A novel use of Hückel parameters (h, k) for the pairing of eigenvalues in graph spectrum

Swarna M Patra \& Rama K Mishra*
Chemical Physics Group, Department of Chemistry, Sambalpur University, Jyoti Vihar 768 019, India
and
Bijaya K Mishra
Centre of Studies in Surface Science and Technology, Department of Chemistry, Sambalpur University, Jyoti Vihar 768 019, India

Received 22 January 1996; revised 30 April 1996
An unusual use of the Hückel parameters (h and k) has been noticed for the derivation of the characteristic polynomial (CP) of the vertex-edge weighted graphs. A new pairing scheme for the eigenvalues $\left(\mathrm{x}_{\mathrm{j}}\right)$ of the weighed graphs bas been proposed in the light of Coulson-Rushbrooke pairing theorem for the non-bipartite graphs,

$$
x_{j}+x_{n+1-j}=1 / 2 \sum_{p} h_{p} \pm \text { a for } j=1,2,3 \ldots, n
$$

where n, p and ' a ' are the number of vertices, number of heteroatoms and a numerical quantity respectively.

According to Coulson-Rushbrooke pairing theorem ${ }^{1}$ a graph without weighted edges and/or vertices is bipartite if and only if its spectrum, considered as a set of points on the real axis, is symmetric with respect to zero point. While analysing the graph spectrum of 1,3-diazacyclobutadiene, Cvetkovic et al. ${ }^{2}$ have shown that the graph spectrum bears a single zero eigenvalue. They have explained that out of the two zeros (NBMOs), in cyclobutadiene system, one acquires a positive eigenvalue (HOMO) leading to the stability of the system. Trinajstic et al. ${ }^{3,4}$ have extended Coulson-Rushbrooke pairing theorem as follows.

If G is a bipartite graph the same number of vertices in each set, and those in the first set are weighted, then
$X_{j}+X_{n+1-j}=h$ for $1 \leq j \leq n$
where h is the Hückel parameter or the weight of the loop. This theorem happens to be a restricted extension of the original pairing theorem. Coulson 5 pointed out that the validity of the pairing theorem would not be affected by the presence of the weights on the edges. We would like to point out that changing the weight of the edge changes the mode of distribution of the weight of the loop (h) in different eigenvalues, but the sum of the eigenvalues remains same, i.e., h. For instance, the

CP of the graph (ii) (see Fig. 1) can be represented as follows.

$$
\begin{align*}
\mathrm{CP}_{\mathrm{ii}}= & \mathrm{X}^{4}-\left(\mathrm{h}_{1}+\mathrm{h}_{2}\right) \mathrm{X}^{3}+\left[\mathrm{h}_{1} \mathrm{~h}_{2}-2\left(\mathrm{k}_{1}^{2}+\mathrm{k}_{2}^{2}\right)\right] \mathrm{X}^{2} \\
& +\left(2 h_{1} \mathrm{k}_{2}^{2}+2 \mathrm{~h}_{2} \mathrm{k}_{1}^{2}\right) \mathrm{X} \tag{2}
\end{align*}
$$

When $\mathrm{X}=\mathrm{Y}=\mathrm{N}$, the accepted values ${ }^{6}$ of k and h are 0.7 and 0.38 respectively. With these parameters the eigenvalues are found to be 1.6028 , $0.3800,0.0000$ and -1.2228 . By changing the k value only, $(k=1)$ the eigenvalues obtained are $2.1990,0.3800,0.0000$ and -1.8190 . Considering these eigenvalues it can be concluded that the summation of all the eigenvalues would be unaffected (in conformity with Mallion et al.'s work ${ }^{3}$), but two eigenvalues would change. When $\mathrm{X} \neq \mathrm{Y}$, it is not in conformity with Mallion et al.'s equation. We have made an attempt to formulate a new type of pairing theorem which can deal with both bipartite and non-bipartite graphs?.

Theoretical

Trinajstic ${ }^{4}$ has constructed the CP for the vertex-edge weighted graph and redesigned it as ${ }^{8}$,
$C P=\sum_{n=0}^{N} \sum_{s=s_{n}}(-1)^{\left.P_{s}\right)} 2^{r(s)} \prod_{i}^{s} h_{i} \prod_{j}^{k=\text { ins }} \times k_{j}^{2} \prod_{j}^{c \text { in } s} k_{j}^{2}$
where
$\mathrm{N}=$ total number of vertices,
s = a Sachs graph
$S_{n}=$ a set of all Sachs graphs with n vertices,
$\mathrm{P}(\mathrm{s})=$ total number of components in s ,
$r(s)=$ total number of rings (or cyclic components) in s ,
$h_{i}=$ weight of the i th vertex having a loop in s, $\mathrm{k}_{\mathrm{j}}=$ weight of the j th edge in k_{2} (Complete graph),
$\mathrm{k}_{\mathrm{j}^{\prime}}=$ weight of the j^{\prime} th edge in C (cyclic graph).
In this equation the first product refers to the contribution from all the weighted vertices ' i ' with weights h_{i} in s, whereas the second and third products refer to the contribution from all the weighted components in 's' and all the weighted edges in ' C ' components of 's' respectively.

Earlier, different workers have investigated the topological properties of heteroconjugated molecules ${ }^{3,4,8,11}$. Gutman has made a series of contributions on the topological studies of the heteroconjugated molecules ${ }^{11-15}$. The method of calculation of the CP of the vertex weighted (weighted self loop) graphs has been proposed by many workers ${ }^{9,11}$. Dias ${ }^{10}$ has made use of McClelland's factorisation rule and proposed the CP for the vertex-edge weighted graph having one and two heteroatoms. The derivation of the CP clearly shows the crucial role played by both the Hückel parameters (h and k) simultaneously. Here, we have tried to construct the CP for the heteroconjugated system in terms of h and k parameters. As proposed by Trinajstici ${ }^{4}$, the weight of the edge of a pendent graph would be reflected as the square of the weight of the edge. Hence, the CP is constructed as a function of $\left(\mathrm{h}+\mathrm{k}^{2}\right)$ term in its ascending powers.

$$
\begin{align*}
C P= & h^{0}\left[f_{0}(x)\right]+\left(k^{2}\right)^{0}\left[f_{1}(x)\right]+h\left[f_{2}(x)\right]+k^{2}\left[f_{3}(x)\right] \\
& +h^{2}\left[f_{4}(x)\right]+2 h k^{2}\left[f_{5}(x)\right]+k^{4}\left[f_{6}(x)\right] \ldots . \tag{4}\\
= & \left(h+k^{2}\right)^{0}\left[\frac{h^{0} f_{0}}{\left(h+k^{2}\right)^{2}}(x)+\frac{k^{2}}{\left(h+k^{2}\right)^{0}} f_{1}(x)\right] \\
& +\left(h+k^{2}\right)^{1}\left[\frac{h}{\left(h+k^{2}\right)} f_{2}(x)+\frac{k^{2}}{\left(h+k^{2}\right)^{0}} f_{3}(x)\right] \\
& +\left(h+k^{2}\right)^{2}\left[\frac{h^{2}}{\left(h+k^{2}\right)} f_{4}(x)+\frac{2 h k^{2} f_{5}}{\left(h+k^{2}\right)}(x)\right. \\
& \left.+\frac{k^{4}}{\left(h+k^{2}\right)^{2}} f_{6}(x)\right]+\ldots . . \\
= & \left(h+k^{2}\right) g_{0}\left(x, h, k^{2}\right)+\left(h+k^{2}\right) g_{1}\left(x, h, k^{2}\right) \\
& +\left(h+k^{2}\right)^{2} g_{2}\left(x, h, k^{2}\right)+\ldots . .
\end{align*}
$$

 in determining the eigenvalues as well as in the pairing process where the graph is not a bipartite one.
(ii) The eigenvalues can be paired by assuming a model equation (Eq. 6) for the graphs consid-

Fig. 1-Different graphs with four vertices where, X and Y are equal to $\mathrm{N}, \mathrm{P}, \mathrm{As}, \mathrm{Sb}$ and Bi

Table 1-Eigenvalues, $a, h_{1}, h_{2}, \mathrm{k}_{1}$ and k_{2} values of the weighted graphs											
Graph	X	Y	h_{1}	h_{2}	k_{1}	k_{2}	x_{1}	x_{-1}	X_{2}	x_{-2}	a
(i)	N		0.38		0.70		1.8006	-1.6729	0.2523	0.0000	0.0623
	P		0.30		0.67		1.7558	-1.6615	0.2057	0.0000	0.0557
	As		0.10		0.60		1.6631	-1.6366	0.0735	0.0000	0.0235
	Sb		-0.10		0.49		1.5657	-1.5851	0.0000	-0.0806	0.0306
	Bi		-0.10		0.40		1.5166	-1.5305	0.0000	-0.0861	0.0361
(ii)	N	N	0.38	0.38	0.70	0.70	1.6028	-1.2228	0.3800	0.0000	0.0000
	N	P	0.38	0.30	0.70	0.67	1.5525	-1.2105	0.3380	0.0000	0.0020
	N	As	0.38	0.10	0.70	0.60	1.4496	-1.1858	0.2162	0.0000	0.0238
	N	Sb	0.38	-0.10	0.70	0.49	1.3462	-1.1220	0.0559	0.0000	0.0841
	N	Bi	0.38	-0.10	0.70	0.40	1.2973	-1.0349	0.0176	0.0000	0.1224
	P	P	0.30	0.30	0.67	0.67	1.4983	-1.1982	0.3000	0.0000	0.0000
	P	As	0.30	0.10	0.67	0.60	1.3862	-1.1741	0.1879	0.0000	0.0121
	P	Sb	0.30	-0.10	0.67	0.49	1.2727	-1.1111	0.0384	0.0000	0.0616
	P	Bi	0.30	-0.10	0.67	0.40	1.2192	-1.0242	0.0050	0.0000	0.0950
	As	As	0.10	0.10	0.60	0.60	1.2510	-1.1510	0.1000	0.0000	0.0000
	As	Sb	0.10	-0.10	0.60	0.49	1.1098	-1.0900	0.0000	-0.0198	0.0198
	As	Bi	0.10	-0.10	0.60	0.40	1.0432	-1.0049	0.0000	-0.0382	0.0382
	Sb	Sb	-0.10	-0.10	0.49	0.49	0.9313	-1.0311	0.0000	-0.1002	0.0000
	Sb	Bi	-0.10	-0.10	0.49	0.40	0.8459	-0.9459	0.0000	-0.1000	0.0472
	Bi	Bi	-0.10	-0.10	0.40	0.40	0.7516	-0.8516	0.0000	-0.1000	0.0000
(iii)	N		0.38		0.70		2.0656	-1.5979	0.3439	-0.4316	0.2777
	P		0.30		0.67		2.0232	-1.6149	0.3204	-0.4287	0.2583
	As		0.10		0.60		1.9302	-1.6582	0.2602	-0.4322	0.2220
	Sb		-0.10		0.49		1.8321	-1.7123	0.1878	-0.4078	0.1698
	Bi		-0.10		0.40		1.7946	-1.7255	0.1579	-0.3270	0.1191
(iv)	N		0.38		0.70		2.1010	-1.2119	0.4909	-1.0	0.6991
	P		0.30		0.67		2.0884	-1.2052	0.4167	-1.0	0.7332
	As		0.10		0.60		2.0636	-1.1914	0.2277	-1.0	0.8222
	Sb		-0.10		0.49		2.0384	-1.1554	0.0170	-1.0	0.9330
	Bi		-0.10		0.40		2.0255	-1.1077	-0.0178	-1.0	0.9678
(v)	N	N	0.38	0.38	0.70	0.70	1.8844	-1.2567	0.2777	-0.1455	0.2477
	N	P	0.38	0.30	0.70	0.67	1.8603	-1.2393	0.2459	-0.1869	0.2810
	N	As	0.38	0.10	0.70	0.60	1.8096	-1.1876	0.1925	-0.3345	0.3820
	N	Sb	0.38	-0.10	0.70	0.49	1.7613	-1.0809	0.1488	-0.5492	0.5404
	N	Bi	0.38	-0.10	0.70	0.40	1.7467	-1.0322	0.1170	-0.5515	0.5745
	P	N	0.30	0.38	0.67	0.70	1.8264	-1.2530	0.2750	-0.1684	0.2334
	P	P	0.30	0.30	0.67	0.67	1.8011	-1.2361	0.2419	-0.2069	0.2650
	P	As	0.30	0.10	0.67	0.60	1.7480	-1.1861	0.1837	-0.3455	0.3619
	P	Sb	0.30	-0.10	0.67	0.49	1.6974	-1.0832	0.1362	-0.5504	0.5142
	P	Bi	0.30	-0.10	0.67	0.40	1.6816	-1.0349	0.1058	-0.5525	0.5467
	As	N	0.10	0.38	0.60	0.70	1.7005	-1.2455	0.2684	-0.2434	0.2150
	As	P	0.10	0.30	0.60	0.67	1.6721	-1.2296	0.2326	-0.2751	0.2425
	As	As	0.10	0.10	0.60	0.60	1.6131	-1.1831	0.1605	-0.3905	0.3300
	As	Sb	0.10	-0.10	0.60	0.49	1.5568	-1.0873	0.1000	-0.5695	0.4695
	As	Bi	0.10	-0.10	0.60	0.40	1.5381	-1.0398	0.0739	-0.5722	0.4983
	Sb	N	-0.10	0.38	0.49	0.70	1.5565	-1.2275	0.2619	-0.3109	0.1890
	Sb	P	-0.10	0.30	0.49	0.67	1.5242	-1.2139	0.2232	-0.3335	0.2103
	Sb	As	-0.10	0.10	0.49	0.60	1.4581	-1.1757	0.1348	-0.4172	0.2824
	Sb	Sb	-0.10	-0.10	0.49	0.49	1.3919	-1.0845	0.0766	-0.5841	0.4075
	Sb	Bi	-0.10	-0.10	0.49	0.40	1.3722	-1.0527	0.0354	-0.5549	0.4195
	Bi	N	-0.10	0.38	0.40	0.70	1.4788	-1.2071	0.2595	-0.2512	0.1317
											Contd.

Table 1-Eigenvalues, $\mathrm{a}, \mathrm{h}_{1}, \mathrm{~h}_{2}, \mathrm{k}_{1}$ and k_{2} values of the weighted graphs-Contd											
Graph	X	Y	h_{1}	h_{2}	k_{1}	k_{2}	x_{1}	x_{-1}	x_{2}	x_{-2}	a
	Bi	P	-0.10	0.30	0.40	0.67	1.4445	-1.1962	0.2197	-0.2681	0.1483
	Bi	As	-0.10	0.10	0.40	0.60	1.3747	-1.1674	0.1262	-0.3335	0.2075
	Bi	Sb	-0.10	-0.10	0.40	0.49	1.3084	-1.1087	0.0441	-0.4438	0.2997
	Bi	Bi	-0.10	-0.10	0.40	0.40	1.2832	-1.0662	0.0257	-0.4427	0.3170

ered in this work.
$\mathrm{X}_{\mathrm{j}}+\mathrm{X}_{\mathrm{n}+1-\mathrm{j}}=1 / 2 \sum_{\mathrm{p}} \mathrm{h}_{\mathrm{p}} \pm \mathrm{a}$ where $1 \leq \mathrm{j} \leq \mathrm{n}$
p is the number of heteroatoms and n is the total number of vertices. Let us abbreviate ($\mathrm{n}+1-\mathrm{j}$) as - j. Then one can write Eq. 6 as
$\mathrm{X}_{\mathrm{j}}+\mathrm{X}_{-\mathrm{j}}=1 / 2 \sum_{\mathrm{p}} \mathrm{h}_{\mathrm{p}} \pm \mathrm{a} \ldots$
Here ' a ' is defined to be the distribution of Hückel parameters among the complementary eigenvalues. This term can be evaluated by solving the polynomial equation. (The derivation of ' a ' has been presented in Appendix-A for two representative graphs). The ' a ' values are given in Table 1. The analysis of ' a ' values reveals the following results:
(a) In a heterocyclic system with one heteroatom, the ' a ' value decreases with increasing atomic weight of the heteroatom in N family, when the heteroatom is in the ring.
(b) When the eteroatom is exocyclic, reverse is the case.
(c) When two heteroatoms are present in a heterocyclic system and both the heteroatoms are in the ring, the ' a ' value will vanish for $X=Y$ (graph ii). In case of fixed X and varying Y , the ' a ' value will decrease with increasing atomic weight of Y. But when Y is exocyclic, reverse is the case.
(d) From Eq. 7, we obtain
$\left(\mathrm{X}_{1}-\mathrm{X}_{2}\right)+\left(\mathrm{X}_{-1}-\mathrm{X}_{-2}\right)=2 \mathrm{a}$
Each part of the LHS of Eq. 8 refers to the proximity of the orbitals. Hence, the 'a' value provides an idea of the amalgamation of the orbitals. With decreasing ' a ' values the amalgamation of the orbitals increases leading to a fresh set of orbitals.

A new method has been proposed for the derivation of the CP for the vertex-edge weighted graph. The much celebrated pairing theorem has been extended for the non-bipartite graphs.

Appendix-A

For the graph (ii), the CP can be written as, $\mathrm{CP}=$

$$
X^{4}-\left(h_{1}+h_{2}\right) X^{3}+\left(h_{1} h_{2}-2\left(k_{1}^{2}+k_{2}^{2}\right)\right] X^{2}+\left(2 h_{1} k_{2}^{2}+2 h_{2} k_{1}^{2}\right) X
$$

Using the solution for the cubic equation, one gets $\mathrm{X}_{1}, \mathrm{X}_{-1}$ and X_{2}.

Now, $\mathrm{X}_{1}+\mathrm{X}_{-1}=1 / 2 \sum_{\mathrm{p}} \mathrm{h}_{\mathrm{p}}=\mathrm{a}$
and
$\mathrm{X}_{2}+\mathrm{X}_{-2}=1 / 2 \sum_{\mathrm{p}} \mathrm{h}_{\mathrm{p}}-\mathrm{a}$
or
$\mathrm{X}_{\mathrm{j}}+\mathrm{X}_{\mathrm{n}+1-\mathrm{j}}=1 / 2 \sum_{\mathrm{p}} \mathrm{h}_{\mathrm{p}} \pm$ a where $1 \leq \mathrm{j} \leq \mathrm{n}$.
$|a|=0.1666\left(h_{1}+h_{2}\right)+1.1547 q^{1 / 2} \cos \frac{\pi+\phi}{3}$
$\left.\phi=\cos ^{-1}[3 / \mathrm{q})^{3 / 2} \mathrm{r} / 2\right]$
$\mathrm{q}=\mathrm{h}_{1} \mathrm{~h}_{2}-1 / 3\left(\mathrm{~h}_{1}+\mathrm{h}_{2}\right)^{2}-2\left(\mathrm{k}_{1}^{2}+\mathrm{k}_{2}^{2}\right)$
$\mathrm{r}=2\left(\mathrm{~h}_{1} \mathrm{k}_{2}^{2}+\mathrm{h}_{2} \mathrm{k}_{1}^{2}\right)+(1 / 3)\left(\mathrm{h}_{1}+\mathrm{h}_{2}\right)\left[\mathrm{h}_{1} \mathrm{~h}_{2}-2\left(\mathrm{k}_{1}^{2}+\mathrm{k}_{2}^{2}\right)\right]$
$-(2 / 27)\left(h_{1}+h_{2}\right)^{3}$

For the graph (v), the CP can be expressed as a quartic equation of the following type.

$$
\begin{aligned}
C P= & X^{4}-\left(h_{1}+h_{2}\right) X^{3}+X^{2}\left(h_{1} h_{2}-2 k_{1}^{2}-2 k_{2}^{2} 1\right) \\
& +X\left(h_{1}+h_{2}+h_{1} k_{2}^{2}+2 h_{2} k_{1}^{2}-2 k_{1}^{2}\right)+\left(k_{1}^{2} k_{2}^{2}-h_{1} h_{2}\right)
\end{aligned}
$$

The eigenvalues are paired by the above relation. $|a|$ for this relation is given by,
$|a|=\left[h^{2}-4\left(t-4-k^{2}\right)\right]^{1 / 2} / 2$
with,
$\mathrm{t}=\mathrm{z}+\left(\mathrm{k}^{2}+4\right) / 3$
$z=(2 / \sqrt{ } 3) q_{2}^{1 / 2}[\cos (\Phi / 3)]$
$\Phi=\cos ^{-1}\left(3 / q_{2}\right)^{3 / 2} r_{2} / 2$
$\mathrm{q}_{2}=\left(\mathrm{k}^{4}+32 \mathrm{k}^{2}+12 \mathrm{~h}^{2}+16\right) / 3$
$\mathrm{r}_{2}=\left(-2 \mathrm{k}^{6}+120 \mathrm{k}^{4}+480 \mathrm{k}^{2}+18 \mathrm{~h}^{2} \mathrm{k}^{2}+288 \mathrm{~h}^{2}-128\right) / 27$

Acknowledgement

We thank Prof. M Randic, Drake University, USA for his critical remarks while the paper was in an early stage. We also thank Prof. B.M. Gimarc, University of South Carolina for reading the manuscript before communication. Further, we thank the learned referee for his valuable suggestions and making us aware of a few articles published in this area. One of the authors (SMP) is thankful to the CSIR, New Delhi, India, for the (SRF) position.

References

1 Coulson C A \& Rushbrooke G S, Proc Cambridge Phil Soc, 36 (1940) 193.
2 Cvetković C M, Gutman I \& Trinajstić N, Croat Chem Acta, 49 (1972) 365.
3 Mallion R B, Schwenk A J \& Trinajstić N, in Recent advances in graph theory, edited by M Fiedler (Academic, Prague), 1975, 345.
4 Trinajstić N, Croat Chem Acta, 49 (1977) 593.

5 Coulson C A, Leary B O \& Mallion R B, in Hückel theory for organic chemists (Academic Press, London), 1978, 109.

6 Hess (Jr) B A, Schaad L J \& Holyoke (Jr) C W, Tetrahe dron, 31 (1975) 295.
7 Harary F, in Graph theory (Narosa Publishing House, New Delhi) 1988, 17.
8 Trinajstić N, J math Chem, 2 (1988) 197.
9 (a) Graovac A, Polansky O E, Tyutylkov N N \& Trinajstic N, Z Naturforsch, 30a (1975) 1696.
(b) Rigby M J, Mallion R B \& Day A C, Chem Phys Lett, 51 (1977) 178; 53 (1978) 418.
10 Dias J R, in Molecular orbital calculations using chemical graph theory(Springer-Verlag, Berlin) 1993.
11 Aihara J I, J Am chem Soc, 98 (1976) 6840.
12 Gutman I \& Bosanac S, Chem Phys Lett, 43 (1976) 371.
13 Gutman I, Theoret chim Acta, 50 (1979) 287.
14 Gutman I, Z Naturforsch, 36a (1981) 152.
15 Gutman I, Bull Soc Chim, Beograd, 49 (1984) 157.
16 Gutman I, Z Naturforsch, 39a (1984) 152.
17 Gutman I, Mallion R B \& Rouvray D H, J math Chem, 8 (1991) 355.

18 Gutman I, Theoret chim Acta, 50 (1979) 287.

