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This goal of this paper is an optimization approach to generate suitable process setting of multi responses of the 
minimization of warpage and volume shrinkage in the plastic injection molding (PIM). Central composite design (CCD) was 
employed to handle the orthogonal array for experimental test runs and using the response surface methodology (RSM) to 
construct response surface equation model. Then the optimization methods of firefly algorithm (FA) that have never been 
applied to minimize warpage and volume shrinkage in the plastic injection molding (PIM) and genetic algorithm (GA) were 
employed to optimal parameter conditions with fitness function generated from RSM. Simulation software Moldex 3D and 
plastic injection machine were used as the experimental tests to show the comparison of the optimal performance of both 
metaheuristic algorithms. The results showed that the firefly algorithm created the suitable process parameters to meet the 
minimization of warpage and volume shrinkage better than the popular genetic algorithm for this study.  It can be concluded 
that FA is very proper to approach the good performance in PIM. 

Keywords: Plastic injection molding (PIM), Response surface methodology (RSM), Genetic algorithm (GA), Firefly algorithm 
(FA), Moldex 3D simulation 

Nowadays, plastic injection molding (PIM) is used to 
form the major part in many areas of industry because it 
can easily meet various requirements such as the wide 
variation of geometry, low unit cost to produce 
compared with others, short production cycle time, and 
perfect surface quality of the products. Therefore, for 
these reasons it is not surprising that PIM has been 
mainly used to produce plastic products. In PIM 
process, loss during the operation is an obstacle that 
may lead to a tendency of higher product cycle time, 
cost, and dissatisfied customers. Warpage and volume 
shrinkage are among the most significant defects. The 
intensity of these losses is highly involved with the 
parameter setting in the injection molding operation1. 

Many researchers studied, and recommended the 
method to avoid an occurrence of warpage and volume 
shrinkage based on the finite volume analysis method, 
computer-aided engineering (CAE) simulation, and 
practical experiments2. Chaing and Chang1 investigated 
the relationship between shrinkage and warpage in 
injection-molded parts via various process parameters 

being mold temperature, packing time, packing 
pressure and cooling time. It was found that mold 
temperature was significant. 

The volume shrinkage was increased as the mold  
temperature increased, and the mold temperature 
range from 45°C to 55°C was suitable or minimum 
warpage values, but the velocity injection was not 
considered. Zhao et al.3 did a study of the correlation 
of warpage, shrinkage, and sink marks. The research 
result could indicate that warpage and shrinkage were 
significant trade-off, whereas warpage and sink index 
or shrinkage and sink index were not both significant 
trade-off. Santos et al.4 tried to improve the volume 
shrinkage and warpage problems of polymeric 
composite reinforced by using short natural fibers. 
The results found that the short natural fiber can 
continually decrease the problems as the percentage 
of short natural fiber increases, but this research did 
not pay attention to the process parameters in PIM. 
Chiang et al.5 researched the minimization of warpage 
by using material test between acrylonitrile-butadiene 
styrene (ABS) and polycarbonate (PC)+ABS based on 
process conditions such as melt temperature, injection 
speed, and packing pressure. The results found that 
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melt temperature was the most important factor to 
minimize warpage and ABS was more suitable 
material than PC+ABS. This research could not find 
that mold temperature, injection pressure, packing 
time, and cooling time were considered. Much research 
employed a mathematical model to use statistical 
analysis and optimization methods to manage loss 
problems such as warpage, volume shrinkage, sink 
index, and short shot. The optimization techniques can 
mainly be classified as five techniques, namely the 
Taguchi technique for design of experiments, modern 
computational techniques, hard computing techniques, 
real time techniques, and soft computing techniques6. 
Zheng et al.7 used the Taguchi experimental method to 
minimize warpage by using an L27(33) orthogonal 
array to construct experimental tests. Then there was an 
investigation of the process parameters such as mold 
temperature, melt temperature, and packing pressure, 
but cooling time and injection pressure were not 
considered. There was use of computer-aided 
engineering (CAE) to determine the extent of warpage. 
The results show the warpage value from the Taguchi 
method was less than the amount of warpage when 
there was a recommendation of process parameters. 
Erzurumlu and Ozcelik8 studied the minimization of 
warpage and sink index by using the Taguchi 
optimization technique via process conditions such as 
mold temperature, melt temperature, packing pressure, 
rib cross-section types, and rib layout angles, but 
packing time, cooling time and other factors were not 
considered. The experimental result could confirm that 
this technique gained the minimum warpage and sink 
index. Lam et al.9 used the modern computational 
techniques via Moldflow commercial simulation 
software to investigate the suitable process conditions. 
The results indicated that software could find the 
nearest process condition compared with the optimal 
result, but the cooling system was not added in the 
consideration. Lin and Lian10 used self-organizing 
fuzzy controller (SOFC) for PIM operation by 
controlling injection screw velocity and injection-
nozzle holding pressure. The results found that this 
controller can reduce the loss problems such as 
shrinkage and residual stress more than the controlled 
process with fuzzy logic controller (FLC) and the 
proportional-integral-derivation (PID). The soft 
computing technique that has been popularly used in 
PIM operation can be separated into three parts as 
artificial neural network (ANN), evolutionary 
algorithm (EA), and hybrid approaches6. Shi et al.11, 

used the ANN to solve the warpage problem and used 
Moldflow Corporation’s Plastics Insight software to 
analyze the problem. The results show the effective 
optimization of parameters in PIM for producing TV 
covers and plastic lenses as a quick approach. Guo et 
al.2 investigated the minimization of sink mark depth 
via design of experiment (DOE) integrated with 
evolutionary algorithm (as genetic algorithm, GA) to 
solve the problem by considering mold temperature, 
packing pressure, coolant temperature, rib thickness, 
etc., but injection pressure was not considered. The 
results illustrate the good performance of minimized 
sink mark. Xu et al.12 used another evolutionary 
algorithm (as particle swarm optimization, PSO) to 
find suitable process parameters. The results found 
that it was suitable for multi-objective optimization of 
PIM process. Hybrid approaches were also another 
choice for improving loss problems in PIM process. 
For example, Ozcelik and Erzurumlu13 used a hybrid 
of neural network model and genetic algorithm to 
seek the warpage optimization. This algorithm can 
improve the warpage problem by 51%. Deng et al.14 
made a study of a hybrid optimization by combining a 
mode-pursuing sampling (MPS) and genetic 
algorithm to minimize the warpage of injection 
molded plastic parts. This approach considered mold 
temperature, melt temperature, injection time, and 
packing pressure; research results showed good 
performance as minimization of warpage and the 
time-consuming CAE simulation. Presently, soft 
computing techniques were widely applied in PIM 
process to improve process qualities as mentioned. 
Another soft computing technique is firefly 
algorithms that can afford perfectly complex 
nonlinear problems15. Yang16 created the firefly 
algorithm (FA) by simulating firefly nature behavior. 
This algorithm was proved and compared with other 
metaheuristics such as genetic algorithm (GA) and 
particle swarm optimization (PSO). The results found 
that FA could give better and quicker convergence 
answers toward the optimality15. 

The purpose of this research was to minimize the 
warpage and volume shrinkage by seeking an 
optimization model of process parameters via 
metaheuristic methodology through the comparison of 
popular genetic algorithm and firefly algorithm to lead 
to better performance. Central composite design (CCD) 
was used to design the experiment as 84 runs. Then an 
example part was employed to simulation software 
Moldex 3D to get the simulated data. Genetic algorithm 
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and firefly algorithm were employed to minimize 
warpage and volume shrinkage for plastic injection 
molding process (PIM) and the results of both 
algorithms were compared by empirical tests through 
injection molding machine. Finally, the direct utilization 
of this research work will provide appropriate parameter 
setting for injection molding operators. 
 
Materials and Part 

To approach the finite volume analysis, a 3D wrench 
model part in this study was illustrated in solidworks, as 
shown in Fig. 1. The dimension of this work-piece was 
121.33 mm ਀ 4.01 mm ਀ 72.85 mm. General purpose 
polystyrene (GPPS) was chosen from the Moldex 3D 
software, and the manufacturer was CHI-MEI Co. Ltd. 
The material properties are presented in Table 1. The 
size characteristics of model part, cooling, modeling 
and meshing process performed by Moldex 3D shown 

in Fig. 2. The simulated model of the part consists of 
191,786 elements. The pin gate and water cooling 
system were established in Moldex 3D software 
following common gate and cooling system design and 
creating actual injection mold shown in Fig. 3 for 
empirical tests. 
 
Experimental Methodology 

The research methodology can be summarized 
clearly as a flow chart which is illustrated in Fig. 4. 
The first step, experimental orthogonal array is 
created by central composite design (CCD), and 
second, the predicted model is established by 

 
 

Fig. 1 — A 3D wrench example part 
 

 
 

Fig. 2 — Mesh element (a) Part and cooling line (b) 

 
 

Fig. 3 — Toshiba 80T injection molding machine 
 

Table 1 — Material properties of general purpose polystyrene 
(GPPS) (PG-22, CHI MEI corporation, Taiwan) 

Physical Properties 

Properties Method Unit Value 

Melt flow index (5kg/230°C) ASTM 
D1238 

g / 10 min 17.5 

Izod impact strength 
(6.4mm/23°C) 

ASTM 
D256   
(Notched) 

kg-cm/cm 1.4 

Tensile strength at yield 
(6mm/min) 

ASTM 
D638 

kg/cm2 425 

Flexural strength at yield 
(6mm/min) 

ASTM 
D790 

kg/cm2 540 

Flexural  modulus (2.8mm/min) ASTM 
D790 

104 kg/cm2 3.1 

Rockwell Hardness  ASTM 
D785 

M-Scale 74 

Heat distortion temperature 
(Unannealed) 

ASTM 
D648 

°C 75 

Vicat softening point 
(1kg/50°C/h) 

ASTM 
D1525 

°C 87 

Chemical properties 

Chemical name CAS number EC number Percent weight 

Polystyrene or 
styrene polymer 

9003-53-6 Polymer  95% 

Additives - -  5% 
Processing technique 
Ejection  temperature 108°C 
Processing temperature 170 – 210°C 
Mold temperature 40 -70°C 
Freeze temperature 117° C 
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response surface methodology (RSM). Then the 
predicted model is applied into Genetic algorithm and 
Firefly algorithm to seek the minimization of warpage 
and volume shrinkage. In the last step, the comparison 
of the results of both algorithms is made to find the 
smallest warpage and volume shrinkage through Toshiba 
80T injection molding machine as shown in Fig. 3. 
 
Central composite design of process parameters 

In this research, central composite design (CCD) is 
used to design experimental tests run on Moldex 3D 
software. CCD is well known as a designer of experiment 
arrays to produce the quadratic model of RSM1,17.  

To indicate the effect of process parameters on 
warpage and volume shrinkage of PIM, the 

parameters in Table 2 are selected for consideration. 
According to the CCD design experiment method, 
seven factors are classified to be three levels as shown 
in Table 2, and consist of fourteen star points, and six 
central points, and α value of 1 according to Chiang 
and Change’s research methodology1. Then the 84 
experimental runs are established based on the CCD 
method as given in Table 3. 
 
Creating predicted model 

Before going to the optimization methodology step, 
the response surface methodology has to establish the 
nonlinear mathematical model based on polynomial 
equation for warpage and volume shrinkage as shown 
in Eqs (1) and (2), respectively. 
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where Xi is independent variables, W represents 
warpage response, V represents volume shrinkage 
response, k is the number of design variables, A0 and B0 

are the coefficients of constant, Ai and Bi are the 
coefficients of linear, Aij and Bij are the coefficients of 
cross product term, and Aii and Bii are the coefficients of 
quadratic. 

Table 2 — Processing parameters and levels 
Number Factors Levels 

Low Median High 
1 Melt temperature (A) (°C) 170 190 210 

2 Mold temperature (B) (°C) 40 55 70 

3 Flow rate profile (C)  (%) 10 30 50 

4 Injection pressure (D)  (%) 40 60 80 

5 Packing time (E) (s) 1 5 10 

6 Packing pressure (F) (%) 20 50 80 

7 Cooling time (G) (s) 10 27.5 45 

Addition: Water coolant temperature is constant as 55°C 
Maximum injection and packing pressures equal to 199 Mpa 
following Toshiba 80T Injection molding machine specification 
 

 
 

Fig. 4 — Flow chart of methodology 
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Genetic algorithm established 

After creating predicted fitness model, GA is 
implemented. GA is one of the stochastic search 
algorithms based on natural genetic behavior. In GA, 
each solution is encoded, which is called a 
chromosome. GA will construct the initial population 
of chromosomes from the predicted fitness model via 
cost function, then crossover and mutation mechanism 
will be employed in the algorithm2. Parato-optimal 
solution will be selected for the best solution as 
shown in Fig. 5(a). 

 
Firefly algorithm established 

In the same way as GA, after gaining fitness 
function from RSM methodology, it will be employed 
to be a multi-objective function (warpage and volume 
shrinkage) in firefly algorithm (FA). Firstly FA 
creates the initial population of n fireflies as 
represented in the search space of solutions and sets 
parameters of the attractiveness, light absorption 
coefficient, and randomization factor. Then the 
evaluate fitness is employed by calculating the 
intensity, relative brightness, and attraction and next 
the best fitness through firefly algorithm is ranked15. 
Then the methodology provides the best solution of 
minimization of warpage and shrinkage. The flow 
chart of the algorithm is shown in Fig. 5(b). 

Optimal model 
Optimized plastic injection parameters and 

minimized the warpage and volume shrinkage can be 
stated in Eq. (3) and Eq. (4) respectively. 
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Based on 199 MPa maximum of both injection and 
packing pressures following Toshiba 80T Injection 
molding machine specification, f(X) represents the 
quantified warpage and volume shrinkage of the 
experimental part. 
 
Results and Discussion 
RSM through CCD method 

The 84 experimental tests were established 
according to CCD method. Table 3 shows the results 
based on Moldex 3D simulation. Then this result was 
used to  create the  predicted  models  of warpage  and  
 

 
 

Fig. 5 — Flow chart of multi-objective grouping genetic algorithm (a) and multi-objective firefly algorithm (b) 
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Table 3 — Design and result of central composite design experiments 

No. A B C D E F G Volume shrinkage (%) Warpage (mm) 
1 170 40 10 40 1 60 10 5.497 0.573 
2 170 40 50 40 5 60 10 4.953 0.522 
3 190 70 30 60 3 45 21 4.382 0.485 
4 190 55 30 60 5 45 21 4.102 0.473 
5 210 40 50 80 1 60 32 4.055 0.528 
6 170 70 50 80 1 30 10 5.472 0.569 
7 170 70 50 80 5 60 10 4.953 0.522 
8 190 55 10 60 3 45 21 4.383 0.485 
9 190 55 30 60 1 45 21 4.668 0.496 
10 170 70 50 40 5 30 10 4.907 0.514 
11 170 70 10 80 5 60 32 2.852 0.444 
12 170 70 10 40 5 60 10 4.953 0.522 
13 210 55 30 60 3 45 21 5.219 0.551 
14 190 55 30 60 3 45 21 4.383 0.485 
15 170 70 10 80 1 60 10 5.497 0.573 
16 210 40 10 40 1 30 10 7.189 0.704 
17 210 70 10 40 1 60 10 7.206 0.707 
18 210 70 10 40 5 60 32 3.622 0.516 
19 190 55 30 80 3 45 21 4.383 0.485 
20 190 55 30 60 3 45 21 4.383 0.485 
21 190 55 30 60 3 60 21 4.398 0.487 
22 190 55 30 40 3 45 21 4.383 0.485 
23 210 40 10 80 5 60 32 3.623 0.516 
24 170 40 10 80 5 60 10 4.953 0.522 
25 170 70 50 40 1 60 10 5.497 0.573 
26 190 55 30 60 3 45 21 4.383 0.485 
27 170 70 10 80 5 30 10 4.907 0.514 
28 210 70 10 80 5 60 10 6.546 0.618 
29 210 40 50 80 5 60 10 6.546 0.618 
30 210 40 10 80 1 30 32 4.045 0.526 
31 210 40 10 80 1 60 10 7.206 0.707 
32 170 40 10 80 5 30 32 2.809 0.436 
33 210 70 10 40 1 30 32 4.044 0.526 
34 210 70 10 80 5 30 32 3.612 0.514 
35 170 70 50 40 5 60 32 2.852 0.444 
36 210 70 50 80 1 30 32 4.044 0.526 
37 190 55 30 60 3 45 21 4.383 0.485 
38 170 70 10 40 1 30 10 5.472 0.569 
39 170 70 10 80 1 30 32 3.002 0.454 
40 210 70 50 40 5 60 10 6.546 0.618 
41 170 70 50 80 1 60 32 3.021 0.457 
42 190 55 30 60 3 45 21 4.383 0.485 
43 210 70 50 40 1 60 32 4.055 0.528 
44 170 40 50 80 1 60 10 5.497 0.573 
45 210 70 50 80 5 30 10 6.526 0.616 
46 170 40 10 40 1 30 32 3.003 0.454 
47 190 40 30 60 3 45 21 4.382 0.485 
48 210 70 50 80 5 60 32 3.622 0.516 
49 210 70 10 40 5 30 10 6.526 0.616 
50 210 40 50 80 5 30 32 3.613 0.514 
51 170 40 50 80 5 30 10 4.907 0.514 
52 170 40 10 80 1 30 10 5.477 0.570 
53 210 70 10 80 1 60 32 4.055 0.528 
54 210 40 50 40 5 60 32 3.623 0.516 
55 170 40 50 40 1 30 10 5.477 0.570 
56 210 70 50 80 1 60 10 7.206 0.707 

Contd.
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Table 3 — Design and result of central composite design experiments 

No. A B C D E F G Volume shrinkage (%) Warpage (mm) 
57 210 40 50 40 1 30 32 4.045 0.526 
58 210 40 50 40 5 30 10 6.527 0.616 
59 170 40 50 80 1 30 32 3.003 0.454 
60 170 40 10 40 5 30 10 4.907 0.514 
61 210 70 10 80 1 30 10 7.189 0.704 
62 210 40 50 80 1 30 10 7.189 0.704 
63 210 40 10 40 5 30 32 3.613 0.514 
64 210 70 50 40 1 30 10 7.189 0.704 
65 190 55 30 60 3 45 32 3.151 0.455 
66 210 40 10 40 5 60 10 6.546 0.618 
67 190 55 50 60 3 45 21 4.383 0.485 
68 170 40 10 40 5 60 32 2.852 0.444 
69 170 70 50 80 5 30 32 2.809 0.436 
70 170 70 50 40 1 30 32 3.002 0.454 
71 170 70 10 40 5 30 32 2.809 0.436 
72 170 55 30 60 3 45 21 3.829 0.474 
73 210 40 50 40 1 60 10 7.206 0.707 
74 170 40 50 40 1 60 32 3.021 0.457 
75 210 40 10 80 5 30 10 6.527 0.616 
76 210 70 50 40 5 30 32 3.612 0.514 
77 190 55 30 60 3 30 21 4.373 0.483 
78 170 40 50 40 5 30 32 2.809 0.436 
79 190 55 30 60 3 45 21 4.383 0.485 
80 170 40 50 80 5 60 32 2.852 0.444 
81 210 40 10 40 1 60 32 4.055 0.528 
82 170 40 10 80 1 60 32 3.021 0.457 
83 170 70 10 40 1 60 32 3.021 0.457 
84 190 55 30 60 3 45 10 5.940 0.574 

 

Table 4 — NOVA table for volume shrinkage (after backward elimination) 
Source df Adj SS Adj MS F-Value P-Value 
Model 9 152.124 16.903 28874.56 0 
Linear 4 148.016 37.004 63213.4 0 
A 1 27.411 27.411 46826.12 0 
E 1 3.505 3.505 5987.89 0 
F 1 0.009 0.009 15.47 0 
G 1 117.091 117.091 200024.1 0 
Square 2 1.388 0.694 1185.13 0 
A*A 1 0.086 0.086 146.1 0 
G*G 1 0.111 0.111 190.45 0 
2-Way Interaction 3 2.72 0.907 1549.04 0 
A*E 1 0.127 0.127 217.11 0 
A*G 1 2.229 2.229 3807.85 0 
E*G 1 0.364 0.364 622.18 0 
Error 74 0.043 0.001   
Lack-of-Fit 69 0.043 0.001   
Pure Error 5 0 0   

Addition: S = 0.0241947, R-Sq = 99.97%, R-Sq(adjust) = 99.97%, R-Sq(prediction) = 99.96% 
 

volume shrinkage. Analysis of variance (ANOVA) 
was selected to consider the significance of the model 
terms for warpage and volume shrinkage in Tables 4 
and 5, respectively. The term “Seq SS” is the sum of 
squares for each term. It is used to validate of the 
data. “df” refers to degrees of freedom used to 

contribute to the error prediction. “Adj SS” is adjusted 
sum of squares that is used to be a sign after removing 
insignificant terms from the model. “Adj Ms” is 
adjusted mean squared for a term. Then both models 
are processed using the backward term elimination, 
which means some of the terms that are not significant  
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Table 5 – ANOVA table for warpage (after backward elimination) 
Source df Adj SS Adj MS F-Value P-Value 
Model 9 0.4754 0.052822 1999.64 0 
Linear 4 0.407981 0.101995 3861.13 0 
A 1 0.146981 0.146981 5564.1 0 
E 1 0.028821 0.028821 1091.05 0 
F 1 0.000281 0.000281 10.62 0.002 
G 1 0.231899 0.231899 8778.75 0 
Square 2 0.045778 0.022889 866.48 0 
A*A 1 0.003 0.003 113.56 0 
G*G 1 0.003482 0.003482 131.83 0 
2-Way Interaction 3 0.021641 0.007214 273.07 0 
A*E 1 0.001027 0.001027 38.89 0 
A*G 1 0.00756 0.00756 286.2 0 
E*G 1 0.013053 0.013053 494.14 0 
Error 74 0.001955 0.000026   
Lack-of-Fit 69 0.001955 0.000028   
Pure Error 5 0 0   
Addition: S = 0.0051396, R-Sq = 99.59%, R-Sq(adjust) = 99.54%, R-Sq(prediction) = 99.45% 

 

 
 
Fig. 6 — Main Effects Plots for warpage problem (a) and volume shrinkage problem (b) Addition: a gray background represents a term 
not in the model 
 

are cut. Finally, Tables 4 and 5 show that “P-value” is 
less than 0.05 and the values of “R-Sq (prediction)” 
were more than 99% of both. Therefore, these tables 
of results found that melt temperature (A), mold 
temperature (B), maximum velocity injection (C), 
maximum injection pressure (D), packing time (E), 
maximum packing pressure (F), and cooling time (G), 
only four factors are significant, namely A, E, F, G as 
showing the main effect of warpage and volume 
shrinkage in Fig. 6. Thus, it can be concluded that 
these parameters have a tendency of effects that are 
the same for both problems as shown in Fig. 6, 

whereby if the melt temperature inclines 
continuously, the warpage and volume shrinkage will 
lead to minimized values and vice versa. Also packing 
pressure has a little tendency of effect, if it becomes 
low value; warpage and volume shrinkage will be 
minimized. Meanwhile packing time and cooling time 
are high, warpage and volume shrinkage will reduce 
continuously and vice versa. Moreover, Fig. 7(a) and 
(b) show interaction plots of three interaction factors 
that are significant with warpage and volume shrinkage, 
namely A*E, A*G, E*G after backward elimination of 
other interaction factors. They obviously are found that  
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Fig. 7 — Interaction Plots for warpage problem after backward elimination (a) and volume shrinkage problem after backward elimination (b) 
 

if the melt temperature inclines whereas packing time 
and cooling time climb high, both warpage and volume 
shrinkage will decrease continually.  According to RSM 
method, it can simply generate the polynomial equation 
consisting of A, E, F, G, A2, G2, AE, AG, and EG terms. 
Thus, the final predicted models of warpage and volume 
shrinkage are given in Eqs (5) and (6), respectively. 
 

Warpage (W) = 2.637- 0.02329 A - 0.00505 E + 0.000137 F -
 0.00857 G+ 0.000071 A*A + 0.000253 G*G - 0.000100 A*E -
 0.000049 A*G + 0.000649 E*G … (5) 
 

Volume Shrinkage (V) = 11.63 -  0.0907 A + 0.0244 E 
+ 0.000781 F - 0.03031 G + 0.000379 A*A + 0.001431 G*G -
 0.001114 A*E - 0.000848 A*G + 0.003429 E*G        … (6) 
 

After created the predicted models, validation of the 
models was carried out by using experimental random 
tests of 18 test runs as shown in Table 6. The results 
were the average absolute percentage deviation of 
each model as 0.63 and 0.77, respectively. 

Thus, these models that were used for GA and FA 
implementation to seek the minimization of warpage 
and shrinkage are reliable. 
 
Optimization through GA and FA 

Substituting Eqs (5) and (6) added into Eq. (4) to 
optimize processes of both GA and FA, respectively, 
all variable constraints were fed into an optimal 
structure. Figure 8 show experiments of wrench 

specimens. Table 6 compares the minimized values of 
warpage and shrinkage problems from 
recommendation condition (medium conditions), 
using GA and FA method. It can be seen that the 
result of recommendation condition provided the 
minimized values as 3.370% and 3.677% shrinkages 
and 0.460 mm and 0.494 mm warpages via Moldex 
3D simulation and actual experiment respectively by 
providing 190°C melt temperature, 5 s packing time, 
50% packing pressure, and 27.5 s cooling time. The 
GA result found that the minimized values were 
provided as 2.553% and 2.848% volume shrinkage and 
0.426 mm and 0.447 mm warpage through Moldex 3D 
simulation and actual experiment respectively by using 
175.44°C melt temperature, 3.17 s packing time, 
20.22% packing pressure, and 44.91 s cooling time, 
and using the main control parameters as size of 
population at 100, crossing-over rate at 0.6, aberration 
rate at 0.2, and maximum generation at 600 iterations 
according to Guo et al.’s research2. 

Whereas FA result provided 2.377%  and 2.556% 
shrinkage and 0.409 mm and 0.433 mm warpage 
through Moldex 3D simulation and actual experiment 
respectively by using 183.63°C melt temperature, 10 s 
packing time, 20% packing pressure, and 45s cooling 
time and using control conditions of the method as 
population size equal to 50, maximum number of 
iterations equal to 200, the maximum attractiveness at 
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0.5, the absorption coefficient at 0.5, and the random 
perturbation rate at 0.2 according to Lobato and 
Steffen’s research18. For the comparison of actual 
experiments and Moldex 3D simulated tests found that 
empirical results provide experimental values nearby 
simulated values at 94% and 90% accuracy of 
warepage and volume shrinkage respectively. 
 
Comparison of RSM, GA and FA results 

The results from both optimization methods clearly 
show that the FA performance can generate better 
results than GA and at recommended condition 
performances as shown in Table 7. Warpage and 
volume shrinkage that are provided from FA algorithm 
achieve better minimized values than GA algorithm at 
4.05% and 7.4% respectively, and better than the 
recommended condition 11.33% and 41.73% for 
warpage and volume shrinkage by Moldex 3D 
simulated tests. Similarly, FA algorithm provides better 
minimized values than GA algorithm at 3.28% and 

10.26% respectively, and better than the recommended 
condition 12.42% and 30.49% for warpage and volume 
shrinkage by experiments through Toshiba 80T 
injection molding machine. Meanwhile GA 
performance can provide minimized values of warpage 

Table 6 — Comparison of predicted vs. actual run based on Moldex 3D software 

No. A 
(°C) 

E  
(s) 

F (%) G  
(s) 

Volume 
shrinkage (%)

Warpage 
(mm) 

Predicted 
volume 

shrinkage (%)

Predicted 
warpage 

(mm) 

% volume 
shrinkage 
deviation 

% warpage 
deviation 

1 170 1 30 10 5.475 0.577 5.455 0.574 -0.36% -0.43% 
2 170 2 37.5 13.75 4.872 0.522 4.829 0.524 -0.89% 0.38% 
3 170 3 45 17.5 4.243 0.486 4.269 0.485 0.62% -0.11% 
4 190 4 30 10 5.766 0.560 5.719 0.555 -0.82% -0.86% 
5 210 3 37.5 21.25 5.186 0.550 5.134 0.559 -1.01% 1.59% 
6 210 4 45 25 4.545 0.534 4.521 0.531 -0.52% -0.55% 
7 210 5 52.5 10 6.513 0.612 6.521 0.623 0.12% 1.77% 
8 170 1 60 21.25 4.076 0.488 4.058 0.485 -0.46% -0.61% 
9 170 2 30 25 3.502 0.466 3.562 0.458 1.66% -1.71% 

10 170 3 37.5 10 5.198 0.542 5.199 0.544 0.03% 0.46% 
11 180 3 45 13.75 5.064 0.521 4.987 0.518 -1.55% -0.58% 
12 190 1 37.5 25 4.136 0.480 4.115 0.483 -0.52% 0.81% 
13 190 4 60 17.5 4.727 0.496 4.705 0.497 -0.48% 0.18% 
14 200 2 52.5 25 4.377 0.502 4.362 0.507 -0.34% 0.96% 
15 200 3 60 10 6.377 0.613 6.348 0.613 -0.45% 0.08% 
16 210 3 30 21.25 5.176 0.548 5.128 0.558 -0.92% 1.70% 
17 210 4 37.5 25 4.532 0.532 4.516 0.530 -0.37% -0.43% 
18 210 5 45 10 6.528 0.618 6.515 0.622 -0.20% 0.64% 

% deviation was calculated using the equation: [(predicted value – simulated value)/predicted value] ਀100 
 

Table 7 — Volume shrinkage and warpage values before and after optimization methods 

 Recommended condition method GA method FA method 

Objectives 
Moldex 3D 
simulation 

Experiments Moldex 3D 
simulation 

Experiments Moldex 3D 
simulation 

Experiments 

Volume shrinkage (%) 3.370 3.677 2.553 2.848 2.553 2.556 

Warpage (mm) 0.460 0.494 0.426 0.447 0.426 0.433 

 
 

Fig. 8 — wrench example part from actual experiments 
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and volume shrinkage better than at recommended 
condition at 9.45% and 22.54% respectively. Therefore, 
this research experiment can conclude that use of FA 
algorithm can find suitable process parameters to 
minimize warpage and volume shrinkage better than GA 
implementation according to Yang’s research15,16 that 
proved FA algorithm performance better than the 
performance of the popular GA algorithm. 
 
Conclusions 

This research deals with the study of the 
minimization of warpage and volume shrinkage 
problems. An optimization model using FA was 
successfully compared with GA by both algorithms 
developed and based on the second-order response 
surface regression methodology. This research seeks to 
provide a flexible and better optimization model to 
discover suitable process parameters to accommodate 
moveable limitations, conditions, and constraints of 
different injection molding machines. For this study, 
general purpose polystyrene was employed for analysis; 
it was found that melt temperature and cooling time 
were the main influences for warpage and volume 
shrinkage. Packing time and packing pressure were the 
next priorities. This conclusion can be applied to 
consider process parameters to reduce warpage and 
volume shrinkage for global allowable ranges for the 
injection molding process. Moreover, this research 
illustrates that the Firefly algorithm for optimizing 
process parameters is another one that can produce 
better results of warpage and volume shrinkage 
reduction than the previously favored genetic 
algorithm, which has been widely employed in plastic 
injection molding processes.  
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