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Inconel 718 is the most promising nickel-based alloy finding wide usage in engineering applications because of its good 
mechanical properties. However, this alloy is difficult to machine and results in poor surface quality after machining. 
Optimization of parameters is essential for improving machining performance of this costly and hard to cut material.  
The research discusses estimation of optimum parameters using teaching-learning based optimization (TLBO) and compares 
them to those obtained by genetic algorithm (GA) in turning of Inconel 718. The parameters cutting speed, feed rate and depth 
of cut are selected as independent variables. The experiments are designed using central composite design of response surface 
methodology for the modelling of turning process. Surface roughness, tool flank wear and cutting temperature are selected as 
response parameters for minimization. The adequacy of modified models developed by response surface methodology are 
tested and then utilized for formulation of multi-objective optimization function. The function is solved by GA and TLBO. 
After comparing optimization results, the best algorithm is used for confirmation test. Convergence of TLBO algorithm is much 
faster as compared to GA even though there is very little difference in the optimum values of parameters.  

Keywords: Inconel 718, Response surface methodology, Teaching-learning based optimization, Genetic algorithm,  
Multi-objective optimization  

Nickel based super alloys find significant applications 
in marine, petrochemical, aerospace, automotive and 
food processing industries because of its high strength 
and high corrosion resistance. 70% production of super 
alloy is consumed by the aerospace industry, mainly in 
the hot section of aircraft engines and turbines. Inconel 
718 is the most promising nickel-based alloy finding 
wide usage in the last three decades1-5. In machining of 
Inconel 718, high cutting forces are encountered which 
result in high temperature (900-1300°C) at the tool 
chip interface. Inconel 718 has high hot hardness, poor 
thermal conductivity (11.2 W/m-K) and high work 
hardening tendency which makes machining more 
difficult6-10. The Inconel alloys also have a tendency to 
form built-up edge at temperatures generated during 
machining11,12.  

Surface roughness is an indicator of performance 
of machining process and it is functional requirement 
to achieve the desired fit. Surface roughness 
investigation, is essential for number of applications 
concerned with the control of friction, fatigue and 
wear of parts13. The ability of a manufacturing 

process to produce desired surface finish depends on 
machine tool, cutting process, cutting parameters, 
work material and cutting tool14. Inconsistency in the 
machining process affects the material removal rate 
and ultimately damages the work surface15,16. 
Whitehouse17 proposed surface roughness model with 
feed and the nose radius of tool and models using 
cutting speed, feed and depth of cut by Fang and Safi-
Jahanshahi18, Wang and Li19 do not include intricate 
interactions between parameters. Machining 
performance, surface integrity, dimensional accuracy 
and cost are affected by tool wear20,21. The flank wear 
is directly proportional to cutting speed and feed rate 
which results in increased temperature and controlling 
the level of tool wear is important to get desired 
surface finish8,22,23. The machinability can be 
improved along with tool life by employing  
suitable cooling methods16,24-27. The following  
works are concerned with optimizing the cutting 
parameters for improving surface roughness, tool 
wear, cutting forces and cutting temperature in 
machining of the nickel based super alloys using 
various cutting conditions. 

Pusavec et al.25,28 developed models for tool wear, 
cutting forces and surface roughness using response 
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surface methodology (RSM) and optimised the 
machining performance using genetic algorithm (GA) 
for evaluating combined effect of cryogenic cooling and 
minimum quantity lubrication. Davoodi and 
Tazehkandi16, Ezilarasan et al.29 used RSM to determine 
the best suited cutting parameters to get optimal values 
for surface roughness and forces. Ezugwu et al.30 
established correlation between input and output 
parameters using artificial neural network (ANN). 
Homami et al.22 established optimal input parameters for 
minimizing flank wear and surface roughness. Tamang 
and Chandrasekaran31 combined ANN model with 
particle swarm optimization (PSO) for maximizing 
surface quality. Subhas et al.32 established a model for 
the prediction for residual stresses, dimensional 
instability, surface roughness and tool life in machining. 
Senthilkumaar et al.33 combined GA with ANN for 
optimization of cutting parameters for flank wear and 
surface roughness. Pawade and Joshi34 performed  
multi-objective optimization for cutting forces and 
surface roughness and found optimum cutting 
parameters using Taguchi grey relational analysis. 

In published literature various advanced 
algorithms like- GA, PSO algorithm, etc are  
also reported. These algorithms are complex in 
nature and are inconvenient35,36 to use. Venkata  
Rao and Kalyankar36 applied a new algorithm known 
as Teaching-learning based optimization (TLBO) to 
optimize machining parameters which needs only 
common design (input) parameters. They reported 
better utility of TLBO over different nature-inspired 
optimization algorithms. Similar technique was 
adopted by Sahu and Andhare37. They used RSM 
model in GA with same rank of design parameters 
and confirmed their results with previous findings. 
Thus, the TLBO algorithm is found to be suitable for 
complex machining problems.  

In order to achieve superior surface quality and 
maximum tool life by controlling cutting temperature, 
the modelling and optimization of cutting parameters 
using appropriate technique is needed. In this work, 
TLBO algorithm is applied for multiple response 
optimization of surface roughness, tool wear and 
cutting temperature in machining of Inconel 718 and 
the results are compared with those of GA. 
 

Experimentation  
Work piece and tool material 

In the experimental study, hot rolled bars of 
diameter of 22 mm and length of 120 mm of Inconel 
718 of hardness 46 HRC are selected. The chemical 
composition is 54.4% Ni, 17.5% Cr, 5.32% Nb, 3.02% 
Mo, 0.66% Al, 0.96% Ti, 0.25% Co and balance Fe 
(weight percent). PVD coated (ZrCN) tungsten carbide 
inserts (Kennametal make, TNMG 160408UF) with 
double chip breaker geometry and nose radius of 0.8 
mm are utilized for experiments. Each insert is 
mounted on tool holder with ISO designation 
MTJNL2525-M16 and new cutting edge was used for 
every experiment. The selection of the tools and cutting 
conditions was based on the tool manufacturer’s 
manual and references from the literature25,27,38. The 
details pertaining to the cutting conditions are as 
follows: cutting speed = 9.5 to 110.45 m/min, feed rate 
= 0.06 to 0.23 mm/rev and depth of cut = 0.32 to 1.17 
mm at constant cutting length of 50 mm.  
 
Experiment setup  

The experimental setup shown in Fig. 1 is used for 
the machining of Inconel 718. Turning was carried 
out on MTAB CNC lathe machine (Maxturn Plus+) of 
5.5 kW equipped with Siemen’s Sinumerik 828D 
control. After completion of turning, the surface 
roughness of machined parts is measured with 

 
 

Fig. 1 — Experimental setup for the machining of Inconel (left) and temperature measuring device (right) 
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portable surface roughness tester (Make: Mitutoyo, 
SURFTEST SJ-410). The average of three 
measurements taken equally at 120º on the 
circumference of each finished part was noted. The 
tool flank wear was measured with the help of USB 
microscope (UM5 CAM). The average of wear band 
values was then used for further analysis. The 
temperature generated at tool chip interface was 
measured using a digital thermometer having range 
from 50°C to 1850°C (MEXTECH IR 1800 with 
thermocouple). For receiving exact temperature,  
K type thermocouple probe (50°C to 1370°C) is 
attached at a distance of 0.5 mm from the cutting 
edge26. The arrangement of temperature measuring 
device is shown in Fig. 1 (right). 
 
Experimental design and result 

RSM is one of the specific interests to produce an 
experimental design sequence which uses quadratic 
polynomial model for performing study. RSM is an 
arrangement of arithmetical and numerical techniques 
useful for improving and optimizing processes. 
Response surface designs are used for fitting the 
response surfaces using Box-Behnken design and 
central composite design (CCD). Box-Behnken 
design normally comprise of three factors which are 
limited to three levels. Central composite design 
(CCD) overcomes the drawbacks of Box-Behnken 
design by providing extreme factor combinations 
considering five levels of factor. The design consists 
of a factorial design or corner portion of cube, centre 
points and an axial or star point. Repetitive six 
experiments show an added center point to the CCD 
which confirm the repeatability of measuring process. 
The additional axial points increase the number of 
level. Hence, the design offers big spectrum of levels 
for the experimentation. As a result, a great deal of 
information is gathered for the effects of the factors 
and their interactions39-43.  

The aim of the experiments was to examine the 
effect of machining parameters on the surface 
roughness, tool flank wear and cutting temperature 
during turning of Inconel 718. Response surface 
methodology (RSM) is used for the modelling and 
optimization of the machining process. The RSM is a 
process to determine relationship among independent 
and dependent variables39,40,42. The experiments are 
designed using the central composite design (CCD) of 
RSM. CCD consists of a factorial design (corner 
portion 2k) of cube, centre points and axial points. The 
corner portions of cube show eight experiments with 

23 factorial design levels coded by -1 and +1, at the 
vertices of CCD. The additional axial points rise the 
number of levels and design with k factors where 
distance of the axial point from the design centre is  
a = 2k/4. Design including axial points with the 
designed value α is called central composite design 
positioned on the coordinate axis of the factorial 
segment at a distance of α = 1.682 from the center42. 
Due to rotatable design of CCD, the run for every 
independent factor is at five levels and are denoted by 
-1.682, -1, 0, +1, +1.682 as shown in Table 1. In this 
experimentation, design uses variation of three input 
parameters - cutting speed (v), feed rate (f) and depth 
of cut (d) with five coded levels. The coded and 
normal levels of the input variables are presented in 
Table 1. The outcome of DOE shows 20 experiments 
according to the CCD, using RSM in MINITAB 16 
software. The design matrix of input and measured 
values is presented in Table 2. 

Table 1 — Level of cutting parameters for the  
turning of Inconel 718 

Cutting 
parameters 

Level 1 Level 2 Level 3 Level 4 Level 5 

Coded values -1.682 -1 0 1 1.682 
Cutting speed,  
v (m/min) 

9.5 30 60 90 110.45 

Feed rate,  
f (mm/rev) 

0.06 0.1 0.15 0.2 0.23 

Depth of cut,  
d (mm) 

0.32 0.5 0.75 1 1.17 
 

 

Table 2 — Design matrix and experimental result 

Run 
order 

v 
(m/min) 

f 
(mm/rev) 

d (mm) Ra (µm) VB (mm) T (K) 

1 90 0.2 1 0.66 0.832 995 
2 9.5 0.15 0.75 1.13 0.49 810 
3 30 0.2 0.5 0.89 0.487 852 
4 60 0.06 0.75 0.61 0.503 890 
5 60 0.15 0.75 0.65 0.751 920 
6 60 0.15 1.17 0.76 0.8 940 
7 110.45 0.15 0.75 0.49 0.82 1050 
8 30 0.2 1 0.91 0.666 850 
9 60 0.15 0.75 0.67 0.761 930 
10 60 0.15 0.75 0.69 0.793 928 
11 90 0.2 0.5 0.59 0.761 980 
12 90 0.1 1 0.61 0.79 985 
13 60 0.23 0.75 0.83 0.812 912 
14 60 0.15 0.75 0.66 0.801 925 
15 30 0.1 1 0.8 0.512 860 
16 30 0.1 0.5 0.79 0.497 840 
17 60 0.15 0.75 0.68 0.789 923 
18 60 0.15 0.32 0.64 0.594 880 
19 60 0.15 0.75 0.65 0.786 915 
20 90 0.1 0.5 0.51 0.751 925 
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Results and Discussion  
Modelling and validation of response surface equations 

The response parameters of the process are surface 
roughness (Ra), tool flank wear (VB) and cutting 
temperature (T) listed in Table 2. Using MINITAB16 
software a relationship is established between 
response parameters (Ra, VB and T) and cutting 
parameters (v, f, d). ANOVA is used to determine the 
significant and non-significant parameters on the 
basis of p (probability) values and F values.  

Backward elimination method is used to find the 
best fit model and remove the insignificant variables. 
The ANOVA is used again to evaluate significance of 
modified regression model for p and F values as 
shown in Table 3. The p value less than 0.05 and high 
F values of the modified models indicate that the 
models are extremely significant42. After performing 
backward elimination method as discussed above, the 
refined models for turning of Inconel 718 are 
obtained. The modified models for estimating Ra, VB 
and T are presented in Eqs (1)-(3). The cutting speed, 
feed rate and depth of cut are found significant. 
  

5 2 0.9180 -  0.0107   1.0239   0.1170   4.7219 10aR v f d v    

 ... (1) 
 

5 2

2 2

  - 0.5767  0.0097   6.2772   0.9059  -  5.0568 10  
            - 17.6895  -  0.4787
VB v f d v

f d

    

 ... (2) 
 

2

2

  625.482  0.6637   1299.93   228.486  -  3248.76  
 -  85.8349  5.25   0.95  -  670

T v f d f
d vf vd fd

   

 
 

 ... (3) 
 

The adequacy of regression models is examined by 
percentage of maximum errors, percentage of mean 

absolute error (MAE) and correlation coefficient (R2). 
Estimated values obtained by modified RSM models 
were compared with the measured responses as 
presented in Table 4 by placing the same range of 
cutting parameters in regression Eqs (1)-(3). The 
percentages of maximum errors are 12.98%, 13.47% 
and 1.52% for Ra, VB and T, respectively. Similarly, 
the percentages of mean absolute errors (MAE) are 
4.03%, 4.69% and 0.6%, respectively. Also, the 
correlation coefficient (R2) nearer to unity indicates 
best correlation between predicted data of model and 
experimental data as shown in Table 4. Thus, a strong 
relationship is established between estimated and 
experimental process responses. 
 
Effect of cutting parameters over Ra, VB and T 

Figures 2-4 show the effect of cutting parameters 
(v, f, d) and parametric interaction in dry turning of 
Inconel 718 using surface plots and main effects plots. 
Main effect plots were developed for every parameter 
by taking remaining parameters constant at center 
value as presented in Table 1. The dual effect of two 
parameters is expressed in the interaction plots by 
taking third parameter constant and at the center 
value.  

The main effect plot in Fig. 2a clearly shows that 
minimum Ra occurs at a higher v, low f and d. 
However, it increases with increase in the f and d. It is 
observed that v is more dominating factor over Ra 
compared to f and d. In interaction plots, the 
interaction effect of v-f and v-d are strongly 
influencing the Ra compared to interaction of f-d as 
shown in Figs 2(b-d).  

In Fig. 2 (b-d), 3D surface plots for surface 
roughness are shown Fig. 2 b shows the effect of 
speed and feed on surface roughness at mid value of 
depth of cut (0.75 mm). It is observed that least 
roughness is obtained at high speed and low feed. At 
constant feed, surface roughness decreases with 
increase in speed. Whereas, at constant speed, 
roughness increases and then decreases at feed of 0.16 
mm/rev and increases with further increase in feed. 
Figure 2c shows the 3D response surface that 
corresponds to the effect of interaction of cutting 
speed and depth of cut on surface roughness, for feed 
rate equal to 0.15 mm/rev. Here also, for high value of 
cutting speed and for depth of cut equal to around 
0.75 mm, drop in roughness value is observed. 
Similarly, for the combination of low feed rate and 
depth of cut, lower value of roughness is observed in 
Fig. 2d. It is observed from Table 3 that cutting  speed  

Table 3 — Summarized ANOVA for Inconel 718 using backward 
elimination method 

Source Surface 
roughness (Ra) 

Tool flank wear 
VB 

Temperature (K) 

Parameters 
Regression 
model 

F ratio p value F ratio p value F ratio p value 
57.40 <0.0001 25.57 <0.0001 105.05 <0.0001 

v 186.19 <0.0001 87.08 <0.0001 722.21 <0.0001 
f 20.91 <0.0001 22.98 <0.0001 13.55 0.004 
d 6.82 0.020 16.29 0.001 40.61 <0.0001 
v2 15.34 0.001 15.21 0.002 - - 
f2 - - 14.98 0.002 13.18 0.004 
d2 - - 6.80 0.022 5.70 0.036 
vf - - - - 6.52 0.027 
vd - - - - 5.34 0.041 
fd - - - - 7.37 0.020 
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Table 4 – Design matrix and statistical validity of RSM predicted responses 

Run order V 
 (m/min) 

f  
(mm/rev) 

d  
(mm) 

Ra  
(µm) 

Pred. Ra  
(µm) 

% Error VB  
(mm) 

Predicted VB  
(mm) 

% Error T  
(K) 

Predicted T 
 (K) 

% Error 

1 90 0.2 1 0.66 0.66 0.11 0.83 0.87 -4.55 995 1003.90 -0.89 
2 9.5 0.15 0.75 1.13 1.06 6.02 0.49 0.47 5.01 810 815.64 -0.70 
3 30 0.2 0.5 0.89 0.90 -1.44 0.49 0.55 -13.47 852 846.96 0.59 
4 60 0.06 0.75 0.61 0.60 2.42 0.50 0.55 -9.69 890 886.19 0.43 
5 60 0.15 0.75 0.65 0.69 -5.75 0.75 0.78 -4.18 920 924.90 -0.53 
6 60 0.15 1.17 0.76 0.74 3.09 0.80 0.78 2.90 940 933.38 0.70 
7 110.45 0.15 0.75 0.49 0.55 -12.98 0.82 0.84 -2.61 1050 1034.06 1.52 
8 30 0.2 1 0.91 0.96 -5.64 0.67 0.65 2.92 850 844.08 0.70 
9 60 0.15 0.75 0.67 0.69 -2.59 0.76 0.78 -2.81 930 924.90 0.55 
10 60 0.15 0.75 0.69 0.69 0.38 0.79 0.78 1.34 928 924.90 0.33 
11 90 0.2 0.5 0.59 0.60 -1.83 0.76 0.78 -1.96 980 978.28 0.18 
12 90 0.1 1 0.61 0.56 8.70 0.79 0.77 2.18 985 991.12 -0.62 
13 60 0.23 0.75 0.83 0.77 7.32 0.81 0.75 8.03 912 915.14 -0.34 
14 60 0.15 0.75 0.66 0.69 -4.15 0.80 0.78 2.33 925 924.90 0.01 
15 30 0.1 1 0.8 0.86 -7.37 0.51 0.55 -7.33 860 862.80 -0.33 
16 30 0.1 0.5 0.79 0.80 -1.32 0.50 0.46 8.33 840 832.18 0.93 
17 60 0.15 0.75 0.68 0.69 -1.08 0.79 0.78 0.84 923 924.90 -0.21 
18 60 0.15 0.32 0.64 0.64 0.46 0.59 0.61 -3.21 880 884.85 -0.55 
19 60 0.15 0.75 0.65 0.69 -5.75 0.79 0.78 0.46 915 924.90 -1.08 
20 90 0.1 0.5 0.51 0.50 2.27 0.75 0.68 9.60 925 932.00 -0.76 

 MAE for Ra 4.03 MEA for VB 4.69 MAE for T 0.60 
 R2  93.87 R2 92.19 R2 98.71 

 R2 (adjusted)  92.23 R2 (adjusted) 88.58 R2 (adjusted) 97.77 
 

 
 

Fig. 2 — Effect of cutting speed, feed and depth of cut on surface roughness 
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Fig. 3 — Effect of cutting speed, feed and depth of cut on tool flank wear 
 

 
 

Fig. 4 — Effect of cutting speed, feed and depth of cut on cutting temperature 
 

is more significant parameter for surface roughness, 
followed by feed rate and depth of cut. This is because, 
at high cutting speed, temperature increases at cutting 
zone, leading to softening of the surface of work 
material which results in reduction of roughness value41. 

The influence of v, f and d for monitoring of tool 
flank wear are presented in Figs 3 (a-d). Both surface 

and main effects plots clearly indicate a gradual 
increase of flank wear by increasing cutting 
parameters. Figure 3a shows that tool wear is 
influenced more by v. With the increase of cutting 
speed, the tool flank wear increases more as compared 
to effect of change of feed and depth of cut. However, 
value of tool wear first increases then decreases and 
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again increases in case of feed rate and depth of cut. 
In interaction plots, Figs 3(b-d) show more interaction 
effect of v-f, v-d and f-d increasing flank wear 
gradually. Figure 3(b) signifies the interaction effect 
of cutting speed and feed rate for depth of cut of 0.75 
mm. The significant drop of tool wear is seen at 
medium cutting speed and low feed rate. In Fig. 3c, 
the interaction effect of cutting speed and depth of cut 
on tool wear is shown for mid value of feed rate (0.15 
mm/rev). By increasing cutting speed and depth of 
cut, the progress in wear of tool is observed. The 
lower value of tool flank wear is observed at low 
depth of cut and feed rate of 0.16 mm/rev, in Fig. 3d. 
Later on, increasing value of feed and depth of cut, 
increase in tool wear is seen. This is due to more 
friction between flank edge of tool and work surface 
at higher feed and depth of cut. In addition to high 
friction, more heat is generated because of low 
thermal conductivity of Inconel 718. Consequently, 
there is severe rise in temperature at tool chip 
interface. As reported in literature15,16,42, increase of f 
and d result in breaking and chipping of cutting tool 
which drastically reduces the life of tool. It was 
observed that, sometimes breakage and chipping of 
tool affect continuity of machining process.  

Figure 4a, indicates the dominance of cutting speed 
over temperature. The substantial linear increase of 
temperature is observed with cutting speed and slight 
non-linear increase with feed and depth of cut. The 
interaction effect of cutting speed and feed rate on 
temperature is presented for mid value of depth of cut 
(0.15 mm/rev) in Fig. 4b. By increasing cutting speed 
and feed rate, a rise in cutting temperature is seen. 
Similarly, Figs 4c and 4d signify the interaction effect 
of cutting speed and depth of cut and feed rate and 
depth of cut, respectively. The increasing trend of 
nature of surfaces is noticed in Fig. 4c. Slightly steady 
nature of surface plot is noticeable in Fig. 4d. It 
means that, in interaction plots, the interaction effect 
of v-f and v-d are strongly influencing the temperature 
shown in Figs 4b and 4c. Whereas, f-d has negligible 
effect on temperature as demonstrated by interaction 
plot in Fig. 4d. This is also confirmed by ANOVA 
examination in Table 3. In turning of Inconel 718 
excessive heating of material is observed. This 
happens only due to high cutting temperature formed 
at high cutting speed resulting in excessive tool wear. 
Sometimes, at high feed and depth of cut, the built up 
edge formation takes place which could affect the 
surface finish43. The abrasive nature of Inconel 718 is 
definitely responsible for abrasive wear of the cutting 

tool on the flank face. Therefore, during machining of 
Inconel 718 the cutting temperature at 9.5 m/min was 
810 K and at 110.45 m/min it was 1050 K at feed rate 
of 0.15 mm/rev and depth of cut 0.75 mm. Hence, 
these surface responses and main effects plots can be 
helpful in the prediction of the Ra, VB and T at any 
region of the experiment. 
 
Formulation of problem for multi-objective optimization 
function 

This work deals with minimizing Ra, VB and T for 
turning of Inconel 718 by formulating multi-objective 
optimization problem on the basis of weighted sum 
method. Primary objective is minimizing the Ra 
followed by VB and then T in turning operation as 
stated in Eqs (1)-(3). These objectives are as follows, 

 

Surface roughness (Ra) = Minimize Ra (v, f, d) 
 

Tool flank wear (VB) = Minimize VB (v, f, d) 
 

Cutting temperature (T) = Minimize T (v, f, d) 
 

Where,  
 

(9.5 110.45)min max
(0.06 0.23)min max
(0.32 1.17)min max

v v v v

f f f f
d d d d

    

   
    

 

 

For getting multi-objective optimization function, 
the above mentioned single objective functions are 
combined as shown in Eq. (4). In this equation w1, w2, 
and w3 are the weight factors. The weight factors w1, 
w2 and w3 are judged and assigned values using 
assumption, functionality and importance of response 
parameters44. The normalized multi-objective function 
(Z) is formulated using different weight factors for all 
objectives and is given by Eq. (4). 
 

( ) ( ) ( )1 2 3
min min min

R VB TaZ w w w
R VB Ta

    ... (4) 
 

Equal weights were given to surface roughness and 
tool flank wear compared to cutting temperature as 
Inconel 718 alloys find application in places which 
demand excellent surface finish and higher reliability. 
Similarly, cutting tool plays more functional role in 
machining of this difficult to cut alloy. Hence, the 
corresponding weights were taken as w1 = 0.4,  
w2 = 0.4 and w3 = 0.2. The Ra, VB and T are used as 
Eqs (1)-(3). The minimum (best) values of the Ramin, 
VBmin and Tmin which calculated from Eqs (1)-(3) are 
used in normalized multi-objective function Eq. (4), 
which is modified as Eq. (5). 
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4

5 2 2 2

3 4

  0.3367  9.3715 10   7.2674   1.0333  
        -  1.0773 10  -  18.0262  -  0.4872  
        1  .2589 1  0  2.2781 10 -  0.1606

Z v f d
v f d
v v df fd





 

    



   
 ...

 
(5) 

 
Genetic algorithm 

In present work, genetic algorithm is applied for 
optimizing the cutting parameters. The multi-
objective optimization function as Eq. (5) is used to 
optimize the process. The fitness function is the 
combination of Ra, VB and T for optimization. 
Constraints used in this process are the lower and 
upper bound values of cutting parameters presented in 
Table 1. The result investigated by GA is based on 
input population and output is generated using fitness 
function. The feedback given by fitness function, 
helps to confirm characteristic of input population and 
allow GA to reproduce more improved population 
using crossover and mutation based on optimization 
target22,45,46.  

Multi-objective function (Z) is solved by GA tool 
box in MATLAB R2015a. The population size of 50 
is required and the best results obtained from 20 
generations after the rigorous trials. The optimization 
plot of GA is shown in Fig. 5. According to the above 
constraints, the optimum results of cutting parameters 
(v = 108 m/min, f = 0.06 mm/rev and d = 0.33 mm), 
response parameters (Ra = 0.41 µm, VB = 0.45 mm 
and T = 884.13 K) with corresponding function values 
of normalized multi-objective function are chosen and 
three sample strategies are presented in Table 5.  

In case of GA, population size, mutation 
probability and number of generation are responsible 
to control the genetic search process. In this section, 
the purpose is to examine the sensitivity of the 
convergence speed. Figure 5 shows convergence of 

objective function (Z) versus number of generations 
for population size of 50. The objective function (Z) 
drops from 1.1 to 0.98 when generation size varies 
from 1 to 20. Once the generation size exceeds 20, a 
flat curve is observed. These convergence results 
show that minimum 20 generations are required for 
obtaining steady convergence curve while using GA. 
 
Teaching learning based optimization (TLBO) 

TLBO is a teaching learning technique encouraged 
algorithm proposed by Rao et al.35. This algorithm 
presents equivalence effect of a teacher on the output 
of learners (scholars) in a class. Teacher and scholars 
are the two important components which explain 
teacher phase and learner phase. The scholar result is 
measured in terms of expertization of teacher as 
TLBO output. Hence, a teacher is highly expert 
person who educate scholars for achieving best result. 
In addition, scholars also upgrade their knowledge by 
communication among themselves which also assists 
in enhancing their results. The functioning of TLBO 
is separated into two parts, teacher phase and scholar 
phase. 
 
Teacher phase  

During this phase, a teacher desires to increase the 
mean result of the class (Mj) to his or her rank. For 
getting best result teacher attempts to improve 
existing mean (Mj) towards new mean as indicated 
(Mnew) and the difference between the existing mean 
and new mean is given as Rao et al.35.  
 

Difference of meani = rad(Mnew – MjTF) ... (6) 
 

Where, TF is the teaching factor. It can be either 1 or  
2 and and rad is a random number in the range of  
zero to 1.  

Based on Eq. (6), the existing solution is 
revised pertaining to the expression  
 

Xnewi = Xoldi + Difference of meani ... (7)  
 
Scholar phase 

This is a second phase of algorithm, where scholars 
improve their knowledge by communication among 
themselves. A scholar joins randomly to improve their 

 
 

Fig. 5 — Optimization using GA 

Table 5 — Performance of GA 

Strategy v f d Ra VB T Z 
1 108.5 0.06 0.33 0.41 0.45 884.77 0.984 
2 108 0.06 0.33 0.41 0.45 884.13 0.984 
3 108.3 0.06 0.33 0.41 0.45 884.59 0.983 
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knowledge if the other scholar has additional 
knowledge compared to his or her counterpart. The 
learning detail of this phase is presented in Eqs (8) 
and (9). At any iteration i, for two different scholars, 
Xi and Xj where i ≠j. 

 

Xnew,i = Xold,i + rad(Xi-Xj) if f(Xi)<f(Xj) ... (8)  
 

Xnew,i = Xold,i + rad(Xj-Xi) if f(Xj)<f(Xi)  ... (9) 
 

In this phase every variable (Scholar) compare 
randomly between any two value corresponding to 
their function values and modify using Eqs (8) and 
(9). The best solution is accepted by comparing with 
the result of teacher phase. The above two phases are 
repeated until the best solution is achieved. 

After the analysis, Xnew provides better function 
value which may be accepted. The functional steps to 
execute TLBO algorithm are summarized and 
presented by Rao and Patel47 as: 
(i) Initialize the scholars and number of subjects 

(design parameters). 
(ii) Select the most excellent scholar as a teacher and 

estimate mean result of scholars in all subjects. 
Estimate the difference among present mean 
result and best mean result according to Eq. (6) 
using the teaching factor = 1 or 2. 

(iii) Refresh the scholars’ knowledge assisted by 
teacher’s knowledge according to Eq. (7). 

(iv) Update the scholars’ knowledge using the 
knowledge of other scholars using Eqs (8) and 
(9). 

(v) Repeat the process until the execution measure is 
met.  

In present study, group of scholar is employed as 
range of cutting parameters. The subjects are offered 
to scholar, i.e., cutting parameters (v, f and d) and the 
teacher is allowing for best result in entire population. 
The main aim of this research is to find the optimum 
(best) cutting parameters for minimization of response 
parameters (Ra, VB and T). Thus, turning of Inconel 
718 is defined in a standard optimization problem 
format. The generated multi-objective function (5) is 
used to optimize the process parameters. Now, TLBO 
is utilized to solve the described problem. TLBO code 
given by Rao and Patel47 is generated in MATLAB 
R2015a. Initially, population size and number of 
generation is used same as used for GA. The step by 
step procedure for use of TLBO is same as given by 
Rao and Kalyankar36. 

The optimum results of cutting parameters with 
corresponding function values of normalized multi-

objective function (Z) are selected after some trials. It is 
noted that, in case of TLBO, the best results are obtained 
using only 3 generations with population size of 10. 
Whereas, in case of GA, minimum 20 generations are 
required with population size of 50, which indicated 
that, the less convergence time is required with TLBO 
algorithm compared to GA optimization.  

Optimization plot of TLBO shown in Fig. 6, which 
proves the superiority of TLBO compared to GA  
(Fig. 5). Figure 6 shows the convergence of objective 
function (Z) obtained by TLBO for minimization of 
responses. The unsteady nature of convergence curve is 
observed at the beginning. However, quick stability in 
convergence curve is noticed once generation size 
crosses the value of 3 with the same value of 0.97 for 
objective function (Z) as was obtained while using GA 
(Fig. 5). It means the steady state of convergence of the 
objective function (Z) while using TLBO is reached in 
3 generations as against 20 generations in case of GA. 
Thus, there is 85% improvement while using TLBO 
and proves the supremacy of TLBO over GA. 

The results of three sample strategies using TLBO 
are obtained uniformity and presented in Table 6. The 
optimum values of cutting parameters and responses 
resulting from the optimization process are assessed 
by a confirmation test.  

For multi-objective optimization for minimization 
of all responses, the optimization using TLBO 
analysis produced marginally better result than GA 
optimization shown in Table 7. Also, the optimum 
values of the v, f and d with TLBO are 107.7 m/min, 

Table 6 — Performance of TLBO 

Strategy v f d Ra VB T Z 
1 107.7 0.06 0.32 0.41 0.44 881.39 0.977 
2 109 0.06 0.32 0.41 0.44 883.06 0.976 
3 108 0.06 0.32 0.41 0.44 881.78 0.977 

 

 
 

Fig. 6 — Optimization using TLBO 
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0.06 mm/rev and 0.32 mm respectively. Furthermore, 
the optimum values of Ra, VB and T are 0.41 µm, 0.44 
mm and 881.39 K, respectively. It is observed that, 
minimum values of tool wear and cutting temperature 
obtained by TLBO are lower than GA. Whereas same 
value of surface roughness is found in both 
algorithms.  

The confirmation experiment was performed using 
optimum values of cutting parameters obtained by 
TLBO algorithm for response parameters. During 
experimentation, the responses Ra, VB and T are 
measured as 0.45 µm, 0.49 mm and 897 K, 
respectively. The value of tool wear is measured using 
USB microscope and the flank wear of tool is shown 
in Fig. 7. The value of Ra, VB and T are 9.75%, 
10.20% and 1.74% higher than TLBO results which 
may be possibly because of the weights attached to 
each parameters and errors in machining and 
measurement methods.  

TLBO algorithm provides slightly better results as 
compared to GA in terms of lower values of surface 
roughness, tool wear and cutting temperature as 
shown in Table 7. The main advantage of using 
TLBO algorithm is that it does not require any 
algorithm specific parameters like GA which requires 
mutation probability, cross over probability apart 
from population size and number of design variables. 
Also, TLBO algorithm converge to the solution faster 
than GA and requires lower population size and 

generations as shown in Figs 5 and 6. Thus, the 
TLBO algorithm can help machinist to obtain 
practical machining parameters for optimum 
machining response.  
 

Conclusions 
Following conclusion is drawn from this research. 

The experimentation was performed with CCD of 
RSM using three cutting parameters; v, f, d and the 
results are presented in terms of Ra, VB and T.  

Using RSM the capability of modified models is 
checked with the experimental data for Ra, VB and T. 
The minimum values of the errors obtained enable us 
to conclude that a very strong relationship exists 
between estimated and experimental process 
responses. Hence, RSM is a capable tool for 
estimating process responses with desirable accuracy. 

The modified response surface models can be 
applied to examine the interaction effects of the 
cutting parameters and their influence in affecting the 
process responses; such as surface roughness, flank 
wear and cutting temperature. The modified models 
were combined to form a single multi-objective 
function using weighted sum method. Also, optimum 
(minimum) values of responses were used from RSM 
optimization. The methodology used in the analysis 
has effectively developed a multi-objective function 
optimization problem. Further, the function is solved 
by genetic algorithm and teaching-learning based 
optimization. The optimum results of cutting 
parameters are; v = 108 m/min, f = 0.06 mm/rev,  
d = 0.33 mm and response parameters are;  
Ra = 0.41 µm, VB = 0.45 mm, T = 884.13 K obtained 
by GA. In case of TLBO, the optimum values of the 
cutting velocity, feed rate, depth of cut are identified 
as 107.7 m/min, 0.06 mm/rev, and 0.32 mm, 
respectively. Furthermore, the optimum values of the 
surface roughness, flank wear and cutting temperature 
are 0.41 µm, 0.44 mm and 881.39 K, respectively.  

The lower values of VB and T are obtained by 
TLBO, whereas as same value of Ra is found in both 
algorithms. It is concluded that, for multi-objective 
optimization for minimization of all responses, the 
optimization using TLBO analysis produced 
marginally better result than GA optimization. It is 
promptly noted that, best results are obtained with 
population size of 10 using 3 generations only, which 
proves the superiority of TLBO over GA, which also 
indicated that, the less convergence time is required 
with TLBO algorithm compared to GA optimization. 
Thus, the success rate is improved by 85%. 

Table 7 — Comparison and confirmation of  
optimization result 

Parameters GA TLBO Confirmation test 
v 108 107.7 107.7 
f 0.06 0.06 0.06 
d 0.33 0.32 0.32 

Ra 0.41 0.41 0.45 
VB 0.45 0.44 0.49 
T 884.13 881.39 897 

 

 

Fig. 7 — Tool flank wear at optimum cutting parameters 
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The confirmation experiment was performed using 
optimum values of cutting parameters obtained by 
TLBO algorithm for process responses and it 
confirmed the results of TLBO algorithm. The 
confirmation test indicates that optimum values of 
surface roughness, flank wear and cutting temperature 
are slightly higher by 9.75%, 10.20% and 1.74% than 
TLBO result. Therefore, a novel advanced TLBO 
algorithm is the capable tool to achieve the optimum 
cutting condition. It can be helpful to increase surface 
quality and tool life by maintaining cutting 
temperature in turning of Inconel 718. 
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