Schiff base modified Pt electrode as sensor for detecting Al(III) and Pb(II)

Kangkana Deka & Diganta Kumar Das* Department of Chemistry, Gauhati University, Guwahati 781 014, India Email: diganta chem@gauhati.ac.in

Received 5 April 2017; revised and accepted 27 July 2017

A platinum electrode with its surface modified with the condensation product of *p*-phenylenediamine and acetylferrocene (PPDA-AcFc) has been fabricated by cyclic voltammetry. The square wave voltammogram of the modified electrode, PPDA-AcFc/Pt, in aqueous medium gradually shifts by 0.440 V and 0.090 V in the positive direction on interaction with Al³⁺ and Pb²⁺ respectively. Electrochemical impedance spectroscopy shows the charge transfer resistance value of PPDA-AcFc/Pt electrode increases in the case of Al³⁺ while it decreases in the case of Pb²⁺. The linear range of detection is 0-12 μ *M* and 0-6 μ *M* for Al³⁺ and Pb²⁺ respectively.

Keywords: Electrochemistry, Electrodes, Modified electrodes, Electrochemical impedance spectroscopy, Voltammetry, Aluminium, Lead

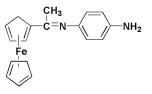
Although 8% of the earth's crust is Al³⁺ ion by mass, it does not play any biological role. While Al is not toxic, Al³⁺ ion is a neurotoxin and is reported to be linked with various neurodegenerative diseases including Alzheimer and Parkinson's disease. Al³⁺ ion causes oxidative damage of biological membranes¹⁻³, and is reported to cause osteoporosis, colic and rickets⁴. It also prevents Ca²⁺ uptake by plants leading to their retarded growth⁵. High concentration of Al³⁺ in human blood may cause impaired renal function^{6,7}. Despite many drawbacks, use of Al cannot be avoided in modern life as it is essential for making electronic and electrical components of different gadgets, building materials, different packaging items, etc. Therefore, there is high probability of Al³⁺ contaminating the environment and hence affecting human health adversely. Thus, it is important to develop new analytical methods for the determination of Al^{3+} in water, foods, and biological fluids like blood and towards this, the designing a new sensor for detection of Al^{3+} is of high relevance.

Analytical techniques based on atomic absorption and emission spectroscopy^{8,9}, spectrophotometry¹⁰,

fluorescence¹¹, electroluminescence¹² are known for the detection of Al³⁺. Due to the simplicity of operation, low cost, easy instrument maintenance, ready automation, etc., electrochemical techniques are gaining popularity for Al³⁺ detection¹³. Direct electrochemical determination of Al³⁺ by voltammetry is complicated because H₂ evolution occurs at potential near the Al^{3+} reduction potential which is -1.75 V versus Ag/AgCl as reference¹⁴. Modification of solid electrode has been an answer to avoid this complicacy, for example-carbon electrodes have been modified with dopamine¹⁵, alizarin¹⁶, 8-hydroxyquinoline^{14,17}, ionophore/polyvinylchloride^{18,19}, etc. for voltammetric detection of Al³⁺. Molecular voltammetric probes for Al³⁺ have been reported based on 5-hydroxy-1-methyl-3H-benzo[\$]chromen-3-one²⁰. Modified polyvinyl chloride (PVC) membrane with clinoptilolite nanoparticles/hexadecyltrimethyl ammonium bromide surfactant/Arsenazo III has been used for construction of Al³⁺-selective electrode²¹. Al³⁺ selective electrode has also been prepared by coating the surface of a graphite rod by a membrane containing PVC as a plastic matrix, dibutylphthalate as plasticizer, 12C4 as an ionophore and oleic acid as an additive²². Gold electrode surface modified via covalent attachment of *p*-((8-hydroxyquinoline)azo) benzenethiol for selective Al^{3+} detection²³. Electrodes modified by multi-walled carbon nanotubes and reduced graphene nanosheets are also known for Al^{3+} detection²⁴.

Due to its capability to mimic Ca^{2+} , Pb^{2+} occupies calcium binding sites on numerous calcium dependent proteins in cells, consequently resulting in impairment of physiological functions²⁵. The sources of Pb²⁺ pollution to environment are printing industry, dyeing industry, lead glass manufacturing, etc.²⁶⁻²⁹. Methods well known for Pb²⁺ detection include atomic absorption spectrophotometry³⁰, inductively coupled plasma emission spectrometry³¹ and fluorescence spectrometry^{32,33}. Like Al³⁺, electrochemical methods for Pb(II) detection also have gained popularity. Electrochemical sensor based on three-dimensional mesoporous graphene framework (MGF) has been developed for determination of Pb2+ in aqueous solution³⁴. Graphene oxide textured with redox active Ru²⁺ bipyridine complex nanocomposite on Au electrode is reported for Pb²⁺ detection³⁵. Ag NPs,

bismuth and Nafion modified carbon electrode is recently reported for detection of Pb²⁺ in aerosol³⁶. Electrodeposition of reduced graphene oxide-gold nanoparticles nanocomposite film onto the surface of glassy carbon electrode followed by Nafion modification³⁷ was used for fabrication of an electrochemical sensor for trace amounts of Pb²⁺. Nitrogen doped graphene/gold nanoparticle and Fe₂O₃@TiO₂ nanoparticle nanocomposite modified Au electrode³⁸ has been reported for Pb²⁺. Porous honeycomb carbon with tunable size was synthesized and used as electrode material for Pb²⁺ detection³⁹. Hollow silica microspheres containing amino groups has been synthesised and used as modifying agent for GC electrode for Pb²⁺ detection⁴⁰. Copper based electrochemical sensor for Pb²⁺ by anodic stripping voltammetry has been reported⁴¹. Ion imprinted polymer using Pb²⁺ as a template was reported as Pb²⁺ selective voltammetric sensor⁴². Another ion voltammetric sensor for selective determination of Pb²⁺ is based on EDTA-immobilized graphene-like C nitride nanosheets⁴³. Bismuth modified exfoliated graphite (EG) electrode for the co-detection of heavy metal ions –As³⁺, Hg²⁺ and Pb²⁺-in water samples using square wave anodic stripping voltammetry is reported⁴⁴. In all the reported methods of electrode modification the modifying agents were synthesised chemically adopting relatively difficult synthetic methods.


Herein, we report a Pt electrode modified with the Schiff base obtained from p-phenylenediamine and acetylferrocene for detecting Al³⁺ and Pb²⁺ by cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy. Metal ions Li⁺, Na⁺, K⁺, Mg²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, Ce²⁺ and Hg²⁺ do not interfere.

Experimental

All the chemicals were purchased from Loba Chemie. The electronic spectra were recorded on a UV-1800 Shimadzu spectrophotometer. The FTIR spectra were recorded with KBr pellets (4000-400) cm⁻¹ on a Perkin Elmer RXI FTIR system. High resolution mass (HRMS) spectra were recorded on an Agilent spectrometer using HPLC methanol as the solvent. CHI 600B electrochemical analyzer (USA) with a three electrode cell assembly was used for electrochemical studies. Electrochemical experiments were carried out under a blanket of nitrogen gas after passing the gas through the solution for 10 min. The working electrode

was GC disc, reference electrode was Ag/AgCl (3 M NaCl) and NaNO₃ (0.1 M) was the supporting electrolyte. The square wave voltammetry (SWV) experiments were carried out at the square wave amplitude of 25 mV, frequency of 15 Hz and the potential height for base stair case wave front of 4 mV. The area of the Pt electrode was 0.025 cm².

For the synthesis of the sensor (PPDA-AcFc), solutions of 1 mmol (0.108 g) of *p*-phenylenediamine and 0.5 mmol (0.114 g) of acetylferrocene (AcFc) were prepared in dry CH₃OH (10 mL) separately. Both the solutions were mixed and the mixture was stirred for 24 h at room temperature. Blackish-brown shiny precipitate was obtained. The reaction mixture was allowed to stand till the solvent evaporated and dry product, PPDA- AcFc (I), was obtained. Yield: 96%, FTIR (cm⁻¹): 3432 and 3348 (ν_{NH2}); 1615 ($\nu_{C=N}$). HRMS m/z: 319.7606 (Calculated = 318.1933) (Supplementary data, Figs S1 and S2 respectively).

PPDA-AcFc

The Pt electrode was modified as follows: The Pt electrode was cleaned as reported⁴⁵ followed by sonication first in CH₃OH and then in water. The electrode was dried under a stream of N₂ gas. The cleaned electrode was placed in 0.1 M PPDA-AcFc in dry CH₃OH containing TBAP as the supporting electrolyte. Cyclic voltammetric runs carried out for 100 scan segments at scan rate 0.100 V s⁻¹ show the increase in current indicates formation of film of PPDA-AcFc on Pt electrode surface (Fig. 1). The electrode was then gently washed with water and dried under a stream of N₂ gas and stored in refrigerator for further use. To further confirm the formation of the film of PPDA-AcFc, chronocoulogram of the modified electrode was recorded in water using 0.1 M NaNO₃ as supporting electrolyte (Fig. 1, Inset). A sharp decrease in charge versus time profile indicates adsorption of electroactive species onto the electrode surface, confirming formation of film of PPDA-AcFc on electrode surface. The modified electrode is designated as PPDA-AcFc/Pt henceforth in this paper. No redox peaks were observed when cyclic voltammogram was

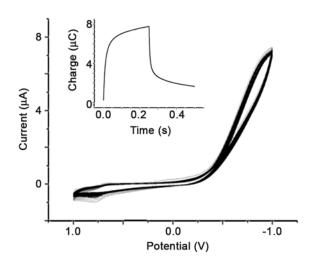


Fig. 1 — Cyclic voltammogram of Pt electrode in 0.1 *M* solution of PPDA-AcFc in dry CH₃OH containing TBAP as the supporting electrolyte for 100 scan at scan rate 0.1 V s⁻¹. Inset: Chronocoulogram of the modified electrode in water containing 0.1 *M* NaNO₃ as supporting electrolyte.

recorded in aqueous medium using the modified electrode. However, well defined redox peak at -0.210 V was observed on recording square wave voltammogram.

Results and discussion

Figure 2 shows the square wave voltammograms of electrode PPDA-AcFc/Pt at varying added concentration of Al³⁺ in the electrolytic medium. In the absence of Al³⁺, a redox peak was observed at -0.210 V versus Ag/AgCl reference. This peak is due to $Fe^{2+/3+}$ redox couple of PPDA-AcFc. During electrochemical film deposition by CV no redox peaks were observed while square wave voltammetry could recognise one redox peak at -0.210 V. The nature of the film may be such that the CV is not sensitive enough to detect the redox process, but the more sensitive SWV could detect the redox peak.

Upon addition of Al^{3+} , the current of this peak decreases and a new peak starts appearing at +0.230 V versus Ag/AgCl reference. This process continues with increase in concentration of Al^{3+} up to 300 µ*M*. At this concentration, the current at -0.210 V is minimum and the current at +0.230 V is maximum. Further addition of Al^{3+} did not affect the current or peak position. Thus, addition of Al^{3+} may effect a significant 0.440 V positive shift in redox potential of the PPDA-AcFc/Pt electrode. Binding of Al^{3+} to PPDA-AcFc is probably through the lone pairs of electron on amine N. This binding of Al^{3+} , due to conjugation, would lead to a deficiency in electron density on Fe²⁺. Thus oxidation

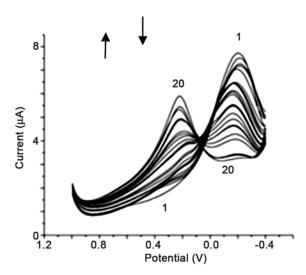


Fig. 2 — Square wave voltammograms of PPDA-AcFc/Pt electrode at different added concentration of Al^{3+} in water containing 0.1 *M* NaNO₃ as supporting electrolyte. (RE: Ag/AgCl). (1 and 20 indicates the first and twentieth scan respectively).

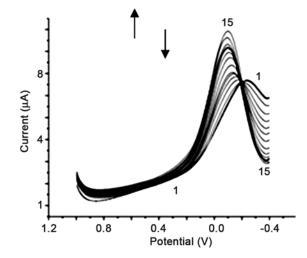


Fig. 3 — Square wave voltammograms of PPDA-AcFc/Pt electrode at different added concentration of Pb^{2+} in water containing 0.1 *M* NaNO₃ as supporting electrolyte. (RE: Ag/AgCl). (1 and 15 indicates the first and fifteenth scan respectively).

of Fe^{2+} becomes difficult resulting in a positive shift in redox potential.

The effect of Pb²⁺ ion on the square wave voltammograms of AcFc/Pt electrode is shown in Fig. 3. The peak current at -2.10 V decreases with increasing Pb²⁺ concentration and a new peak appears at -0.120 V versus Ag/AgCl as reference electrode. The current at -0.120 V peak increases with Pb²⁺ ion concentration up to 300 μ *M* and remains constant thereafter. Thus the square wave voltammetric peak due to interaction between AcFc/Pt electrode and Pb²⁺ is 0.090 V more positive as compared to that of the AcFc/Pt electrode. Like Al³⁺, Pb²⁺ also interacts with the

amine N of PPDA-AcFc leading to electron deficiency at Fe^{2+} and hence a positive shift. Since electron pulling capacity of Al^{3+} is higher than that of Pb^{2+} the electron deficiency at Fe^{2+} (of PPDA-AcFc) is more in the case of Al^{3+} than in Pb^{2+} and hence Al^{3+} could induce more positive shift in redox potential than Pb^{2+} .

Figure 4 shows the plot of redox peak currents of the PPDA-AcFc/Pt electrode as a function of

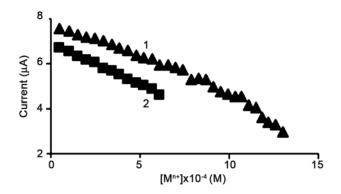


Fig. 4 — Plot of square wave voltammetric peak currents of PPDA-AcFc/Pt electrode at different added concentration of $Al^{3+}(1, \blacktriangle)$ and $Pb^{2+}(2, \blacksquare)$ in water containing 0.1 *M* NaNO₃ as supporting electrolyte. (RE: Ag/AgCl).

 Al^{3+} concentration at redox potential -0.210 V. Good linearity between the peak currents and Al^{3+} concentration was observed with R^2 values 0.9654. Good linearity between the peak current and Pb²⁺ concentration was also observed with R^2 value 0.9732.

The EIS measurements of interaction between PPDA-AcFc/Pt electrode and Al³⁺ were made under optimised conditions as for square wave voltammetry at $E_{\rm DC}$ = 1.5V. Figure 5a shows the ESI Nyquist plot at different added concentration of Al³⁺ in the electrolytic medium. The $R_{\rm CT}$ was found to increase with increasing Al³⁺ concentration. Figure 5b shows the plot of $\Delta R_{\rm CT}$ as a function of Al³⁺ concentration which was linear with R^2 value 0.9655.

The EIS measurements of interaction between AcFc/Pt electrode and Pb²⁺ were also made under optimised conditions as for square wave voltammetry at $E_{\rm DC}$ =1.5 V (Fig. 6a) at different added concentration of Pb²⁺. Unlike in the case of Al³⁺, the $R_{\rm CT}$ was found to decrease with increasing Pb²⁺ concentration. The plot of $\Delta R_{\rm CT}$ as a function of Pb²⁺ concentration was linear with R^2 value 0.9672 (Fig. 6b).

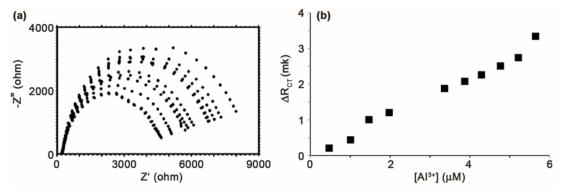


Fig. 5 — (a) Nyquist plot for PPDA-AcFc/Pt electrode at different added concentration of Al³⁺ in in water containing 0.1 *M* NaNO₃ as supporting electrolyte. (b) Plot of ΔR_{CT} versus Al³⁺ concentration.

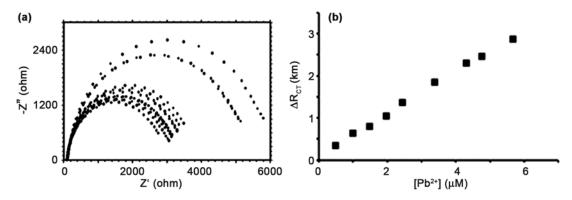


Fig. 6 — (a) Nyquist plot for PPDA-AcFc/Pt electrode at different added concentration of Pb^{2+} in in water containing 0.1 *M* NaNO₃ as supporting electrolyte. (b) Plot of ΔR_{CT} versus Pb^{2+} concentration.

Square wave voltammogram was recorded for PPDA-AcFc/Pt electrode in aqueous medium in presence of metal ions, i.e., Li⁺, Na⁺, Mg²⁺, K⁺, Ni²⁺, Zn²⁺, Cd²⁺, Hg^{2+} , Ce^{2+} besides Al^{3+} and Pb^{2+} . No appreciable change in the square wave voltammogram was observed for these metal ions. The metal ions mentioned above other than Al^{3+} and Pb^{2+} do not bind to the sensor through $-NH_2$ lone pair electrons. Hence, they do not show any change in redox potential and current of the sensor. The bar diagram for the normalised current $(\Delta I/I_0)$ obtained from square wave voltammogram of PPDA-AcFc/Pt electrode in aqueous medium in presence of 10^{-3} M interfering metal ions at +0.230 V and -0.120 V versus Ag/AgCl is shown in Fig. S1 (Supplementary data). Here ΔI is the difference in current in absence (I_0) and in presence of 10^{-3} *M* concentration of a particular metal ion. The interaction between PPDA-AcFc/Pt electrode is clearly seen and Al³⁺ is quite distinct over the other metal ions at +0.230 V. Similarly, the SWV confirms that PPDA-AcFc/Pt electrode can distinguish Pb²⁺ over the other metal ions at -0.120 V.

In conclusion, Pt electrode surface modified with condensation product of *p*-phenylenediamine and acetylferrocene (PPDA-AcFc) by cyclic voltammetry was found to shift its redox potential by 0.440 V in positive direction and by 0.090 V in negative direction respectively on interaction with Al^{3+} and Pb^{2+} respectively in aqueous medium. The normalised current was quite distinct for the modified electrode in presence of Al^{3+} and Pb^{2+} at applied potential +0.230 V and -0.120 V respectively. The charge transfer resistance value of PPDA-AcFc/Pt electrode, obtained from electrochemical impedance spectroscopy, shows increase in the case of Al^{3+} and decrease in the case of Pb^{2+} .

Supplementary data

Supplementary data associated with this article, viz., Fig. S1, is available in the electronic form at http://www.niscair.res.in/jinfo/ijca/IJCA_56A(08)832 -837 SupplData.pdf.

Acknowledgement

Authors thank University Grants Commision, New Delhi and Department of Science & Technology, New Delhi, for financial support to the department through SAP and FIST respectively. IIT-Guwahati, North Guwahati, is thanked for HRMS.

References:

- 1 Budimir A, Acta Pharm, 62 (2011) 1.
- 2 Nayak P, Environ Res, 89 (2002) 101.

- 3 Zatta P, Coord Chem Rev, 228 (2002) 271.
- 4 Wang B, Xing W, Zhao Y & Deng X, *Environ Toxicol Pharmacol*, 29 (2010) 308.
- 5 Gensemer R W & Playle R C, CR Environ, 29 (1999) 315.
- 6 Medel A S, Cabezuelo A B S, Milacic R & Polak T B, Coord Chem Rev, 228 (2002) 373.
- 7 Hewitt C D, Wlnbome K, Margrey O, Nicholson J R P, Savory M G, Savory J & Wills M A, *Clin Chem*, 36 (1990) 1466.
- 8 Sang H, Liang P & Du D, J Hazard Mater, 154 (2008) 1127.
- 9 de Jesus D S, Gra M & Korn C, *Spectrochim Acta Part B*, 55 (2000) 389.
- 10 Abbasi S & Farmany A, Food Chem, 116 (2009) 1019.
- 11 Kumar J, Sarma M, Phukan P & Das D K, Dalton Trans, 44 (2015) 4576.
- 12 Muegge B D, Brooks M S & Richter M M, Anal Chem, 75 (2003) 1102.
- 13 Gupta V K, Jain A K & Maheshwari G, *Talanta* ,72 (2007) 1469.
- 14 Shervedani R K, Rezvaninia Z, Sabzyan H & Boeini H Z, Anal Chim Acta, 825 (2014) 34.
- 15 Zhang F, Yanga L, Bi S, Liu J, Liu F, Wang X, Yang X, Gan N, Yu T, Hu J, Li H & Yang T, J Inorg Biochem, 87 (2001) 105.
- 16 Akhtar P & Devereaux H A, Anal Chim Acta, 381 (1999) 49.
- 17 Cai Q & Khoo S B, Anal Chim Acta, 276 (1993) 99.
- 18 Arvand M & Asadollahzadeh S A, Talanta, 75 (2008) 1046.
- 19 Esmaelpourfarkhani M, Rounaghi G H & Arbab-Zavar M H, *J Brazil Chem Soc*, 26 (2015) 963.
- 20 Gupta V K, Int J Electrochem Sci, 10 (2015) 8770.
- 21 Mostafa M & Alireza N-Ejhieh, J Colloid Interface Sci, 494 (2017) 317.
- 22 Masoomeh E, Gholam H R, Mohammad H A-Zavar, *J Brazil Chem Soc*, 26 (2015) 963.
- 23 Karimi S R, Z Rezvaninia, Hassan S & Hassan Z B, Anal Chim Acta, 825 (2014) 34.
- 24 Tang Y-Zheng, Chen X, Yang Xu-Jie, Shen Ren-Fang, Yang X-Di & Xu C-Zheng, *IEEE Sensors*, J 13 (2013) 3270.
- 25 Lewis J A & Cohen S M Addressing, *Inorg Chem*, 43 (2004) 6534.
- 26 Deng Y, Gao Z, Liu B, Hu X, Wei Z & Sun C, *Chem Eng J*, 223 (2013) 91.
- 27 Cui L, Xu W, Guo X, Zhang Y, Wei Q & Du B, J Mol Liq, 197 (2014) 40.
- 28 Alaparthi M & Sykes A G, J Incl Phenom Macrocycl Chem, 83 (2015) 149.
- 29 Behbahani M, Bide Y, Salarian M, Niknezhad M, Bagheri S, Bagheri A & Nabid M R, *Food Chem*, 158 (2014) 14.
- 30 Jurado J M, Martín M J, Pablos F, Moreda-Pineiro A & Bermejo-Barrera P Food Chem, 101 (2007) 1296.
- 31 Ho T Y, Chien C T, Wang B N & Siriraks A, *Talanta*, 82 (2010) 1478.
- 32 Guzman-Mar J L, Hinojosa-Reyes L, Serra A M, Hernández-Ramírez A, Cerdà V, *Anal Chim Acta*, 708 (2011) 11.
- 33 Das D K, Goswami P & Sarma S, J Fluoresc, 23 (2013) 503.
- 34 Xiao L, Wang B, Ji L, Wang F, Yuan Q, Hu G, Dong A & Gan W, *Electrochim Acta*, 222 (2016) 1371.
- 35 Gumpua M B, Veerapandian M, Krishnand U M & Rayappan J B B, *Talanta*, 162 (2017) 574.
- 36 Mettakoonpitak J, Mehaffy J, Volckens J & Henry C S, *Electroanal*, 28 (2016) 1.

- 37 Zhao G, Wang H, Liu G, Wang Z & Cheng J, *Ionics*, 23 (2017) 767.
- 38 Liu F-mei, Zhang Y, Yin W, Hou-jun, Huo D-qun, He B, Qian L-lin & H-bao F, Sensors Actuators B, 242 (2016) 889.
- 39 Xu R, Xiao L, Luo L, Jia H, Wang C & Wang F, J Electrochem Soc, 164 (2017) B382.
- 40 Hao He-Qun, Xie Lei, Jin Jun-Cheng, Wu Ju, Xie Cheng-Gen & Fu Xu-Cheng, J Electrochem Soc, 163 (2016) H1081.
- 41 Kang W, Pei X, Rusinek C A, Bange A, Haynes E N, Heineman W R & P Ian, *Anal Chem*, 89 (2017) 3345.
- 42 Hu S, Xiong X, Huang S & Lai X, Anal Sci 32 (2016) 975.
- 43 Teng Z, Lv H, Wang L, Liu L, Wang C & Wang G, *Electrochim Acta*, 212 (2016) 722.
- 44 Mafa P J, Idris A O, Mabuba N & Arotiba O A, *Talanta*, 153 (2016) 99.
- 45 Rajbangshi J, Das D K & Mazumder S, *Electrochim Acta*, 55 (2010) 4174.