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In this paper, a method for evaluating and forecasting deformation movements present in buildings during  tunneling works is 

described. The data used for processing is gathered from the project ’Prokop’ that has involved tunneling works under residential 

buildings, all mapped using a geodetic control network, or elevation network. Measurement results from this project are being 

used by the Finite Impulse Response (FIR) Neural Network as time series to predict future movements/deformations. 
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Introduction 
Geodetic works are permanently present in all 

phases of space changes which include idea, 

realization and evaluation. These works are 

applied for measuring the area for groundwork, 

transportation of objects to the field, tracking of 

their construction, measurement of objects for the 

purpose of managing records, tracking of the 

behaviour of the object during exploitation, etc. 

Designers in the field are securing a permanent 

stability of the object, however during the 

construction of complex buildings, some 

unplanned changes can occur, which can lead to 

catastrophic damage to the object and its 

surrounding. For the purpose of preventing 

negative consequences, it is necessary in certain 

time intervals to monitor civil engineering works 

using one of geodetic methods, with a network 

which can meet the demands of designer 

documentation
1
. 

Tracking of movements and deformation on every 

complex object, including object 'Prokop' because 

of its specificity, is a procedure which demands 

the realization of series of very complex processes 

and rules, as well as unavoidable cooperation 

from various areas of science. The quality of 

procedures depends not only on the quality of  

 

 

geodetic measurements, data processing and 

equalization of data, but also from the universal 

approach in solving engineering demands. 

Universality entails the knowledge of outer and 

inner influences on the deformation processes, 

compatibility of methodologies and instruments 

for registering shifts, geo-mechanical, 

construction, and other characteristics of the 

observed object, procedure of projecting and 

establishing a special purpose geodetic network, 

expected accuracy upon realizing control 

measurements, periodic control measurements, 

the type of model and methods used in 

deformation monitoring, methods for analysis and 

interpretation of measurement results and various 

other data
2
. 

Based on the knowledge of the procedure, 

characteristics of the object and all previous 

geodetic works (from projecting and establishing 

a geodetic network to the realization of control 

measurements that took several years), it is 

necessary to in a universal way show the 

procedure of projecting the control network, and 

measurement plan, acquisition and processing of 

data with conventional and modern instruments.  
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Analysis of the results of unknown parameters 

from these measurements, basic and other control 

measurements will contribute to the findings as 

well recommendation for all future auscultations 

on similar objects, and to the improvement in the 

approach to deformation monitoring in all civil 

engineering objects
3
. 

Recommendations, based on the analysis and 

investigations will be used in establishing 

geodetic network of specific uses, methodology of 

acquiring data and the choice of deformation 

model. The results of the previous assessment 

value, zero measurement on object 'Prokop' and 

realized control measurements will be used for the 

purpose of predicting movements using artificial 

neural networks, in particular the Finite Impulse 

Response (FIR) Neural Networks. 

 

Materials and Methods 

During the process of projecting geodetic control 

networks, for the purpose of retrieving numerical 

values and assessing previous accuracy of the 

network, it is necessary to determine the design of 

the network and to plan measurements in it. 

Temporary values of unknown coordinates or the 

height of points are determined mostly from 

existing maps or from known methods
4
. When 

planning the measurements, different choices are 

taken into consideration together with their 

measurement accuracy methods. 

 

When the temporary values of coordinates and/or 

the height of the points are determined together 

with the defined plan of measured lengths, as well 

as their accurate measurement in the network, the 

matrix of design A  and a covariance matrix of 

measured lengths ll QK o  is given
5
. This 

way, a functional and stochastic model of indirect 

equalization of free or closed networks is 

provided. 

Covariance matrix of unknown 

parameters for closed networks is represented as: 
122
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Where x̄ is the vector of differential increments, 

σo is the a priori standard settlement or a priori 

accuracy given during the process of levelling, N 

is the matrix of normalized equations, Q1 is the 

cofactor matrix of measurements. 

 

And for free networks: 
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where N+ denotes a pseudo inversion. 

In the case of object 'Prokop', the previous value 

of accuracy was processed with minimal traces of 

covariance matrix on the stability points of 

geodetic control network, which have been placed 

outside the zone of expected deformations. 

Standard of horizontal and vertical directions, 

lengths and height differentials in the geodetic 

networks, as well as measurement plan have 

secured the targeted projected value of unknown 

parameters, shown in Table 1. Average values of 

standard coordinates and heights as well as 

elements of standard confidence ellipse (with 

probability p=0.95) is shown in table 1. 

 
Table 1. Previous accuracy assessment of geodetic control 

network points and points for observation on object 'Prokop' 
 

Accuracy 

assessment 

of the 

geodetic 

control 

network 

[mm] 

 

Accuracy 

assessment 

of 

observation 

points 

[mm] 

Coordinate 

standards 

for control 

network 

points 

σ y = 0.69 

Coordinate 

standards for  

B = 1.97 
observation 

points 

σ y = 1.23 

σ x = 0.67 σ x = 1.30 

σ H = 0.70 σ H = 0.95 

Absolute 

confidence 

ellipses for 

control 

network 

points 

A = 1.77 Absolute 

confidence 

ellipses for 

observation 

points 

A = 3.97 

B = 1.55  

 

Figure 1 depicts previous analysis of free geodetic 

control network on object 'Prokop' with planned 

measurement directions 1   and lengths 

1 mm 1 ppmD    (making the total accuracy 

1mm+1mm per square kilometre), where after the 

analysis a homogeneous accuracy of points is 

preserved. 
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Figure 1. Sketch of the points in the micro network and observation points, with absolute confidence ellipses (p=0.95), object 

Prokop, Belgrade (coordinates are shown in state plane coordination system, Gauss-Krueger projection, seventh zone)
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After field investigation control measurements, in   

vertical and horizontal plane, calculation of 

definite directions and lengths from all observed 

gyres has been performed. When processing 

conventional length measurements, appropriate 

adjustments based on atmospheric influence, and 

altitude have been applied (project was done at 

the altitude of 97m).For GPS measurements, 

simultaneous registered data in receivers at the 

final points of the measured vector were grouped 

in three files. The data was transferred and 

processed using software package PROCESS for 

each individual vector. For measured vectors the 

same adjustments like in length measurements 

need to be applied. 

 

As a result of GPS measurements, based on the 

least squares method, length of the vector was 

calculated, including average squared error, 

spatial components of the vector together with the 

least squared errors
6
. 

 

When the errors were not in the allowed 

threshold, the vectors were re-processed 

interactively by the system. In this variant the 

software enables the user to omit the results from 

certain satellites and time intervals that are not 

aligned with the others, as well as the possibility 

of changing the referred satellite. The built-in 

software comes with the modules necessary 

modules to deal with the result variance. 

 

When the results have been processed, the same 

ones are being forwarded to the software to 

perform the leveling of the elevation network, 

which is done by the method of group leveling 

with the condition that the least squared errors are 

minimal. 

 

The necessary steps needed to perform the 

leveling are: error equations, inversion and 

control of inverted matrices for accuracy 

measurements, calculation of definite coordinates, 

mean error unit, and the mearn error for the (x,y) 

coordinates. 

mo = ± 0.72mm 

mxmax = ± 1.20mm 

mymax = ± 1.00mm 
  

With the processed coordinates, the stability of 

the elevation network has been determined using 

the Helmert transformation. For stable points, 

elevation network has been leveled together with 

the points for observation on abutment 

diaphragms and residential buildings
7
. Leveling 

has been performed based on the groups the 

points belong to. The exact information that is 

being fed to the software is: 

 id and name of stability points 

 id and name of points that determine 

movements 

 measured values, directions, and lengths 

 spatial coordinates of the points in 

elevation network together with the 

approximate coordinates of the observed 

points 

 

Elevation network with the observed points has 

been leveled in the local coordination system 

which uses radial axis R(x) that matches the axis 

of the metro line, with positive direction towards 

the metro platform, and tangent axis T(Y) 

perpendicular to R, with a positive direction 

towards the tunnel 'Dedinje'. 

 

The leveling of the elevation network and the 

calculations of height differences has been done 

using a benchmark (GN 236) placed on the portal 

of the 'Dedinje' tunnel. 

Processing of this data using the software has 

been done using: 

 id and name of stability benchmark with 

value 

 id and name of the stability points that 

determine movements with their 

approximate values 

 measured height differences 

 weight , where n is the number of 

stations in one direction 

 

With the averaging method (which is in fact 

Helmert transformation by vertical axis) stable 

benchmarks are being identified. The movements 

for these benchmark points have been marked as 

0mm, as they were identified as stable points
8
.  

 

Results 

The data to be used are the (x,y) coordinates of 

the points at residential buildings. These 

coordinates are in meters, and the data chosen to 

be forecasted is (𝑥 −   𝑥  ), and (𝑦 −   𝑦  ), because 

the deformation are monitored in millimeters. 

Forecasting results are shown in Figure 5, with x 

coordinates on the left side, and y on the left; 

predictions are marked in blue, actuals in red.  

 

FIR training is an iterative process where each 

cycle consists of one or more forward 

1746 
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propagations through the network, and one back 

propagation to obtain derivatives of the cost 

function with respect to the network weights. The 

number of taps in first layer is 5, and 3 in second. 

The learning rate was set to 0.001, and the 

number of hidden layers was set to 2. 

By increasing the number of neurons in hidden 

layers, or tapped delays, more features are 

extracted from the data (and hence the predictions 

are made more accurate). However, this may lead 

to over-fitting, and the predictions might go out of 

range. Over fitting occurs when a forecasting 

model has too few degrees of freedom. In other 

words it has relatively few observations in 

relation to its parameters and therefore is able to 

memorize individual points rather than learn 

general patterns. Because the data set is small (a 

time series of 30 entries), the number of hidden 

layers was set to 2, and not more. 

 

Discussions 

    Finite Impulse Response (FIR) Neural Network 

In this section, the neural network architecture 

that will be used to predict future values of (x,y) 

coordinates (in the local coordination system) is 

described. Neural network must contain memory 

in order to process temporal information. There 

are two basic ways to build memory into neural 

networks. The first is to introduce time delays in 

the network and to adjust their parameters during 

the learning phase. The second way is to 

introduce positive feedback, thus making the 

network recurrent. This paper will concentrate on 

two architectures: finite impulse response (FIR) 

and recurrent neural networks. 

FIR neural network uses the unfold-in-time static 

approach, and is a functional equivalent of the 

time delay neural network (TDNN). They do not 

have feedback connections between units. TDNN 

provide simple forms of dynamics by buffering 

lagged input variables at the input layer and/or 

lagged hidden unit outputs at the hidden layer. 

FIR network is a feed forward network whose 

static connection weights between units are 

replaced by an FIR linear filter that can be 

modeled with tapped delay lines. After applying 

the unfold-in-time technique to a FIR, all delays 

will be removed by expanding the network into a 

large equivalent static structure. Standard back 

propagation algorithm is then applied for training. 

Formally, time delays are identical to time 

windows and can thus be viewed as and can thus 

be viewed as autoregressive models. 

Linear Systems 
 

It is possible that P, the process whose output is 

trying to get predicted is governed by linear 

dynamics. The study of linear systems is the 

domain of Digital Signal Processing (DSP). 

DSP is concerned with linear, translation-

invariant (LTI) operations on data systems. Those 

operations are implemented by filters. The 

analysis and design of filters effectively forms the 

core of this field. 

Filters operate on an input sequence u[t], 

producing an output sequence x[t]. They are 

typically described in terms of their frequency 

response, i.e. low pass, high-pass, band-stop. 

There are two basic filter architectures, known as 

the Finite Impulse Response (FIR) filter and the 

Infinite Impulse Response (IIR) filter. FIR filters 

are characterized by q+1 coefficients: 

 

These filters implement the convolution of the 

input signal with a given coefficient vector . 

The input in these filters  is the impulse 

function, and the output  is long as  

which must be finite. 

IIR filters are characterized by p 

coefficients. 

 

The input  contributes directly to at time t, 

but, crucially, is otherwise a weighted sum of 

its own past samples. Because both the input 

signal and vector are finite in duration, the 

response asymptotically decays to zero. Once is 

non-zero, it will make non-zero contributions to 

future values of infinite number of times.      

 

FIR Filters in ANNs 

In Finite impulse response (FIR) Neural networks, 

each neuron is extended to be able to process 

temporal features by replacing synapse weights by 

finite impulse response filters
9
. A general 

structure of this filter is shown in figure 2. 
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Figure 2. Finite Impulse Response Filter 

 

A multilayer feed forward network is then built 

using these neurons as shown in          figure 3. 

Network input layer consists of FIR filters feeding 

the data into neurons in hidden layer. Output of a 

layer may only connect to the first tap of a node in 

next layer. Network may have one or several 

hidden layers. Output layer consists of neurons 

which receive their inputs from previous hidden 

layer. 

 

 
 

Figure 3 Multilayer Feedforward Neural Network 

 

At each time increment, one new value is fed to 

input filters, and output neuron produces one 

scalar value. In effect this structure has the same 

functional properties as the Time Delayed Neural 

Networks (TDNN). However, the FIR neural 

network is interpreted as a vectoral and temporal 

extension of MLP. This interpretation leads to the 

temporal back propagation algorithm. 

    

 Temporal back propagation 

 

The basic back propagation algorithm assumes 

that the neural network is a combinational circuit, 

providing an output for a given input. However, 

many applications suitable for adaptive learning 

have inherently temporal structures. 

Every time-delay neural network can be  

 

represented as a standard static network simply by 

duplicating nodes and removing delays.  

The resultant net is much larger, contains a large 

number of weight duplications (or triplications), 

and is not fully interconnected. The process of 

creating the static equivalent can be thought of as 

'unfolding' the network. Once the network is 

unfolded, the back propagation algorithm can be 

applied directly to solve the static network. 

The output layer of the static network contains the 

same number of nodes as the output layer of the 

temporal network. Because this layer has no delay 

taps, the next layer has no non-physical nodes, 

and the number of virtual nodes of the static 

equivalent is equal to the number of filters in that 

layer times the number of placeholders in each 

filter. For each layer back to the input, the number 

of total virtual nodes is a cumulative sum of the 

number of virtual nodes in that layer plus the 

number of virtual nodes calculated for the 

previous layer minus one (because the first 

placeholder in each filter accepts and  propagates 

its input without delay to the next layer). 

Mathematically, the notation for total virtual 

nodes at a layer is: 

 








 1

1

)1( ll

l TT
T  

Ll

Ll





1
 

where lT  is the physical number of taps per filter. 

The next stage is to actually unfold the network. 

The first step is to copy down the output nodes, 

then to copy down all the placeholders of the next 

layer back, and make each one into a node by 

prepending  a processing element to it. The result 

is a partial network shown in figure 4. So far, the 

training algorithm is simply a standard back 

propagation without modifications, except that the 

hidden-layer nodes are referenced with three, 

instead of two  variables,  where l is used as a 

subscript to denote that there is only one tap s=1 

associated with the output layer L. The network 

still has the exact physical layout of the temporal 

net, but without the delay units. The next step is 

to copy the first layer and second layer weights 

downward, overlapping placeholders when 

necessary, until the number of inputs in the first 

layer equals the number of accumulated inputs 

calculated. 
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Figure 4. Partial static neural network in the unfolding 

process

 


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     1 ≤  l ≤  L,      1 ≤  i  ≤  Il  

1 ≤  j  ≤ I( l - 1 ) ,   1 ≤  t  ≤ T(l - 1)  

 

 

Figure 5. Forecasting results (left: X-axis, right Y-axis). 

Conclusion 
In this paper, a neural network for forecasting 

future values of horizontal and vertical 

movements is described. The points chosen for 

prediction are located in residential building. 

Alternative methods include Kalman filtering, and 

the Finite Element Method (which are widely 

used in geodetic measurements).  Advantage of 

using ANNs (FIR in this case) is that the user 

does not need to be an expert in geodesy, or to be 

familiar with structural engineering in order to 

make the prediction. Overall the network has 

performed well, as in the observed cases even 

though the predictions were not completely 

accurate, the movement trend was detected in all 

cases. In order to increase the accuracy of the 

forecast, a bigger data set is required, which 

would greatly improve the results. 
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