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Present study consists the mesoscopic structure of sandstone under acidic environment through CT analysis. Simulation 
of indoor accelerated corrosion test and CT nondestructive identification technology were applied to CT scanning test for 
the micro-structure of sandstone at different corrosion stages. It is found that as the extension of soak time, the CT number 
of wet sandstone samples in different stages trended to increase at first then decrease, the CT number of dry samples 
gradually decreased with extension of the soak time. The CT number variance of dry and wet samples were decreased first 
and then increased as soak time. CT images of the internal structure of wet and dry sandstone samples in the corrosion 
process were obtained and processed. Mass loss of sandstone in different corrosion stages was calculated. The variation of 
samples' quality and density, which were achieved from the experiment on the one hand and from the calculation of CT 
number on the other, were compared, and good agreement was achieved. Penetration depth of the sulfuric acid solution at 
different soak periods was deduced.  

[Keywords: sandstone; acid corrosion; CT scan; corrosion mechanism; CT number; microscopic model] 

Introduction 
It is well established that the key point for meso-

damage mechanics of rocks is the correct 
identification of meso-damage of rock materials, the 
discrepancy of mechanical properties of damaged 
rocks is the macroscopic manifestation of its 
characteristics, and this kind of macroscopic 
discrepancy is closely related to the change of its 
micro-structure. Environmental factors can cause 
internal damage to rocks, chemical reactions in the 
environment make the corrosion of rocks speed up, 
reduce rock strength, and ultimately lead to instability 
of rocks. CT, a kind of nondestructive test technology, 
can be used to the measurement of internal structure 
changes of rocks quantitatively, dynamically and  
non-destructively. X-ray computed tomography  
(CT scanner) 1,2 has led to remarkable achievements  
in the field of medical science. In recent years,  
the development of industrial CT scanners has 
enabled observations to be made of the internal 
structure of rocks. 

Raynaud et al. 3 used an X-ray CT scanning system 
to image sample interiors without damaging the 
samples. Yang et al. 4,5 introduced CT to the 
identification of rock damage for the first time, 
derived a formula to express the damage variable of 
rock with CT number, calculated and compared it 

with Bellion’s 6 formula and Lemaitre’s 7 formula, for 
which the damage variable were expressed by 
material density, thereby verified the correctness of 
the formula of damage value of rock expressed by CT 
number, at the same time, they analyzed the law of 
damage propagation of rocks. Ding et al. 8 divided 
damage evolution of rocks under uniaxial and triaxial 
compression, proposed the concept of density damage 
increment, analyzed the mechanical mechanism of the 
crack and monitored the width of the crack, 
established the relationship between the density 
damage increment and the volumetric strain. Yin et al. 
9 made the extraction of binary images of crack 
realized, and did fractal dimension, statistic and 
analysis of the evolution process images of the crack. 
Kawamura T. 10 used X-ray computed tomography  
CT to observe non-destructively the internal structure 
of sea ice grown in the laboratory, compared the CT 
images with photographs taken by the conventional 
method and recognized both brine layers and brine 
drainage on the CT images. V. G. Ruiz de Argandoña 
et al. 11 used X-ray CT for imaging textural features 
and the internal pore structure of a dolomitic rock 
used as building material in Oviedo Cathedral, Spain. 
The reconstructed 3D image shows a non uniform 
distribution of porosity. They also studied the 
evolution of the void structure by X-ray CT. L. B. 
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sulfuric acid solution, resulting in the increase of CT 
number of samples, at the same time, chemical effect 
can make the mineral composition react with sulfuric 
acid solution and dissolve the reactants into the 
solution, then reduce the density of the samples. 
When the diffusion effect was greater than the 
chemical reaction effect, CT number of the samples 
increase, but with the extension of soaking time, the 
strengthen of the chemical action played a leading 
role in the process, so the CT number fall down. 

The CT number of dry samples gradually 
decreased with extension of the soak time. After the 
end of nine stages (0~270d) of soaking, the CT 
number was changed from the 2150.02 to 2092.37, 
reduced by 2.68%. This is because as the soak time 
went by, sulfuric acid solution continually react with 
the mineral composition of sandstone, a large number 
of pores and voids generated in the interior of the 
sandstone, which let to the decrease of sample density 
and CT number. 

The main difference between the CT number of 
wet samples and dry samples, which were in the same 
soak stage, is wet sample pores were filled with 
solution while dry sample pores were filled with air. 
Figure.4 shows that once the nine stage of soaking 
was over, the difference of CT number for wet and 
dry samples have reached to the maximum of 
76.23, the above shows that corrosion effect of the 
sulfuric acid solution made the mineral composition 
of rock samples dissolved gradually, then more and 
more voids were generated, and the difference value 
of CT number increase gradually. 

CT number variance of middle layer of wet and dry 
samples that are soaked in different stages of sulfuric 

acid solution (PH=2) are shown in figure 6. It can be 
seen that the the CT number variance of dry and wet 
samples were decreased first and then increased as 
soak time. After three stages (0~90d) of soaking, the 
CT number variance was reduced from 270.09 to the 
minimum values, which were 264.54 and 262.6 
respectively. At the end of nine stages(0~270d), the 
CT number variance increased to the maximum value 
of 280.35 and 284.21 respectively, and the 
corresponding growth rates were 3.8% and 5.23% 
respectively, compared to the original samples. 
Chemical corrosive effect of the acid solution on 
sandstone samples dissolved part of the mineral 
components of rock samples, then internal mineral 
composition tend to homogenize, that is the reason 
why the variance of CT number decrease. However, 
the reason way CT number variance increase is the 
effect of the chemical corrosion of acid solution 
become violent, a large number of mineral in samples 
occurred chemical reaction and a lot of pores and 
voids generated in the interior of the sandstone, which 
increase the inhomogeneity of samples. 
 
Mesomodel of sandstone that corroded by acid 
 

Corrosion process of sandstone in acidic solution 
In the corrosion process for sandstone in sulfuric 

acid solution, the interaction between the sandstone 
and the acid medium can be regarded as a multiphase 
process of physical and chemical, the corrosion 
process of sandstone from outside to inside can be 
divided into several stages: ①For sandstone soaked 
in sulfuric acid solution, when the acidic medium 
penetrate into its empty voids, the chemical reaction 
that carried out in the wet film on the surface of 
various defects of sandstone is faster, the corrosion 
mechanism of sandstone in sulfuric acid solution is 
mainly controlled by diffusion. ②When the speed of 
sandstone absorb acid medium is less than the 
penetration speed of medium, not all of the medium 
will be consumed in the corrosive area of sandstone, 
actually acidic medium controlled by chemical 
kinetics penetrate into the interior of the samples, then 
deeper reaction zones are formed. 
 

Basic assumptions 
In order to simplify the model, sandstone samples 

was considered to be isotropic homogeneous, effects 
of the two end faces of rock samples on diffusion 
were ignored, the spread of acid medium along the 
radial expansion, the scope of interaction between 
sandstone and acid solution was divided into three 

 
 
Fig. 6—CT number variance of wet and dry samples at different
soak stages 
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zones: corroded area, reactive area and none corroded 
area, for convenient analyze, corroded area and 
reactive area were merged into a diffusion-affected 
area, as shown in Figure 7. 
 
Calculation of filtering damage depth 

Mineral composition of diffusion-affected area of 
sandstone sample soaked in sulfuric acid solution 
occurred chemical reaction with sulfuric acid and 
dissolved, then new holes and pores formed, which 
were completely filled by solution. Therefore the pore 
of diffusion-affected area in different soak stage is: 

0

s

ν

m
V


  … (1) 

Where, standard pore of diffusion-affected area 
(cm3); standard the quality of damaged rock (g); 
standard initial density of sandstone sample. 

After t hours of soaking in sulfuric acid solution, 
the ratio of pores in diffusion-affected area and pores 
in the whole sandstone sample is equal to the ratio of 
volume of diffusion-affected area and volume of the 
whole sandstone sample, that is: 
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Where,standard initial porosity of sandstone sample; 
standard diameter of the original sandstone sample 
(mm）;standard diameter of corroded sandstone 
sample after t hours of soaking (mm); standard the 
height of sandstone sample (mm). 

The following formula can be deduced from (1) 
and (2) 
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And then the depth of penetrative damage can be 
calculated as follows: 
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The relationship between CT number of wet and 
dry samples corroded by acid and density 

Following assumptions were taken in deriving 
formulas: ①The dissolution of rock mineral caused 
empty pores become bigger, pores produced by 
chemical reaction in wet samples were all filled by 
solution, pores in dry samples were filled by air; 
②Densities of solution and water were considered 
equal approximately; ③New empty pores produced 
by dissolving minerals were evenly distributed in 
diffusion-affected area of sandstone samples, effects 
of initial porosity of samples on diffusion-affected 
area were ignored. 

First of all, volume influence coefficient, which is 
the ratio of sulfuric acid solution diffusion volume 
and the total sample volume, was defined as follows: 
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    (a)      (b) 
 
Fig. 7(a-b)—Penetrative and diffused model of sandstone samples (a) Cross section penetration of sample and (b) Longitudinal section
penetration of sample 
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After a period time of soaking, empty pores were 
produced because of dissolving of the sample 
minerals, then new porosity, which is produced in 
diffusion-affected area of sample, can be expressed as 
follows: 

         tdd

m

tdd

V s
t

22
0

22 0h
4

0h
4







   … (6) 

By the CT machine principle, the size of the CT 
number of rock is directly proportional to the 
absorption of the X-ray by rock, the distribution law 
of H reflects the change of rock density essentially, 
that is: 

baH    … (7) 

 m  … (8) 

Where,standard absorption coefficient of rock to  
X-ray and absorption coefficient of quality respectively; 
standard density of rock（g/cm3）; are constants. 
1. The pores of dry samples soaked in acid solution 

in different stage were filled up with air, then: 
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Where,standard air in rocks and density of rock 
matrix material respectively;standard porosity of 
diffusion-affected area of rock samples after t hours 
of soaking; standard quality absorption coefficient of 
air in rock and quality absorption coefficient of matrix 
material respectively;standard initial porosity of rock. 
Simplified formula (9) as follows: 
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Simultaneous equations (7), (8) and (10) as follows: 
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Where,standard density of rock（g/cm3）;standard 
CT number of sample in different soaking stage; 
standard CT number of rock matrix;standard CT 
number of air,= -1000. 

Density considered resolution cell can be written as 
follows: 
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Because of =0, formula (12) can be simplified as 
follows: 
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Simultaneous equations (11) and (13): 

ar

arrrt

HH

HHH





)()1(   … (14) 

Assume that original sandstone samples are made 
up of matrix and pores, that is: 
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Where,standard CT number of initial sandstone 
samples. Then 
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Change of the quality of dry sandstone after 
different stages of soaking can be calculated from 
formula (17): 
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Where, standard initial quality of sandstone sample 
(g); standard quantity of change of quality for dry 
sandstone sample (g); standard quantity of change of 
density for dry sandstone sample (g/cm3); standard 
volume of sandstone sample (cm3). 

The calculated results are shown in Table 3, in 
which minus sign indicates the decrease of the density 
and quality. 

The pores of wet samples soaked in different stages 
in diffusion-affected area of rock are filled up with 
solution, pores that were not corroded were filled up 
with air, then: 

Table 3—Change of physical quantity of dry samples that soaked in different stages of PH = 2 sulfuric acid solution 

Soaking time Volume influence 
coefficient 

Density/ 
(g/cm3) 

Quantity of change of 
density/ (g/cm3) 

Quality/ 
(g) 

Quantity of change of 
quality/(g) 

Three stages (0~90d) 0.182 2.615 -0.013 513.19 -2.55 
Six stages (0~180d) 0.289 2.605 -0.023 511.23 -4.51 

Nine stages (0~270d) 0.381 2.594 -0.034 509.07 -6.67 
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Where,standard density of water（g/cm3）; standard 
density of air（g/cm3）; standard quality absorption 
coefficient of water inside of the rock. 
Simplified formula (19) as follows: 
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Similarly, the change of density of wet sandstone 
can be obtained as follows: 
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Changes of quality of wet sample that socked in 
different stages can be calculated from formula (21) 
as follows: 
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Where,standard quantity of change of quality for wet 
sample(g);standard quantity of change of density for 
wet sample (g/cm3). 

The calculated results are shown in Table 4, in 
which minus sign indicates the decrease of the density  
and quality. 
 
Verification of CT number of sandstone corroded by acid 
solution and density equation 
 

Verification of CT number of dry sandstone corroded by acid 
and density relation 

After different stages of soaking in sulfuric acid 
solution, the sandstone samples were taken out and 
dried in baking box for at least 24 hours until its 
quality were not change, then weighed them with 
electronic balance (whose scale value is 0.01g). The 
density and quality changes in different stages of dry 
samples were obtained respectively according to 
calculate of the CT number and weigh of electronic 
balance, which are shown in Table 5. 

The following conclusions can be drawn through 
comparison: ①	 The qualities of samples soaked in 
different stages obtained from CT number are bigger 

than that of weighing from electronic balance, 
because there are more minerals in both sides of rock 
sample react with sulfuric acid solution, yet CT 
number of relatively stable intermediate layer are 
selected to scan, whose value is bigger than average 
CT number of the whole sandstone samples. When 
such values are used to calculate quality of rock 
samples, the calculated quality will be bigger. 
Moreover, in addition to the mass consumption of 
feldspar, black mica and calcium carbonate, other 
mineral components have also been measured to 
participate in the reaction, which to some extent will 
also affect the accuracy of the calculation. ②	 The 
following conclusions can be obtained from the 
comparison of ρa and ρb , the difference of ρa and ρb 
are 0.1%, 0.3% and 0.4% respectively after three 
stages (0~90d), six stages (0~180d) and nine stages 
(0~270d), which proved that density changes of 
sandstone sample obtained from calculating of CT 
number have good consistency with the density 
changes obtained from weighing. 
 
Verification of CT number of wet sandstone corroded by acid 
solution and density relation 

The densities and qualities in different stages of dry 
samples were obtained respectively according to 

Table 5—Physical quantities of dry sandstone in different stages 
were obtained from CT number and electronic balance 

Soak time 
a / 

(g/cm3)a 
b

/(g/cm3)b 
am / 

(g)c 
bm / 

(g)d 

Three stages 
(0~90d) 

2.615 2.614 513.19 512.95 

Six stages 
(0~180d) 

2.605 2.602 511.23 510.66 

Nine stages 
(0~270d) 

2.594 2.590 509.07 508.19 

a  standard density of dry sandstone soaked in different stages, 

which were obtained from the calculation of CT number 

am  standard quality of dry sandstone soaked in different stages, 

which were obtained from the calculation of CT number 

b  standard density of sandstone soaked in different stages, 

which were obtained from weighing of electronic balance 

bm  standard quality of sandstone soaked in different stages, 

which were obtained from weighing of electronic balance 

Table 4—Change of physical quantity of wet samples that soaked in different stages of PH = 2 sulfuric acid solution 

Soaking time Volume influence 
coefficient 

Density/  
(g/cm3) 

Quantity of change of 
density/(g/cm3) 

Quality/  
(g) 

Quantity of change of quality/ 
(g) 

Three stages (0~90d) 0.182 2.657 0.029 521.44 5.69 
Six stages (0~180d) 0.289 2.642 0.014 518.49 2.75 
Nine stages (0~270d) 0.381 2.622 -0.006 514.57 -1.18 
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calculate of the CT number and weigh of electronic 
balance, which are shown in Table 6. 

The following conclusions can be drawn through 
comparison: ①	mc is little than md after different 
stages of soaking, that’s because, in addition to 
Na+、K+、Mg2+、Ca2+, there exists other minerals 
participate in chemical reactions to produce ions 
dissolved into the solution in the process of soaking, 
which make the measured loss of consumed samples 
down, and then affect the accuracy of the calculation 
to some extent; ②	The following conclusions can be 
obtained from the comparison of ρc and ρd , the 
difference of ρc and ρd are 0.23%, 0.53% and 0.95% 
respectively after three stages (0~90d), six stages 
(0~180d) and nine stages (0~270d), which proved that 
density changes of sandstone sample obtained from 
calculating of CT number have good consistency, but 
the error increase obviously. 
 
Conclusions 

In this paper, Brilliance 16 spiral CT scanner  
was introduced with the goal of doing CT scanning 
test for the micro-structure of sandstone at different 
corrosion stages, the relationship between CT number 
and variance of sandstone in different soak periods 
and time was analyzed, the following conclusions 
were driven: 

The CT number of wet sandstone samples in 
different stages trended to increase at first then 
decrease. After three stages (0~90d) of soaking, the 
CT number increased from 2150.02 to 2190.33, which 
is increased by 1.87%, and then decreased to 2155.68 
after nine stages (0~270d) of soaking. The CT number 
of dry samples gradually decreased with extension of 

the soak time. After the end of nine stages (0~270d) 
of soaking, the CT number was changed from the 
2150.02 to 2092.37, reduced by 2.68%. 

The CT number variance of dry and wet samples 
were decreased first and then increased as soak time. 
After three stages (0~90d) of soaking, the CT number 
variance was reduced from 270.09 to the minimum 
values, which were 264.54 and 262.6 respectively. At 
the end of nine stages(0~270d), the CT number 
variance increased to the maximum value of 280.35 
and 284.21 respectively, and the corresponding 
growth rates were 3.8% and 5.23% respectively 
compared to the original samples. 

With the aid of the non-disturbed CT scanning 
technique and the use of chemical kinetic analysis. 
The micro-damage of sandstone corroded by acid 
solution was analyzed and quantified. The mass  
loss of sandstone sample in different corrosion stages 
was obtained. The penetration depth of the sulfuric 
acid solution at different soak periods was deduced. 
The functional relationship with the depth of 
corrosion, CT numbers and density of rock specimens 
was established. 

Through preliminary verification of the variation of 
the mass and the density of dry and wet sandstone 
samples in different stages, following conclusions 
were given: density changes of sandstone sample 
obtained from calculating of CT number have good 
consistency with that obtained from weighing; 
Density changes of sandstone sample obtained from 
calculating of CT number have good consistency, but 
the error increase obviously. 
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