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This study proposes a multi-agent system with several intelligences for complex industrial process monitoring. The 
suggested multi-agent system combines a set of techniques which are: multivariate control charts, neural networks, and 
Bayesian networks. The proposed approach has been evaluated on the TEP (Tennessee Eastman Process). The obtained results 
have been compared with set of methods that were applied to the Tennessee Eastman Process in the literature; our system 
performs better on the faults diagnosis. 
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Introduction 
Currently, the process monitoring is an important 

task in all industrial companies. For this reason; the 
most important purpose of companies is the 
optimisation of their process monitoring methods. 
Three principal methods of process monitoring have 
been proposed1: (i) the analytical methods which are 
based on mathematical models. These methods 
compare the real system outputs with the mathematical 
model outputs; hence they are excellent and give good 
results. However, the most shortcoming of these first 
methods is the difficulty to obtain and manage the 
model for the big systems, (ii) the methods based on 
knowledge, which use the human knowledge (risk 
analysis, Failures Modes Effects and Critically 
Analysis- FMECA, decision trees)2-3; their 
disadvantages reside in the difficulty to own all the 
knowledge about the faults, and (iii) the data based 
methods which focus on statistical process control. The 
last kind of methods apply, generally, the methods 
which are based on univariate control charts (x-bar 
chart4, CUSUM (Cumulative SUM)5, or EWMA 
(Exponentially Weighted Moving Average weighted 
moving average)6, and multivariate control charts (the 
Hotelling T2 control chart)7, the MCUSUM 
(Multivariate Cumulative SUM)8, and the MEWMA 
(Multivariate Exponentially Weighted Moving 
Average)9 for the faults detection in industrial process. 
Currently, the industrial processes become more and 

more complex and multivariate. In these systems, the 
operator recuperates a vast data amount to be analysed. 
The high volume of data and the big number of process 
variables make the operator task fastidious. To avoid 
such problems, and simplify the complex process 
monitoring tasks the data based methods are more 
suitable for a complex process monitoring. The 
multivariate control charts (Hotelling T2 control chart, 
MCUSUM, and MEWMA) have been used in the 
monitoring of multivariate process and have proved 
their adequacy in reducing the complexity of such 
process monitoring. The monitoring of a multivariate 
process is a complex task which can be devised into 
four subtasks that are: the detection of abnormal 
situation, the diagnosis of the faults that appeared in the 
process, the identification of variables that caused this 
situation, and finally the reconfiguration of the 
process1. In literature, lot of researches have used the 
control charts for process monitoring10-12. To identify 
the variables that make an out of control in T2, a 
decomposition of the statistic T2 into independent 
terms13 has been suggested. Moreover, the Bayesian 
networks have been applied for variables 
identification14-19. Our contribution consists to 
combine in one multi agent system different 
intelligences (multivariate control charts, neural 
networks, and Bayesian networks) for multivariate 
process monitoring. The developed agents use 
multivariate control chart for abnormal detection, 
neural network for faults diagnosis, and Bayesian 
network for variables identification. We use the multi-
agent system because it: 
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 simplifies the communication between the different 
intelligences (control chart, neural network, and 
Bayesian network), 

 manages the intelligence diversity, 
 optimises the time of the monitoring process tasks, 
 offers a cooperative supervised approach for 

complex industrial process. 
 

The proposed multi-agent system 
The proposed multi-agent system is composed by 

three principal agents: the Multivariate Control Chart 
Executor Agent (MCCEA), the Diagnosis Artificial 
Neural Network Agent (DANNA), and the 
Identification Bayesian Network Agent (IBNA). The 
following paragraphs describe each of these used 
agents. We model agent diagram for the proposed 
system as shown in Figure 1. 
 
The interface agent (IA) 

The IA is a reactive agent which is the bridge 
between the multi-agent system and the operator. It is 
an interface for the human operator; hence it receives 
the request from the users (monitoring the process 
state). Besides this, the IA transforms the agent’s 
responses to the users. If the IA receives a request from 
the user, to control the process state, it sends a message 
to the MCCEA. If the process is stable, the IA informs 
the operator that the process is under control. 
Otherwise, the process is unstable; the IA waits the 
response of the IBNA and displays it for the operator. 
 
The multivariate control charts executor agent (MCCEA) 

This agent is responsible on the execution of the 
multivariate control charts (Hotelling T2 control chart, 
MCUSUM, MEWMA). The control charts detect 
successfully the process instability. To monitor 

successively the process, we suggest using a software 
agent that executes simultaneously a set of multivariate 
charts and detects easily the process instability. The 
different control charts are used in the design of the 
MCCEA. This agent receives request from the IA 
about the process state, it executes the control charts. 
After that, if the process is under control, it sends report 
to the IA. If not, it informs the DANNA that the process 
is not stable. 
 

The diagnosis artificial neural network agent (DANNA) 
We use the neural network in the diagnosis task. The 

neural network has been implemented and integrated 
into the DANNA development in order to obtain a 
good diagnosis of the process faults. The objective of 
this neural network is to provide classification of the 
faults that appeared in the process. We create a 
classical Multi Layer Perceptron (MLP), with three 
layers: 
 

 The input layer: the number of neurons in this 
layer is the number of the process parameters, 

 The output layer: in this layer, the number of the 
neurons represents the number of classes (faults of 
the process), 

 The hidden layer: it is generally known that the 
number of neurons in this layer is problematic 
research. After a set of tests, we find that the optimal 
number is equal to: (number of neurons in the input 
layer + the number of neurons in the output layer)/2. 
When the process is unstable, the DANNA receives 
report from the MCCEA. Its principle objective is to 
find the fault that appeared in the process. After, it 
sends a report to the IBNA. 

 
The identification bayesian network agent (IBNA) 

As with neural network, a Bayesian network has 
been integrated in the IBNA development. The IBNA 
receives report from DANNA about the fault that 
appeared in the process. It builds a Bayesian network 
using the causal decomposition of T2. After, the 
probabilistic values provided by the Bayesian net will 
be used by the IBNA in order to find the variables that 
are involved in the faults. 
 

Application of the proposed model on the tennessee 
eastman process 
 

Introduction to the tennessee eastman process 
The Tennessee Eastman process20 (TEP) is proposed, 

to provide a simulated model and to evaluate the 
monitoring methods of industrial complex process. The 
process consists of five principal units: a condenser, a 

 
 

Fig. 1 — Agent diagram 
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separator, a reactor, a compressor, and a stripper Figure 2. 
Four gaseous reactants (A, C, D, and E) and inert B are 
fed to the reactor. It produces two components (G and H), 
and the undesired by-product F. The reaction equations 
are listed from (1 to 4). All the reactions are irreversible, 
exothermic, and approximately first-order with respect to 
the reactant concentrations. The reaction rates are 
expressed as Arrhenius function of temperature. The 
reaction producing G has higher activation energy than 
that producing H, thus resulting in more sensitivity to 
temperature. 
 

A (g) + C (g) + D (g) →G (l) … (1) 
 

A (g) + C (g) + E (g) →H (l) ... (2) 
 

A (g) + E (g) → F (l) ... (3) 
 

3D (g) →2F (l) ... (4) 
 

The TEP process20, is open loop unstable and it 
should be operated under closed loop. In this article, we 
use this control structure to evaluate the performance of 
our approach on fault diagnosis. The reactor product 
stream is cooled through a condenser and fed to a 
vapour-liquid separator. The vapour exits the separator 
and recycles to the reactor feed through a compressor. A 
portion of the recycle stream is purged to prevent the 
inert and by-product from accumulating. The condensed 
component from the separator is sent to a stripper, which 
is used to strip the remaining reactants. Once G and H 

exit the base of the stripper, they are sent to a 
downstream process which is not included in the 
diagram. The inert and by-products are finally purged as 
vapour from vapour-liquid separator. The process 
provides 41 measured and 12 manipulated variables, 
denoted as XMEAS (1) to XMEAS (41) and XMV (1) 
to XMV (12), respectively. Twenty faults IDV (1) to 
IDV (20) of TEP are given to represent different 
conditions of the process operation (Fifteen faults are 
pre-programmed and four are unknowns).  
 

Simulation and Results 
 

Approach implementation tools 
The proposed approach has been implemented using 

the Java environment Net beans IDE and the platform 
JADE (Java Agent Development framework). JADE is a 
software framework that simplifies the implementation of 
multi-agent systems. To simplify the development of the 
neural network and Bayesian network with Netbeans, 
java offers many libraries. In this work, we use FIPA 
Agent Communication specifications that deal with 
Agent Communication Language (ACL) messages, 
message exchange interaction protocols and content 
language representations. 
 
Used data set for simulation 

In this section we evaluate the performances of the 
proposed approach on a concrete example which is the 
TEP. The used data represent 480 training observations 

 
 

Fig. 2 — Tennessee Eastman control problem 
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and 960 tests observations for each fault, in addition to 
the normal period. The observations of training have 
been obtained with the simulation of each fault in a 
period of 24 hours; moreover the observations of the 
test set have been obtained through a period of 48 
hours. Variables are sampled every three minutes. 
 
Application of the proposed model on the TEP 
 

Detection 
The MCCEA runs the Hotelling T2 control chart and 

sends message to the DANNA when it detects the 
instability of process. The false alarm rate is 0,01%. The 
performance of detection system is evaluated by 
calculating its reliability. The last is defined as:  
(the number of obtained alerts in the test period/the total 
number of sample in the period test)21. Generally, the 
reliability detection is the same that been obtained by 
Sylvain19. 
 
Results analyses 
As we see in the Table 1 

• Some faults are easily detectable which are: IDV (4), 
IDV (5), IDV (6), IDV (7), IDV (14), IDV (1), IDV 
(2), IDV (8), IDV (10), IDV (12) (reliability of 
detection= 100%), 

• Other faults are difficult to detect which are: IDV (3), 
IDV (9), and IDV (15) (reliability of detection < 40%), 
For example, the fault IDV (8) is generally detectable 
(reliability of detection = 97, 95), because the first 
samples (33 first samples) of this faults are not 
detectable. 

Diagnosis 
This task is realised by the DANNA. It receives 

massage from the MCCEA that the process is unstable. It 
was decided to use the MLP neural network with the 
training algorithm ”Backpropagation”. The inputs data 
represent the process parameters (52 variables, the 
agitator speed is constant), and the outputs parameters 
correspond to the process faults. The input data of the 
neural network must be normalized (using theoretical 
minimum and maximum). 
 
Diagnosis of the faults in the TEP 

We have done the diagnosis of the known faults, i.e., 
IDV (1) to IDV (15) in TEP. A network of three layers 
obtained the best results on the performed tests: 
 

- Input layer: contains 52 neurones that represent the 
process parameters, 

- Output layer: contains 15 neurons that represent the 
process faults, 

- Hidden layer: contains 34 neurones ((52 + 15)/2 = 34). 
 

Table 2 represents a comparison between the diagnosis 
realised by DANNA and some other approaches that 
proposed for the diagnosis of the TEP faults. The Bayesian 
Network (BN) has been used for the faults classification by 
Sylvain19; however the approach proposed by Li & Xiao22 
is a supervised pattern classification method which uses 
one dimensional adaptive rank-order morphological filter 
 
Identification  

The IBNA is the responsible on the realisation of on 
the identification task. It receives a message about the 

 

Table 1 — Reliability of detection by MCCEA 

Fault Detection reliability 

IDV(1) 99.75 % 

IDV(2) 98.5% 

IDV(3) 35% 

IDV(4) 100% 

IDV(5) 100% 

IDV(6) 100% 

IDV(7) 100% 

IDV(8) 97.75% 

IDV(9) 15.88% 

IDV(10) 97% 

IDV(11) 90.88% 

IDV(12) 99.88% 

IDV(13) 95.5% 

IDV(14) 100% 

IDV(15) 30.5% 

Table 2 — Rate of correct classification 

The faults of 
TEP 

Classification rate 

DANNA Bayesian net [19] PC1DARMF[22] 

IDV(1) 97.01% 97.5% 30% 

IDV(2) 95.34% 98.125% 95% 

IDV(3) 82.10% 22% 0.00% 

IDV(4) 97.34% 82.375% 25% 

IDV(5) 96.67% 98% 100% 

IDV(6) 100% 100% 65% 

IDV(7) 97.67% 100% 0.00% 

IDV(8) 100% 97% 5% 

IDV(9) 79.06% 22.625% 0.00% 

IDV(10) 71.42% 86.875% 15% 

IDV(11) 69.1% 75.5% 0.00% 

IDV(12) 96.67% 98.25% 5% 

IDV(13) 100% 76.125% 5% 

IDV(14) 93.02% 98.75% 5% 

IDV(15) 92.69% 23.5% 0.00% 
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fault that appeared in the process. To develop the BN, we 
use the approach proposed by Sylvain19 which is causal 
decomposition of T2. The Figure 3 presents the BN that 
is created with normal situation of process functionality. 
We take rate of false alarm α = 0,005. The IBNA takes 
the observation that represents the fault, and then it gives 
its identification of the variables. All the variables that 
have probability under to 0,995 are out of control. 
 
Conclusion  

The multivariate process monitoring is a complex 
procedure that is devised into four principal tasks: 
detection, diagnosis, identification and reconfiguration 
of the process. For this reason a complete multi-agent 
system has been implemented. Three principal agents 
have been developed and equipped with different 
intelligences. The first agent is: MCCEA which is 
responsible on the detection task (execution and 
interpretation of multivariate control charts). The 
second agent is the DANNA, which utilises the ANN 
classifier (MLP algorithm) to do the diagnostic of 
process faults. The IBNA agent exploits the BN that 
has been proposed by Sylvain19 to do the identification 
task. From the development of this system that 
combines different intelligences, the use of this 
intelligences diversity enables a system to be able to 
give an effective detection, a high rate of diagnosis, 
good variables identification. The proposed model has 
been evaluated on a multivariate process (TEP). From 
the simulation results, we find that the proposed 
classifier gives a good result compared with some 
works applied to the TEP. The suggested integrated 
model seems to be effective for process monitoring of 
the proposed case study and may be used to monitor 

other similar processes as well. In this work, we have 
seen that some faults are difficult for detecting, so our 
future works will concentrate on the development of 
the detection task. We concentrate also on the adding 
of the reconfiguration agent which will be responsible 
on the correction tasks. Our future work will focus on 
this issue and try to minimize the number of false 
classification. 
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