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Nonlinear dynamics in proton-noble gas atom collisionst
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Some recent works from our laboratory on time-dependent (TD) quantum-fluid density-functional
studies of high-energy (25 keY) proton-neon and proton-helium atom collisions have been reviewed.
These result~in two generalized non-linear SchrOdingerequations (GNLSE), depending on the forms of
the various density functionals employed. The numerical solutions of these equations yield various time­
dependent quantities in three-dimensional space, e.g.,electronic charge density, current density, differ­
ence density, effective potential surface as well as TD induced dipole moment, dipole polarizability, etc.
The approach enables one to follow a collision process from start to finish, in course of time, thereby
providing fresh insights into the mechanism of a collision process and identifying the non-linear fea­
tures, if any, of the process which permits excitation but not ionization. One of the most interesting ob­
servations in this study is a natural partitioning of the collision process into approach, encounter 'and, tk­
parture regimes. Our approach has involved a simultaneous consideration of three crucial problems in
density-functional theory, namely, time-dependence, excited states and a satisfactory kinetic energy­
density functional. Further, the phase associated with the hydrodynamic "wave function" has been relat­
ed to Berry's geometrical phase in quantum mechanics.

In recent years, there have emerged two major
areas of development in the quantum theories of
many-electron systems, which depend on the single­
particle density I as the basic variable, instead of the
many-electron wave funttion. These are: density
functional theory (OFf)I--l and quantum fluid dy~
namics (QFO)5-7. This article describes a synthesis
of these two approaches to deal with time-depend­
ent non-reactive collisions between a proton and a
noble gas atom, e.g., He or Ne.

In spite of its remarkable successes in explaining
the electronic structme, binding and other propert­
ies of atoms, molecules and solids, OFf has mainly
been restricted to the ground state and to time-inde­
pendent situations. In other words, atomic and mQ­
lecular collilsions were not dealt with by general
OFT, although some efforts were earlier madeH.<Jin
the context of the Thomas-Fermi theorylZ. On the
other hand, it has been clear for some time5-7 that if
one could bring about a merging together of OFf
and QFO, viz. the "classical" hydrodynamical anal­
ogy to quantum mechanics, then this would form an
interesting theory of many-electron systems, for
both time-independent and time-dependent situ­
ations, in which the many-particle wave function is
replaced by the single-particle charge density and

tPresented at the All India Symposium on "Structure, Activity
and Dynamics-Advancing Frontiers" held on the occasion of
65th birthday of Prof. R.P. Rastogi.

current density. This approach would have the sim­
plicity of treating time-dependent (TD) processes in
terms of a single, one-particle TD equation of mo­
tion (EOM). Since it involves the hydrodynamical
analogy, it lends additional support to the continu­
ing efforts 7 to obtain "classical'" interpretations of
quantum mechanics and also paves the way to a for­
mal "thermodynamic" description of an individual
many-electron system.

An attempt to deal with the mechanism of a TD
atomic or molecular scattering process in terms of
the single-particle densities, would essentially in­
volve the time-evolution of the electronic charge
density, current density, a pulsating effective poten­
tial surface and other TO quantities which would
help in monitoring the process from start to finish.
Clearly, this is a different approach from that \lsual­
ly resorted to in molecular dynamics. However, this
approach is confronted with three formidable prob­
lems in modern OFT: (a) time-dependence, (b) ex­
cited states and (c) a satisfactory kinetic energy
density (KEO) with proper local and global behav­
iour as well as a proper functional derivative. As we
shall see below, the QFOFf approach described in
this article involves a combined attack on all these

three problems.
In the next section, we summarize. the basic princ­

iples of OFT and QFO for many-electron systems in
three-dimensional space. The subsequent section
deals with the QFOFT approach .lor proton-neon
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For the significance of various terms in Eqs. (4 )-(9),
the reader may consult ref. 2. E, T and Exc are the
total electronic, kinetic and exchange-correlation
energies respectively; veU(r,p) is an effective poten­
tial occurring in the set of N non-linear single-parti­
cle Eq. (6). The Kohn-Sham equations retain the
particle (orbital) picture for the system and exactly
treat the kinetic energy. Note that here N equations
are to be solved self-consistently and the eigenva­
lues {fJ do not obey Koopmans theorem. For details
of DFT, the reader may consult refs. 1-6.

SummaryofQFD
In 1926, Madelungl4 transformed the Schro­

dinger equation for a particle into two f1uid­
dynamical equations with classical appearance, viz.
a continuity equation and an Euler-type EOM. This
description involved the density p( = 1'\jJ12) and the
velocity field v as the primary quantities. Interes­
tingly, the continuous nature of the density gives this
quantum fluid more fluid-like character than a clas­
sical fluid! This indicates the possibility of a "classi­
cal" description of quantum systems through the
fluid-dynamical viewpoint.

For a single-particle system, if one writes the wave
function '\jJ in the polar form (atomic units not em­
ployed in this sub-section for the sake of clarity),

¢(r, t) = R(r, t) exp [is(r, t)/fl] ... (1())

then the TD Schrodinger equation,

n2 a'\jJ-- V2'\jJ + V'\jJ =tli.-2m at

... (1)

... (2)

... (3)

e Euler-Lagrange equation

ore uses the stationary condition.

Basic pqnciples ofDFT and QFD for many-electronsystems ~nthree-dimensional space

collisio s while the next section discusseSjProton­

helium ollisions. We then comment briefl. on the
relation between Berry·s geometrical ph selO in
quantu mechanics and the phase of the el ctronic
hydrod amical function6.7 in QFD. Finally the last
section ffers a few concluding remarks.

b{E[p]-M p(r)dr}=0

bE

bp =!l

Summa ofDFT
In 19 4, Hohenberg and Kohnll had pro ed two

theorem which provided the quantum-me hanical
justificat ori for considering the electron density
p(r) as a fundamental variable. Their first t eorem
proved at the non~degenerate ground sta e of N
particles oving under the influence of their mutual
coulomb repulsion and a static external singl -parti­
cle pote ial v(r) arising, e.g. from a set of nu lei em­
bedded i an electron gas, is completely ch racter­
ized by (r). In other words, v(r), '\jJ and h nce all
ground-s ate properties of the system are unique
function Is of the electron density.

The s cond theorem of Hohenberg an~ Kohn
proved t at, for a given external potential, th ener­
gy functi nal E[p] assumes a minimum value for the
true den. ty.

Thus, oth the ground-state density p and~nergy

E can be ariationallydetermined by minimi ing the
energy ctional E[p] with respect to the tri 1dens­
ity, subje t to the normalization constraint ( tomic
units em loyed throughout this paper, exc pt the
following subsection),

f p(r)dr

where f..l: i a Lagrange multiplier (chemical poten­tial). This has been identified ·as (aE/aN) wIlrich is
the negati e of electronegativity 12.

Kohn a d Sham] 3 had derived a set of Sing~IPar­
ticle equa 'ons by mapping the system ofN in eract­

ing e1ectr ns on to a system of N non-inter ting
fermions r quasi-particles where every p rticle
moves in n "average" field due to the nucl i and
other eIec rons. The set of equations are,

IIII
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is transformed into two QFD equations, as me~~
tioned above, viz.

Equation of motion: mp bv = -pV(V+V'Iu)dt

... (23)

... (24)

... (25)+i= R;exp [is/h]

(ii) Dynamics, with v~O and V(V+VqJ~O, so
that there is no balance between classical and quan­
tum forces and the fluid has a kinetic energy of
tmv2• Examples are 2Pl and 2p_1 states of the H
atom.

Furthermore, when 'II= 0 (node), S and VS are not
well defined. Hence, the vorticity, defined as

m=Vxv ... (22)

does not vanish at the nodal points, causing the so­
called "quantum whirlpools". Hirschfelder et a/.Is
have depicted and discussed the streamlines and
vorticities of the electron fluid in an atom or mole­
cule.

However, for an N-electron system, Madelung
fluid dynamics in 3N-dimensional configuration
space are merely of mathematical curiosity, with
very little interpretive potential. Therefore, the
QFD equations for a many-electron system should
be brought to three-dimensional space so that the
fluid-dynamical description could be in terms of the
electron density p(r) and the current density j(r)
both of which are local observables because they
can be related to local Hermitian operators (note
that the velocity field v(r) is not a local observable).

This projection of N-particle QFD equations on­
to the three-dimensional space can be done in terms
of an orbital partitioning of p(r) and j(r), e.g., in
terms of natural orbitals 16 or Kohn-Sham orbitals
{+ip7,with occupation nubers {T1J Then,

... (IS)

... (16)

... (14)

... (12)
Continuity equation: ~ +V.(pv)=O

where

dv av
-'-=---+(v.V)v
dt at

S=R2

1 VS ..v = - , urotatlOnal when '\P ~ 0
m

... (13)

= Net local force density,

Vqu = Quantum (Bohm) potential arising from
kinetic energy

1\2 v2R=----
2m R

V = Coulomb potential.

In this hydrodynamical analogy to the quantum me­
chanics of a single-particle system, the time-evolu­
tion of the system is interpreted in terms of a flowing
fluid of densityp(r, t) and a velocity field v(r, t), sub­

jected to forces arising from V and VqU? i.e. both clas­sical and quantum forces. Thus, in this picture '\P is
replaced by p and v while the particle is replaced by
a continuous fluid.

One can also write the following "classical" rel­
ations:.

The;:stationary states of the system may be classified
as,

(i) S~tic, with v= 0 and V(V+ VqJ= 0, indicating
the balance between classical and quantum forces,
e.g., the 1s state of the H atom.

in V'\P. 11
u= -~-=V+IV··V·= --Vlnp'

m '\P "'2m '

V x Vi= 0 when p ~ 0

fpv

m~v)= ...c(VV)·(v)=~(r)dt ' dt

(rx VVqu) = 0

... (18)

... (19)

... (20)

... (21)

and one has a continuity equation as well as an Eu­
ler-type equation of motion for every orbital. For
both these equations, summation over occupied
orbitals can be performed to give the continuity
equation and the EOM involving the net p(r) and
j(r). Here, each individual velocity field Viis irrota­
tional but the net velocity field v is rotational. It has
also been shown by us that since p(r) and j(r) are
both hydrodynamical quantities, there is an intimate
relationship between DFT and QFD. Such relation­
ship provides the foundations on which TDDFT
rests 18. TDDFT had led to the earliest calculation of

frequency-dependent multipole polarizabilities (lin­
ear response) of, e.g., noble gas atomsl9• For more
details of the QFD approach, the reader may con­
sult refs 5-7.
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E.[pJ = -t Cx J p 4/3(r)dr; Cx = (3/ 43t)(33t2)1/3 l ..(30)

where z~·s the nuclear charge of the Ne atomJand IRIis the in ernuclear distance. For the given problem,the KE nctional is taken as

T[p] = J !tat[p]+tmol[p]ldr I ... (32)

...

155 10
R (o.u.)

-0.8
L
o

E
•...
I

£-0.4
'-"
•...
o

~

'4-0.6

with CK = (3/10)(33t2)2/3; a(N) is taken from Ghosh
and Balbas23, f(R, N) is the change in electronic kin­
etic energy,

~T(R)=T(R)-T(O())= J tmol[p]dr=f(R,N),

on molecule formation. Figure 1 depicts this change
for a diatomic molecule containing ten electrons.

Now, if one eliminates the velocity potential x be­
tween the two QFD Eqs (26) and (27), one obtains a
generalized non-linear Schrodinger equation
(GNLSE) which describes the dynamics of the p- Ne
colliding system

[ 1 2 'J . a+(r, t)-2: Y' +Veff(r,t) +(r, t)=1 at ...(36)

where vdC(r, t) is a pulsating (TD) potential surface
on which the,process occurs and is given by

5 2/3 4 1/3 a(N)
v ,(r t)=-C p . --C p ---U(r)

efl, 3 K 3 x r2

1 f(R,N)

-'R-r,+-N- ... (37)
In Eq. (37), U(r) is the electrostatic potentiaF4.

U(r)=~ -JPI (1", ~l)dr' ... (38)r r-r

o

At this stage, it is necessary to make the following
observations regarding the above approach:

1. cjl(r,t) is a TD single "orbital" for the entire
many-electron system.

Fig. I-Change in electronic kinelie energy on molecule forma­
tion. as a function of the internuclear distance. for a diatomic

molecule containing ten electrons (reproduced from ref. 20;
courtesy. American Physical Society),

.. (27)

.. (28)

.. (29)

.. (26)

... (34)

... (35)

,... (31)

(R,N)--pN

1/R': - (N/ 1O)1~ R:'exp ( - O.8R)

KP'" +! (Y'pf + a(N) [r.~p _! Y'2lJ8 P r- 2 r
... (33)

tmol[p] =

where

tat[p] =

HR, N)

ax + 1 CdX)2 + bG[p]+Jp(r" ~)dr'+v(r, t)=at 2 VI bp . Ir - r I

For stud ing proton-neon collisions 20, the orrela­
tion ene gy functional Eclp] has been ne ected.
Howeve , a local correlation functional w uld be
employe for proton-helium collilsions21, in the
next sec ·on. The phase function x(r, t) is s ace-in­
depende t for the stationary ground state a sys­
tem whe eas for excited and TD states, x( , t) has,
been reI ted22 to an internal magnetic field d Ber­
ry's geo etrica! phaselO• The external TD tential
v(r, t) w ich is a unique functional of p(r, t) can be
written f r the jrNe scattering system as,

v(r,t)=~(r,R,t)= -[~+IR(t~-J

A qu turn-fluid density-functional theory
(QFDF ) of high-energy proton-neon collisi ns

This s ction is based mainly on ref. 20. he for­
mal exis encelR of a TDDFT enables one t write
the QF equations in three-dimensional s ace in
terms of TD charge density p(r, t) and the elocity
potential (or the phase function) x(r, t) as atomic
units em loyed),

ap
-+Y'. pY'x)=Oat

1/2(r,t) exp [ix(r, t)];p = 1+12

G[p] = TJlpJ + Exclp]

" I' II ilIUN'1I II il~lllIl; HIIOIlIilJU.II·'
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, .. (39)

2. Eq. (36) may be formally regarded as describ­
ing the dynamics of a "non-interacting" system of
particles where the KE part is represented by the
Laplacian operator and all relevant interactions are
incorporated in veff.

3. The non-linearity in the GNLSE,Eq. (36),
arises from both non-integer powers of p and the in­
tegralin U(r).

4. +(r, t) does not obey a linear superposition
principle. Its amplitude yields the charge density
p(r, t) and its phase yields the current density j(r,
t)= pVx = [+reV+im- +imV+rel·

5. The dynamics of the system/process can be
studied in terms of p(r, t), j(r, t) and ver~r, t), etc. or
any suitable partitioning of them.

(i) p(r, t) describes the dynamics of charge reor- .
ganization in the system due to perturbation, e.g.,
the flow of charge from one region to another, col­
lective density oscillations, etc.

(ii) AT t= 0, when the system is in its ground
state, j(r, t) vanishes. As the interaction progresses
with time, j(r, t) will be non-vanishing due to the
mixing of the excited states with the ground state,
under the perturbation. The quantity j(r, t) can con­
vey information about streamlines, vorticities, mag­
netic effects, etc. generated by a given perturbation.

6. In the present collision process, excitation is
permitted but ionization is not, and

veff(r,t) --+ 0 as r --+ 00, \ft,

7. Eq. (36 )may be more advantageous compared
to IDKS. TDHF and IDTF approaches, all of
whom require the solution of more than one equa­
tion for many-electron systems.

8. The coupling between electronic KE and in­
terelectronic repulsion energy has not been consid­
ered.

9. When the time-evolving dispersive (due to the
Laplacian) and non-linear terms balance each other,
solitions or solitary waves may be generated.

As mentioned above, through Eq. (36), one may
consider the N-electron molecular system as an
ideal system of N non-interacting particles moving
under the potential veff(r, t) and by analogy, bring in
the required classical relations for an ideal monoa­
tomic gas by replacing the average number density
NN locally by p(r, t). One may then look at the dy­
namics of the system in terms of a space-time­
dependent internal "temperature", entropy density
and chemical potential for the entire time-evolving
system. The quantity IA-(r,t) should describe the dy­
namical evolution of the system from lA-inilialto Itfinal>
both being constant over whole space, according to
ground-state DFf. Thus, it is possible to obtain the

following and other "thermodynamic" relations10
for the molecular electron gas in an internally con­
sistent manne"r, in terms of p,j, Vef{'It and e (atomic
units employed)

KED: t(r,p)=%Pk8+ 21pU12,

where e is an "internal temperature", and k is the
Boltzmann constant (a.u.)

Entropy density: S(r, t) =~kpln e- kpln P2

1
+"2 kp [5 + 310 (k/23t)]

... (40)

Chemical potential: JA.(r,t) = veff+k8 10 p

3
-- k8 In (k8/2x)2

... (41)

Once p, j and 'Velf are calculated by solving Eq. (36),
the above quantities can also be .obtained.

Another point of interestto note is that there is a
correspondence between the single-particle
QFDFT Eq. (36), dealing with the motion of a gen­
eralized Madelung fluid and the classical· dynamics
of a particle of mass m undergoing diffusion in a me­
dium, with diffusion coefficient v, according. to a
Markov process. Taking·'I} =1i/2m, it is possible to
derive20 Eq. (36) according to Nelson's stochastic
mechanics25.

Equation (36) has been solved numerically (see
ref. 20 for details) for 25 keY JrNe head-on colli­
sions, in cylindrical polar coordinates. Some of the
results are depicted in Fig. 2 for ve{{(r,t), p(r, t) and
U(r, t)1at t= 0.08 and R = 9.92 a.u. The oscillations
of the entire potential surface veff(r, t). manifest
themselves clearly [Fig. 2(a)]. The peaks (repulsive)
and troughs (attractive) occur due to the relative
magnitudes of the attractive and -repulsive terms in
verl' Eq. (37). Although the entire collision process
was visualized in· terms of three regimes, viz. aJr
proach, encounter and departure, only the
o ~ t ~ 0.08 and 9.92 ~ R ~ 10 ranges (approach re­
gime) could be covered in these calculations, due to
limitations on computational resources. Both p and
~Ishow prominent collective oscillations, particu­
larly in their outer regions, along the z direction.
The attractive zones in veff tend to cause an accu­
mulation of electronic charge in these zones while
the repulsive zones tend to cause a depletion of elec­
tronic charge.
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Fig. 2-Persfctive plots (a.u.) of veff(r, t), p(r, t) and ~(r, t)1 for the proton-neon· atom head-on collisions, in cylindrical polar

coordinates. he basal rectangular mesh designates the p, z) plane, where 0" p" 3.25 and - 3" z" + 3. The target Ne nucleus
is at (0, 0) and the proton is approaching from th left along the p=O direction of Z. Here, 1=0.08, R=9.92 a.u. (a)

- 5 "Veff" + 50, (b) 0 "p" 50, (c) 0" iii"50. (reproduced from ref. 20; courtesy, American Physical Society) .

... (43)

-In
4 1/3 7.146p·

veff(r,t)= -"3CxP -(9.810+21.437p-1/3)2

1 --_U(r) __ I_
9.810+ 21.437p -1/3 \R '"-rl

... (44)

1'[] If IVpl.2
P=- --dr

8 p

The GNLSE, Eq. (36), retains its form, but veff(r,t)
now becomes,

.. ,. (42)
p...• , dr

9.810 + 21.437'p -1/3

the KE functional as

Edp] = -

QFDFT high-energy proton-helium collisio s
In orde to computationally follow the col ision

process fr m start to finish, we have develo ed a
different NLSE and a different, faster algo "tbm
for 25 ke head-on collisions b.etween a proto and
a helium om21• The basic equations are the same
as Eqs (26)-(31), with the addition of a Wigner Type
local corr lation functional,

I

I'I: I 'I IiI ,t ~ IIII ~I I I~III
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where - 0() ~ z ~ + 0() is one of the cylindrical polar
coordinates (p, z, ~) for the scattering system and
the electric field induced by the approaching proton
is along the z direction, i.e., the internuclear axis.

From Fig. 3, "the first thing to notice is the non­
centrosymmetric nature of the He density. There is
a depletion of electron density at and near the He
nucleus and a buildup of density towards the ap­
proaching proton. The two peaks in the depletion
region (negative ~p) of the interacting system grad­
ually move up to the accumulation region (pOsitive
~p). As the proton approaches the He nucleus and
then recedes from it, the base of the deep negative
well in ~p widens and the well depth increases, sign­
ifying a continuing charge depletion from and near
the He nucleus. As the proton moves closer to the
He nucleus (R = 9.0 and 9.5 a.u.) from the left, an

... (46)

... (45b)~p(R)= p(R) - p(R = 9.98)

or,

As in the previous section, Eqs (36) and (44) are nu­
merically solved in cylindrical polar coordinates for
the p-He scauering system and the ·results are de­
picted in Figs 3 and 4. For the interacting system,
the reorganization of the electron density as a result
of collisions may be described in terms of the TO
difference density (DD), defined as,

~p(t)=p(t)-p(t:=0.02) ... (45a)

This charge reorganization gives rise to the elec­
tronic part of the TO induced dipole moment, viz,

<D\~~)(t)= J zp(r, t)dr

A.. .-.. ~ - ..

\v ~V.•.•.•••r..r--
t - 2.0

t-4.ot - 6.0t - a.S
R - a.O

R - 6.0R - 4.0R-1.S

(0)

Cb)eelCd)

.

. .- u - --•• A ~..
~

- -,- '\

t -g.O

till9.5t -10.5t -11.0
R - 1.0

R-O.SR-O.SR - 1.0

ce)

(f)(g)eh)

.

.
I

--.. .. ••...•....- .-.,.. .-•...

\
, ~,

•

t -11.5 t - 12.0t-11Ot-14.0
R - 1.5

R - 2.0R·10R - 4.0

I .
(i) (J)ek)(I)

.,...
"--.-3.0 -1.5 0.01.5-3.0 -1.5 0.0 1.5, ,

t • 16.0

t-18.0
R .6.0

R- 8.0

)
(m)

en)

-4.Q

-2.0

-6.0

0.5

0.0

-4.Q

-2.0

- -4.0

-2.0

-6.0

0.5

0.0
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1.0
0.0

~ -6.0e 0.5
Q. 0.0
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Fig. 3- Time-dependent difference density (Ap) profiles for the fr"He scattering system along the z axis for p=O.OOOl (second mesh
point in f» and 2 E; tE; 18. The proton is approaching from the left and the He nucleus is at the origin. Except (a), (b), (m) and (n), the

?OSition of the proton is marked by a cross ( x )on the z axis (reproduced from ref. 21; counesy, American Physical Society).
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This is also true for t= 20.0. In order words, the He
density does not have sufficient time to relax to its
initial distribution" (quoted from ref. 21).

From Fig. 4, several interesting features have
been observed. "First, the TD IDM shows distinct
oscillations, with maxima at t= 7 and 12, and mini­
ma at t= 8.1 and 13.1. As mentioned above, this
naturally divides the interaction into approach, en­
counter, and departure regimes. Second, the TD
IDM curve is nearly skew-symmetric about
t= 10.15. Figure 4 clearly shows that if there had
been no encounter regime between the proton and
the He atom, the TD IDM curve at t= 7 would have
passed smoothly into the curve at t= 13. Further,
even though the receding proton is traversing its
original line of approach, the TD IDM at t= 18.0 is
not the same as that at t= 2.0, although both have
the same R values. In other words, as already indi­
cated by the ~p profiles, a change of state of the sys­
tem has taken place as a result of this interaction.

The negative sign of the TD IDM merely indicates
that since the proton is approaching from the left
(negative i), the He electron density begins to be po­
larized mainly to the left. A comparison of Figs 3
and 4 reveals that at t = 7 the proton begins to pen­
etrate the electron density buildup caused by itself
and at t= 13 the proton begins to leave the region of
density buildup. From Fig. 3 it appears that the de­
crease in magnitude of the TD IDM after t= 7 is due
to the gradual emergence of a positive peak to the
right of the He nucleus. And, at t= 13.1, the magni­
tude of the TD ID M begins to increase because of
the appearance of a second positive ~p peak to the
left of the He nucleus. For 8 ~ t~ 12, the TD IDM in­
creases in magnitude due to a continued accumula­
tion of electron density to the left of the He nucleus.
At t= 12, the TD IDM magpitude decreases be­
cause of the continued density buildup to the right
of the He nucleus and a movement of both the posi­
tive ~p peaks to the right. Clearly, the TD IDM va­
lues reflect both the nature and the shifting of the
electron density accumulation due to the TD inter­
action. Thus, the TD IDM shows pronounced non­
linear features in the encounter regime." (quoted
from ref. 21).

Relation between the hydrodynamical phase and
Berry's geometrical phase

BerrylO,26has proved that solutions of the Schro­
dinger equation, corresponding to energy eigen­
states, do not return to their original values but ac­
quire a geometrical phase factor when transported
slowly, i.e. adiabetically, around a closed loop in
parameter space, where the parameters specify the
systems's hamiltonian.
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Fig. 4~Pr~e of the electronic part of the time-dtpendent

induced-di Ie moment, - <Dl~1)(I), for the p-He scatte ing sys­
tem, for 2 I~ 18. The dotted line shows an imaginary c ntinua­
tion of the pproach regime into the departure regime if there
had been n encounlerregime (reproduced from ref. 21; courte-

sy, American Physical Society).

electron ensity increase also occurs in the fo of a
peak to e right of the He nucleus. Initiall , small
fluctuati ns in the position and height of t speak
can be bserved. In the course of time, a I three
peaks wi h positive ~p move to the right, ev when
the prot n retraces its path to the original p sition.
The dist ce between the two outermost p aks on
both sid s of the He nucleus remains practi ally the
same th ughout. At t= 7, the proton enter the re­
gion of the charge buildup and, while re rning,
leaves t 's region at t= 13. Thus causes the 'nduced
dipole oment to oscillate ... and enable us to
partitio the collision process into a 'Proach
(0 ~ t~ ), encounter (7 ~ t~ 13), and d parture
(13 ~ t ~ 20) regimes. From the nature of the tip
profiles in Fig. 3, it is clear that into the original
1s dens of the He atom, a substantial . ing of
He po ensities is taking place as a resul of the
interact" n. The pronounced well in tip around
the He ucleus indicates that the density .s being
largely •replaced by excited-state densit' s with
nodes t the He nucleus. Note that the present
work d es not consider a reactive collisio leading
to the rmation of HeH +. It is also clear that the

present interaction leads to excitation but ot ioni­
zation.

The~DD profile at t= 18.0 is not thJsame as

that at = 2.0 although for both, R = 8.0. his indi-
cates at even as the proton draws back rom the
He nuc eus, along its original trajectory, th He elec­
tron d nsity continues to respond to th proton.

o.s
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Sukumar and Deb22 have further investigated the
phase associated with the hydrodynamical "wave
function" of a many-electron system, Eq. (28). It has
been shown that this polar form leads to the appear­
ance of an internal magnetic vector potential. A
mathematical connection has been derived between

the electronic phase and the Berry phase. This leads
to a generalization of the current density concept
and allows one to discuss the geometrical phase in
terms of the circulation of this current in parameter
space. For details, the reader may see ref. 22.

Conclusion

The amalgamation of two apparently independ­
ent approaches based on the single-particle density,
viz. OFT and QFD, gives rise to TD GNLSEs which
can describe the dynamics of TO processes such as
proton-atom collisions. Such an approach is capable
of revealing the non-linear features, if any, in the dy­
namics of the collision process. This is of consider­
able advantage in view of the fact that other quan­
tum mechanical approaches to non-linear dynamics
are still in their infancy. However, it is too early to
speculate on the potential utility of the QFDFT ap­
proach reviewed in this article. A critical test of this
approach could be to identify a TD process, with ex­
plicitly know non-linear features and then compare
the caleulatedquantities, e.g., TODD, TO induced
dipole moment, etc., with the corresponding experi­
mental results. It would also be necessary to deal
with the very important phenomenon of ionization
in proton-noble-gas-atom collisions. Only then one
may conclude whether the conceptual appeal of
QFDFf can be translated into new and penetrating
physical insights into the mechanisms of TO pro­
cesses such as atomic and molecular collisions.
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