N-protonated product  $[(4-CH_2 = CH-C_5H_4NH)Cr(CO)_3Cl(II)$  as pale vellow crystals. IR spectrum of II in CH<sub>2</sub>Cl<sub>2</sub> exhibited two vCO bands at 2035 and 1990 cm<sup>-1</sup>. The shift of the vCO modes from 1936 and 1916 cm<sup>-1</sup> in I (M = Cr) to 2035 and 1990 cm<sup>-1</sup> in II is consitent with the removal of electron density from the chromium atom as expected for a cationic complex. Complex (II) also displayed a broad band at 3170 cm<sup>-1</sup> characteristic of vNH supporting the formation of the N-protonated complex. The PMR spectrum of II  $[CD_2Cl_2, \delta 8.71 (d, J = 6.6 Hz, 2H), 7.57$ (d, J = 6.6 Hz, 2H), 6.92 (dd, J = 17.5 and 10.7 Hz,1H), 6.38 (d, J = 17.5 Hz, 1H), 5.94 (d, J = 10.7 Hz, 1H) is also consistent with the proposed structure except that we failed to observe the signal due to NH proton. The mass spectrum of II [m/z 278 (M<sup>+</sup>), 250 (M<sup>+</sup>-CO), 222 (M<sup>+</sup>-2CO), 194 (M<sup>+</sup>-3CO), 106  $\{M^+-(3CO+Cr+Cl)\}$  105  $\{M^+-$ (3CO + Cr + HCl)]] showed the molecular ion peak at m/z 278 corresponding to the molecular formula  $[(CH_2 = CHC_5H_4NH)Cr(CO)_3]Cl.$  Other important peaks due to successive loss of three carbonyl groups were also observed in the spectrum. The peak at m/z 106 corresponding to  $CH_2 = CHC_5H_4NH$  clearly indicated the formation of N-protonated complex.

Reaction between  $I (M = Cr \text{ or } M_0)$  and triphenylphosphine in cyclohexane occurred at reflux temperature to give complexes  $[M(CO)_3(PPh_3)_3]$  (III) which were characterised from a comparison of their spectral data with those of authentic samples reported in the literature<sup>7,8</sup>. The formation of III from I provides further evidence that in complexes (I) the organic ligand is bonded to the  $M(CO)_3$  moiety. This reaction seems to be analogous to the reaction of PPh<sub>3</sub> with arenetricarbonyl complexes of Group VIB metals<sup>14</sup>.

## Acknowledgement

The PMR and mass spectra were procured by the courtesy of the Department of Chemistry, University College London and the Research School of Chemistry, Australian National University, Australia.

#### References

 Collman J P & Hegedus L S, Principles and applications of organotransition metal chemistry (Science Books), Chapter 14, 1980.

- 2 Fischer E O & Ofele, *Chem Ber*, 91 (1958) 2395; Bailey M F & Dahl L F, *Inorg Chem*, 4 (1965) 1306.
- 3 Joshi K K, Pauson P L, Qazi A R & Stubbs W H, J organometal Chem, 1 (1964) 471; Ofele K & Dotzauer E, J organometal Chem, 30 (1971) 211.
- 4 King R B & Fronzaglia A, Inorg Chem, 5 (1966) 1837.
- 5 Stolz I W, Dobson G R & Sheline R K, Inorg Chem, 2 (1963) 323.
- 6 Tate D P, Kinpple W R & Augl J M, Inorg Chem, 1 (1962) 433.
- 7 Kabir S E, Molla M E, Hussain A G M M & Howlader M B H, J Bangladesh chem Soc, (in press).
- 8 Abel E W, Bennett M A & Wilkinson G, J chem Soc, (1959) 2323.
- 9 McFarlane W & Grim S O, J organometal Chem, 5 (1966) 147.
- 10 Brown D A & Raju J R, J chem Soc(A), (1966) 1617.
- 11 Kirss R U, Treichel P M & Haller K J, Organometallics, 6 (1987) 242.
- 12 Silverstein R M, Bassler G C & Morrill T C, Spectrometric identification of organic compounds (John Wiley, New York) 1981, p. 205.
- 13 Johnson B F G, Lewis J, William I G & Wibon J M, J chem Soc(A), (1967) 341; and references therein.
- 14 Stone F G A & West R, Advances in organometallic chemistry, Vol 13 (Academic Press, New York) 1964, 82.