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Parametric resonance of offshore crane cable was predicted by using Mathieu equation to provide structural safety prediction 

during subsea lowering operation. This paper studied the predicting method and automatic resonance avoidance of offshore 

crane cable to complement the safety management during subsea lowering operation. The offshore crane cable was modeled as a 

tensioned long cylindrical structure and Mathieu instability coefficients were utilized to predict the dynamic instability of the 

structure. Numerical analyses were conducted to predict the parametric resonance of cable, evaluate the sensitivity of effective 

submerged length, dynamic tension variation, and plan for resonance avoidance mechanism automatically. Dynamic instability 

at sub-harmonic 2:1 unstable region of Mathieu stability diagram potentially creates high risk for lowering operation if the 

damping coefficient is low. Dynamic tension variation can cause instability of offshore crane cable during passing through wave 

splash zone and landing subsea payload. The reduction of axial tension variation can stabilize the dynamic of offshore crane 

cable. Parametric resonance of cable is also sensitive to the total payload. The findings of this paper can enhance structural 

integrity prediction of offshore crane cable and provide an automatic planner to the operator to avoid parametric resonance 

during subsea lowering operation. 
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Introduction 

 Lowering subsea structure is an important 

offshore operation which is commonly conducted 

during subsea equipment installation, subsea 

surveillance
1,2

, and subsea mining
3
. Offshore crane 

cable during lowering operation can be assumed as 

tensioned long cylindrical structure (TLCS) which 

has physical similarity like mooring lines, top-

tensioned risers, and hawsers. Offshore crane 

cable under loaded condition can be regarded as 

tensioned structure and it may experience a 

phenomenon called as parametric resonance. The 

parametric resonance occurs when a structure is 

parametrically excited and oscillates at one of its 

resonant frequencies
4,5

. Parametric excitation 

differs from forcing since the action appears as a 

time varying modification on a structural  

 

 

 

parameter
5
. A small excitation can produce a large 

response even when the frequency of the 

excitation is significantly different from the linear 

natural frequencies of the structure
5,6

. This 

phenomenon is crucial in assuring the structural 

health conditions and safety during offshore 

lowering operation. Hence, an effective prediction 

on parametric resonance of offshore crane cable is 

significant for the operator to estimate the 

allowable working windows for lowering 

operation and assure the cable structural integrity 

from disastrous failures.  

Parametric resonance of offshore crane cable 

can be predicted by evaluating the structural 

dynamic stability. An investigation on the 

dynamics of TLCS with reduced pretension was 

reported
7
 by focusing on the mooring lines of an  
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offshore floating structure, named as tensioned-leg 

platform (TLP). The wave induced time-varying 

axial tension along the mooring line becomes 

important in its dynamics when the pretension is 

reduced and, moreover, the time-varying axial 

tension variation was found to cause the mooring 

line to undergo parametric oscillations that can be 

described by the Mathieu equation
7
. A foundation 

of mathematical modeling was established
7
 to 

describe the dynamic instability of TLCS in the 

offshore engineering, which is applicable to 

describe the parametric resonance of offshore 

crane cable as well. The complexity of dynamic 

stability analysis of TLCS was further increased 

by taking consideration of tension variation
8,9

 

along the length due to the submerged weight
10

 

and non-linear dynamic responses
11

. Mathieu’s 

equation was also applied in assessment of 

parametric response excited by the interactions of 

vertical excitation forces and lateral dynamics of 

TLCS
5,12-14

. On the other hand, another 

mathematical model of parametric resonance, 

named as Hill’s equation, had been studied
15

 for 

multi-frequency excitation source. It can be 

concluded that Mathieu equation, which is 

dependent on single-frequency excitation source, 

can predict more conservative results in the lower 

vibration modes than the Hill’s equation, whereas 

the multi-frequency excitation is considered
14,15

.  

From the previous researches, the parametric 

resonances were mainly assessed for TLCS with 

top-tensioned conditions
16

 and fixed lengths, such 

as mooring line
13,14

, marine riser
15

, and suction 

piles
17

. In this paper, an offshore crane cable was 

studied to predict the parametric resonance. The 

main challenges of this study are (i) the effective 

length of offshore crane cable is continuously 

changing inside the water domain during lowering 

subsea structure; and (ii) large dynamic tension 

variations are occurred during lowering subsea 

structure through the splash zone and during 

landing on the targeted location. The objectives of 

this paper are (i) to model parametric resonance of 

offshore crane cable based on Mathieu’s instability 

coefficients; (ii) to numerically predict the 

parametric resonance of offshore crane cable with 

respect to the variations of effective length, 

tension variation, and total payload, and (iii) to 

automatically plan
18,19

 submerged effective cable 

length and dynamic tension variation for 

parametric resonance avoidance of the offshore 

crane cable during lowering operation.  

 

 

 

 

Modeling of Parametric Resonance for 

Offshore Crane Cable 

 A general damped Mathieu’s equation is 

shown as
20 

 

 cos 0x Cx a b t x    
 

(1) 

where x is the response of vibration, C is damping 

coefficient, t is time, a and b are the Mathieu’s 

coefficients. 

This kind of nonlinear ordinary differential 

equation (ODE) cannot be solved explicitly
20

. 

However, by fixing the damping coefficient C, 

zeros of infinite determinants can be found by 

specifying a (or b) and searching for the 

corresponding b (or a) that gives a set of results 

sufficiently close to zero. The stability of solution 

of the Mathieu’s equation can be graphically 

represented in the Mathieu stability diagram 

(MSD)
21

. The parametric resonance of a tensioned 

cable can be identified by calculating its 

Mathieu’s instability coefficients, and later 

coordinating the an and bn on a Mathieu’s stability 

diagram (MSD) to obtain a general solution which 

determines whether the examined structure is in a 

dynamical stable or unstable region. The 

Mathieu’s coefficients an and bn are with respect 

to its mode n. The derivation of Mathieu’s 

coefficients of an offshore crane cable under 

loaded condition is based on the following 

assumptions: (i) the weight of the offshore crane 

cable is considered, and it is assumed that the 

axial tension varies linearly along the water 

depth
4
; (ii) the direction of the current 

propagation is assumed to be fixed, and the 

velocity varies linearly from the bottom to the 

surface of the sea
4
; (iii) the stiffness and material 

properties of the offshore crane cable are constant 

and homogenous along the length of the 

structure
4
; and (iv) the top-end of crane cable do 

not move in the horizontal direction
7
. The 

configuration of single offshore crane cable under 

loaded condition and force distribution of the 

corresponding infinitesimal element of cable are 

described in Fig. 1, where v is the horizontal 

coordinate, z is vertical coordinate, L is the 

effective length, T(t) is the cable top tension 

which is a combined effects of total payload, 

buoyancy, and crane winch torque,  v(z, t) is the 

lateral motion function, and dz is the length of a 

finite element. The balance of the horizontal 

forces in the infinitesimal element can be 

represented as
4 

 

2423 
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(2) 

and the balance of the bending moments in the 

infinitesimal element is
4 
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(3) 

 

 

 

 
 

Fig. 1 - Schematic diagram (non-scale) of offshore crane cable with the force distribution of infinitesimal element 

 

where S1 = S are shear forces, S2 is shear force 

equals to S+(∂S/∂z)dz, ml = 

πDhρs+(1/4)πD
2
ρw+ρiAi is mass per unit length, 

Fm = ml (∂
2
v/∂t

2
) is inertia force where its 

direction is opposite to the velocity of lateral 

motion, D is outer diameter of cable, ρs 
is density 

of steel, ρw 
is density of seawater. If the cable has 

hollow cross sectional area, then h is wall 

thickness, ρi is density of internal fluid, and Ai is 

internal area
4
. Cd is drag coefficient,  f = 

(1/2)CdρwD|∂v/∂t|(∂v/∂t) is drag force due to 

hydrodynamic effect, M1 = M = -EI(∂
2
v/∂z

2
) and 

M2 = M+(∂M/∂z)dz are the bending moments, EI 

is bending stiffness of cable structure, T1 = T =  

 

T0-(L-z)mw+ΔTδ(t) and T2 = T+(∂T/∂z)dz are 

tensions in the cable, ∂T/∂z = mw  is cable wet 

weight per unit length, dv = (∂T/∂z) dz is the 

difference between the displacements of the upper 

and lower points of the infinitesimal element dz
4
. 

By substituting (3) into (2), the coupling 

equation of the force and moment are defined as 

 

 m

S
f F

z


 

  (4) 

2

2

1
     

2
d w l

M v v v v
T C D m

z z z t t t


      
   
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(5) 
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and (6) can be further rearranged as 
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(8) 

where δ(t) is variation of axial tension. The time 

varying axial tension causes the offshore crane 

cable to undergo parametric oscillations. 

However, even if it is in an unstable condition, the 

quadratic fluid damping force limits the amplitude 

of the lateral motion
7
. The variation of axial 

tension is modeled by the following irregular 

process
7
 

   
0

cosn n n

n

t a t  




 

 

(9) 

where ωn is the natural frequency of the lateral 

vibration of the cable, ɛn is the phase angle. The 

wave induced axial tension is assumed to be 

sinusoidal. This assumption is based on the fact 

that even if ocean waves are irregular, the time-

varying axial tension become more regular (that is 

a narrower banded spectrum) due to the transfer 

function from wave action to tensioned cylindrical 

structure forces
7
. Despite irregular incident 

waves, the inertia of host vessel can cause the 

resultant cable axial tension to tend towards near 

sinusoidal oscillations. The offshore crane cable 

tension in (8) can therefore be defined as
7 
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(10) 

where T0 is pretension of the cable at the crane 

tip, and ΔT is the amplitude of tension variation.  

 

 

Taking the fundamental mode (the largest 

amplitude mode of the model) only and using the 

method of separation of variables
7,22

, the 

expansion of each linear vibration mode is 

 

     , m m

m

v z t t u z
 

(11) 

where ϕm is the temporal variable and um is the 

spatial variable. By substituting (11) into (8), the 

coupling equation of the force and moment in an 

infinitesimal element of offshore crane cable can 

be represented as 
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(12) 

Equation (12) can be rewritten into a compact 

form as 
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(13) 

Considering that the boundary conditions of 

both ends of cable are assumed to be pinned-

pinned connection, the special function of spatial 

variable that satisfies the boundary conditions is
4 

 

   sinm

n
u z z

L

 
  

   
(14) 

Because of um is mutually orthogonal when its 

mode m varies, by applying Galerkin’s method on 

(13)
23

, the coupling equation of the force and 

moment in an infinitesimal element of tensioned 

cable are defined as 

 

2425 



KANG et al.: PARAMETRIC RESONANCE AVOIDANCE OF OFFSHORE CRANE CABLE  

   

       

     

   

   

4

0

1

2

0

l m m d w

m m m m
L

m m n

m

m m

w m m

m t u z C D

t u z t u z

EI t u z u dz

T t u z

m t u z

 

 







 
  

 
  

  
   
 

 
 
 
  

  

(15) 

The solution of (15) is the coupling equation 

of the force and moment in an infinitesimal 

element of offshore crane cable, which can be 

represented as 
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(16) 

Equation (16) can be further rearranged into 

the form of Mathieu equation as shown in (1), and 

it is convenient to introduce a dimensionless time 

variable τ = ωt into the coupling equation
4 
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(17) 

Equation (17) can be rewritten in the following 

form in order to determine the Mathieu’s 

coefficients an, bn, C,  
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where n = 1,2,3…, therefore, the nonlinear 

damping coefficient C in (18) can be derived as
7 
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(19) 

The damping coefficient C is dependent of the 

maximum velocity
14

 of the cable in transverse 

motion Vmax. Hence, (19) can be further simplified 

as 
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Also, the stiffness terms in (17) can be further 

derived as 
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(21) 

By using the special function in (14), the 

stiffness terms in (21) can be rewritten as 
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(22) 

By compared to (18), the Mathieu’s coefficient 

an 
is defined as

24 

 
4 2 2

0

2

22

2

1
     

2

 

w

n

l

n n

n n n
EI T m L

L L L
a

m

  



 

 

      
              

 
  

 

 

(23) 

where ω is the basic frequency of the external 

excitation on the transverse direction of the  

 

 

2426 



INDIAN J. MAR. SCI., VOL. 46, NO. 12, DECEMBER 2017 

 

offshore crane cable, and 
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Also, the Mathieu’s coefficient bn 
is defined as

24 
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Modeling of Automatic Parametric Resonance 

Avoidance Planner 

Based on the Mathieu stability diagram with 

respect to different critical damping ratio values 

as shown in Fig. 2, useful information regarding 

optimal offshore crane cable lowering processes, 

especially effective length L and tension variation 

T can be extracted. Automatic planning has been 

receiving more interests in the modern offshore 

operations
25-28

. By incorporating A* heuristic 

machine planning algorithm into the whole 

decision making and offshore crane cable 

lowering process control, the dynamic stability of 

subsea structure lowering operations can be 

improved. However, as the two dimensions 

depicted by Mathieu stability criterion are mainly 

related to an and bn, these two coefficients could 

not be readily applied in the process control of 

offshore crane cable lowering operation. 

Therefore, a configuration space with L-T 

dimensions, which is more user-friendly to 

machine control operation, has to be constructed 

with reference to the Mathieu stability coefficients 

an and bn. The range of configuration space was 

pre-determined in such a way that effective 

submerged length L of cable was in the range 

from 100 m below mean water level (MWL) to 

500 m below MWL, and dynamic axial tension 

variation of cable T was varying from 10 kN to 

100 kN. The mapping between configuration 

space and Mathieu stability coefficients was 

achieved through (23) and (25). With the 

constructed L-T configuration space, the 

offshore crane cable lowering processes can now 

be significantly optimized through the use of A* 

heuristic planner to search for a series of most 

optimum L and T, whilst at the same time trying 

to avoid the instable regions in Mathieu stability 

diagram.  

 

 
 

Fig. 2 - Mathieu stability diagram for automatic effective 
cable length and tension variation prediction. 

An automatic planning for parametric 

resonance avoidance by this approach can avoid 

the risk of driving the crane cable into the instable 

regions which induces parametric resonance as 

predicted. The search for most optimum series of 

L and T is indeed a typical path planning 

problem. Knowing that the initial and targeted 

operating points are NS and NG respectively, the 

A* heuristic planner will determine the most 

optimum series of L and T based on the cost 

function f(Ni+1) given as follows
29 
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In (26), c(Ni , Ni+1) is the cost of action moving 

from point Ni to Ni+1. In this paper, the heuristic 

function h(Ni+1) is estimated from the distance 

between the successor point Ni+1 and the targeted 

point NG. The estimation of h(Ni+1) is given as 

follows 

 

     
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2 2
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(27) 

Numerical Simulation of Parametric 

Resonance and Resonance Avoidance for 

Offshore Crane Cable 

In this section, the prediction of parametric 

resonance for an offshore crane cable under 

loaded condition was simulated. The first  
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vibration mode which has largest amplitude
14

 was 

predicted by using the Mathieu stability diagram. 

This prediction can calculate more conservative 

results in the lower modes than the Hill’s 

equation
15

. The configuration of offshore crane 

cable is listed in Table 1. Later, the parametric 

resonance avoidance was conducted by using A* 

heuristic automatic planning based on the cases 

matrix as tabulated in Table 2.  

 
Table 1 - Configuration of offshore crane cable 

Operational water depth 100 m - 500 m 

Top pretension (T0) 5.0 MT 

Cable diameter 0.05 m 

Cable maximum length  500 m 

Wet weight per unit length (mw) 0.01342 MT/m 

Mass per unit length (ml) 15.43 kg/m 

Bending stiffness (EI) 6.48 MT.m2 

Excitation frequency (ω) 1.0472 rad/s 

Density of sea water (ρw) 1.025 MT/m3 

Density of steel (ρs) 7.86 T/m3   

 

Results and Discussion 

 A main challenge to predict the parametric 

resonance of offshore crane cable is during the 

stage of lowering subsea structure passing through 

the water column in vertical direction. The 

effective length of cable is continuously changing 

inside water domain. The axial tension variation 

of the cable is relatively consistent in this stage 

and which is mainly caused by vessel motion
30

. In 

this prediction, the dynamic tension variation in 

this stage is assumed as 40 kN. The Mathieu 

instability assessment of offshore crane cable with 

respect to the variation of effective length is 

shown in Fig. 3.  

As the effective length of offshore crane cable 

increasing from 100 m to 500 m submerged depth 

in the water column, the first mode of cable 

motion is going to transform across three 

instability regions as illustrated in Fig. 3. When 

the effective lengths are in between 110 m to 120 

m, the parametric resonance in lateral direction is 

predicted when the operational point (combined 

coordinates of an and bn) passing through the 

unstable 1:2 region. However, the range of 

dynamic instability is only lasting for few meters 

at this region. The second parametric resonance is 

predicted when further lowering the cable to its 

effective length from 170 m to 190 m. 

 

 

Table 2 - Case matrix for automatic cable length and tension 

variations planning 

Case Critical 

damping 

ratio 

Maximum 

allowable 

tension 

variation, ΔT 

(kN) 

Operational 

water depth 

for 

automatic 

planning 

Undamped 0.00 

15 

110 m – 

 450 m 

30 

45 

Lightly 

damped 
0.10 

15 

30 

45 

75 

Highly 

damped 
0.25 

15 

30 

45 

90 

 

Fig. 3 - Mathieu instability assessment of offshore crane 

cable with variation of effective length. 

The cable is in parametric resonance when this 

effective length is 180 m, which is inside the 

unstable 1:1 region. The range of dynamic 

instability in this 1:1 region is longer than the 1:2 

region. As lowering of subsea structure to 400 m 

submerged depth, the cable parametric resonance 

is predicted at the 2:1 sub-harmonic region. It is 

noteworthy that the range of dynamic instability 

in this 2:1 region is lasting for almost one hundred 

meters and, therefore, it can cause high risk 

lowering operation to the operator. For longer 

cable length in deep water, very small values of 

the parameters an and bn are potential to induce 

the lateral vibration of cable. As the cable’s 

effective length increases during lowering subsea 

structure, the operating point in the Mathieu 

stability diagram tends to the region near its origin  

(where the an and bn are smaller). The dynamic 

behavior is very sensitive to small variations in 

the parameters an and bn in the sub-harmonic 2:1 

region.  
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The damping coefficient C is dependent on the 

maximum velocity Vmax of the cable in the 

transverse motion
14

. The parameters that can be 

controlled from the design stage to adjust the 

nonlinear damping coefficient C of the cable are 

drag coefficient Cd , cable diameter D, and mass 

per unit length ml, as stated in (20)
15

. The 

nonlinear damping coefficient C for the cable in 

this case is C = 1.346Cd ×Vmax, where it is highly 

influenced by the drag coefficient Cd and 

maximum lateral velocity Vmax of the cable. This 

information is useful for the operator to determine 

the windows of subsea lowering operation and to 

design action plan for rectifying the dynamic 

instability of cable. For instance, the parametric 

resonance of cable in the sub-harmonic unstable 

2:1 region can be significantly suppressed by 

increasing the lateral damping. If the drag 

coefficient Cd  is 0.7 in this case, a velocity Vmax 

more than 0.106 m/s can increase the damping 

coefficient C to 0.10 of critical damping. This 

control can be reasonably achieved by dynamic 

positioning of the service vessel.  

The subsea lowering operation can be divided 

into different stages, and sensitive parameters are 

different at each stage. Large dynamic tension 

variation is occurred during (i) lowering subsea 

structure through the splash zone, and during (ii) 

landing payload on the targeted location. The 

Mathieu instability assessment of offshore crane 

cable with respect to the variations of axial 

tension is shown in Fig. 4.  

During passing through the splash zone, 

submerged volume and hydrodynamic parameters 

vary throughout a wave period and, moreover, the 

combination of direct wave load and load due to 

vessel motion may cause peak dynamic tension 

variation
30

. Also, during landing payload on the 

targeted location, a peak dynamic tension 

variation may occur if the subsea structure is 

further lifted from the initial landed point due to 

crane uplift motion before the lifting cable is 

slack
30

. To predict the parametric resonance 

during these two stages, the Mathieu instability of 

offshore crane cable is examined with respect to 

the dynamic tension variation. It is reasonable to 

assume that the changes of effective cable length 

during these two operational stages are relatively 

small and, hence, constant lengths are given to 

simulate the parametric resonance for both stages, 

which are 170 m submerged depth for splash zone 

and 500 m for landing payload, respectively. 

 

Fig. 4 - Mathieu stability assessment of offshore crane cable 

with variation of axial tension. 

From the first mode as illustrated in Fig. 4, if 

the axial tension variation ΔT is larger, the 

operating point shifts towards the unstable region. 

The reduction of axial tension variation ΔT can 

move the operating point towards a stable region. 

This finding provides a meaningful control 

method by using force control to maintain the 

stability of offshore crane cable even if the 

available lateral damping is low. The sensitivity 

of tension variation is larger in the 1:1 unstable 

region compared to sub-harmonic 2:1 unstable 

region. In this simulation, the parametric 

resonance in splash zone can be avoided as long 

as the dynamic tension variation of cable is 

maintained below 60 kN. Since the payload dry 

weight in this case is five metric tons, an 

allowable dynamic tension variation of 60 kN can 

be defined as a large working window for the 

subsea installation operator. 

Another useful prediction for subsea lowering 

installation is to assess the sensitivity of cable’s 

parametric resonance with respect to the variation 

of pretension, which is determined by the total 

payload in force equilibrium state. The Mathieu 

instability assessment of offshore crane cable with 

respect to the variation of pretension is shown in 

Fig. 5.  

For the case of three metric tons pretension, 

the operating point shifts towards sub-harmonic 

2:1 unstable region if the pretension of the cable 

is reduced. On the other hand, if the pretension of 

cable is increased, the operating point shifts 

towards the 1:1 unstable region. It is noteworthy 

that a slight damping coefficient (C = 0.10 of 

critical damping, for instance) on the 1:1 unstable 

region can transform the unstable condition to a 

stable condition. However, the sub-harmonic 2:1 

unstable region is relatively less influenced by the 

damping coefficient compared to the 1:1 unstable 

region, a very large damping coefficient is 

required to rectify the cable instability in the sub-

harmonic 2:1 unstable region.  
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Fig. 5 - Mathieu stability assessment of offshore crane cable 
with variation of pretension. 

The parametric resonance avoidance for 

offshore crane cable lowering length and its axial 

dynamic tension variations was automatically 

planned by A* heuristic algorithm in L-ΔT 

configuration space, as shown in Fig. 6(a). Three 

maximum allowable axial dynamic tension 

variations were tested for lowering a crane cable 

from 110 m below MWL to 450 m below MWL. 

It can be found that, in accordance with the results 

in Fig. 3, the larger dynamic tension variation has 

bigger tendency to cause the cable’s instability. 

The initial position of crane cable was at 110 m 

below MWL and it was simulated to be lowered 

down to the targeted water depth at 450 m below 

MWL. If the dynamic tension variation was 

maintained at 15 kN, the overall lowering process 

was conducted within stable region even though 

under the undamped condition. However, if the 

initial dynamic tension variation was started at 35 

kN or 45 kN in this case, the automatic planning 

for parametric resonance avoidance reduced the 

allowable operating dynamic tension variation of 

cable to 25 kN when the submerged cable at 

around 170 m below MWL to avoid the predicted 

Mathieu instability of cable to be induced in the 

1:1 unstable region. The maximum allowable 

dynamic tension variation will be maintained at 

25 kN until the cable was lowered to 350 m below 

MWL, where after the submerged cable passing 

sub-harmonic 2:1 unstable region.  

The offshore lowering process in MSD 

diagram is shown in Fig. 6(b) where it can be 

found that the coordinates of an and bn were 

always located in the stable region.  

The effect of lateral damping was introduced 

in the damped cases, where the results of critical 

damping ratio c = 0.10 and c = 0.25 are shown in 

Fig. 7(a-b) and Fig. 8(a-b) respectively. Since the  

 

 

 

 

 

existence of damping can improve the parametric 

stability of cable, larger maximum dynamic 

tension variation can be tested in these lightly 

damped (c = 0.10) and highly damped (c = 0.25) 

cases. As illustrated in Fig. 7(a) and Fig. 8(a), the 

parametric resonance avoidance in L-ΔT space 

was significant when the maximum allowable 

tension variations ΔT are increased. As shown in 

the lightly damped case in Fig. 7(a), if the 

dynamic tension variation was started at 75 kN, 

the allowable dynamic tension variation was 

automatically reduced to nearly 65 kN when the 

submerged cable length was at 170 m below 

MWL to avoid the cable instability as predicted in 

the 1:1 unstable region.  

 

 

 
 

Fig. 6 - Automatic cable length and tension variation 

planning for parametric resonance avoidance in undamped 

case, (a) in L-ΔT space, and (b) in MSD. 
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Fig. 7 - Automatic cable length and tension variation 

planning for parametric resonance avoidance when damping 

coefficient is 0.10 of critical damping, (a) in L-ΔT space, and 

(b) in MSD. 

 

The allowable dynamic tension variation was 

further gradually reduced to 30 kN when the 

submerged cable length was at 310 m below 

MWL to avoid the parametric resonance of 

submerged cable when it passing sub-harmonic 

2:1 unstable region.  

In the case of highly damped, the total stable 

zone is larger. Hence, maximum allowable 

dynamic tension variation can be further enlarged. 

It can be found that the low-side tested maximum 

allowable tension variations (45 kN, 30 kN, and 

15 kN) were kept unchanged throughout the crane 

cable lowering operation. On the other hand, only 

high tension variation, such as 90 kN was reduced 

by automatic parametric resonance avoidance 

planning. The offshore lowering process in MSD 

diagrams for damped cases are shown in Fig. 7(b) 

and Fig. 8(b), where it can be found that the 

coordinates of an and bn were always located in 

the stable region. 

 

 

 
 

 

 
Fig. 8 - Automatic cable length and tension variation 

planning for parametric resonance avoidance when damping 

coefficient is 0.25 of critical damping, (a) in L-ΔT space, and 

(b) in MSD. 

 

Conclusions 

Dynamic stability of offshore crane cable is 

significant to assure cable’s structural integrity 

during subsea lowering operation. Parametric 

resonance can be adequately predicted by using 

Mathieu equation which provides relatively 

conservative results. From the study in this paper, 

it can be concluded that:  

 Lowering offshore crane cable in deep 

water can induce parametric resonance for 

more than one hundred meters of vertical 

lowering range before it has exceeded from 

the sub-harmonic 2:1 unstable region if the 

nonlinear damping coefficient is low. 

 The influence of dynamic tension variation 

to the parametric resonance of offshore 

crane cable during passing through wave 

splash zone and landing subsea payload are 

relatively smaller.  

 Variation of service payload can cause 

either stability or instability. Sensitivity of  
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payload to parametric resonance is highly 

recommended to be assessed before every 

lowering operation.  

 Automatic parametric resonance avoidance 

was developed in A* heuristic algorithm to 

control the submerged cable length and 

dynamic axial tension variations to avoid 

the dynamic instability of crane cable 

during offshore lowering operation.  
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