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In families of benzenoid isomers, the molecules with maximum (minimum) Kekule structure
counts should possess maximum (minimum) stability and other distinguished properties. Identifying
these extremal isomers turns out to be a difficult task. In this paper we solve such a problem for the
class of isomers B(m,n}, obtained from a benzenoid molecule B by attaching to its two fixed sites
linear polyacene fragments of length m and n; m + n = constant.

The number of Kekule structures (K) is a quan-
tity related to, or even determining, a variety of
chemical and physical properties of. polycyclic
conjugated molecules, especially of benzenoid hy-
drocarbons!". The stabilities (both thermodynam-
ic4,5 and kinetics") of benzenoid molecules are
proportional to their K -values; this fact 1$ reflect-
ed in the K -dependence of various resonance en-
ergies=", total .1f-electron energy'P", HOMO-
LUMO separationiO,I3,I4 and similar theoretical
stability-measures. In particular, within a family of
isomers, the most and least stable compounds are
those corresponding to the greatest and smallest
Kekule structure counts, respectively. Hence, the
identification of these extremal members of
benzenoid-isomer families is a problem with clear
chemical significance. It may sound somewhat
surprising that, in spite of the plethora of results
achieved for Kekule structures of benzenoid sys-
tems 1.2 and in spite of almost half a century of re-
search iri this area, the problem of benzenoid is-
omers with extremal values of the Kekule struc-
ture count was so far hardly addressed with a few
exceptions. (This~roblem was examined and fully
resolved for unbranched catacondensed f benze-
noids":". Also, among benzenoids with a given
number of hexagons, the systems possessing maxi-
mum K were determined'"; these happen to be
hranched catacondensed molecules). In this paper
we report the solution of the problem of extremal
Kekule structure counts for a general class of
benzenoid systems, whose members are repre-
.sented by molecular graphs" of the type B(m,n}.

The structure of B( m, n) is depicted in Fig. 1 .
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Fig: I-The structure of the benzenoid system B(m,n), exa-
mined in this work; for details see text[MJ

B( m, n} is constructed as follows. Let B be an
arbitrary benzenoid system (either peri- or cata-
condensed) and let (p,q) and (r,s) be its two non-
incident edges. We assume that the four vertices
p, q, r, s are of degree two, since, otherwise,
B( m, n) would not correspond to a benzenoid
molecule. Then B(m,n) is obtained by attaching
to the edge (p,q) a linear polyacene fragment con-
sisting of m hexagons, and by attaching to the
edge (r, s) a linear polyacene fragment consisting
of n hexagons. If m = ° or n = 0, then nothing is
attached to (p,q) or (r,s), respectively. In particu-
lar, B(O,O} coincides with B.

In what follows we will examine families of
benzenoid systems B( m, n) in which n + m is
fixed. Evidently, these systems are isomers.

Statement of the Problem
Let n + m = h. Throughout this paper it will be

assumed that h has some fixed value. The var-
iable parameters m and n assume then the values
0, 1, 2, ... , h-1, h and h, h-1, ... , 2, 1, 0,
respectively.

For brevity, the number of Kekule structures of
B(m,n), m+ n= h, will be denoted by K (h,m).
Then K (O,O) is equal to the K-value of the parent
hydrocarbon B. Further, X, Y and Z will denote
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the Kekule structure counts of the subgraphs
B- p- q, B- r- s and B- p- q- r- s, respec-
tively. (As usual 1.2.18,B- p- q is obtained by de-
leting the vertices p and q from B; the meaning
of the symbols B- r- sand B- p- q- r- s is
analogous ).

Using previously elaborated methods1.2·19.2o,the
Kekule structures of B(m,n) are easily enumera-
ted:

K (h,m)=K (0,0)+ mX+ nY+ mnZ
i.e.

K(h,m)=K(O,O)+hY+(X- Y)m+m(h-m)Z
. .. (1)

In order to arrive at Eq. (1), recall!" that the K
value of the Ipolyhex in which a single linear poly-
acene fragment (with m hexagons) is attached to
B is given by K {B} + mK {B- p- q}.

The problem considered in this work is the
finding ~f the greatest and smallest among the
numbers K (h,m), m=O, 1, 2, ... ,h, where
K (h,m) is given by Eq. (1) and where h has a
given, fixed, value. These extremal values will be
denoted by Kmax and Kmin, respectively. The va-
lues of m for which these extrema are achieved
are denoted by mmaxand mmin' respectively.

At the first glance the above specified problem
may look easy, but as the analysis outlined in the
subsequent section shows, its solution happens to
be quite perplexing.

At this point we wish to explain the meaning of
the symbols LxJ and rxl (sometimes referred t021
as "floor" and "ceiling", respectively). These are
frequently encountered in the later parts of this
paper. By LXJis denoted the greatest integer which
is not greater than x; for instance, L1.9j= 1,
L2.0J= 2, L2.1J = 2. By rx1 is denoted the smallest
integer which is not smaller than x; for instance
n .91 = 2, r2.01 = 2, r2.1l = 3.

Identifying the B(m,n.Hsomers with maximum
and minimum K-values

In order to fihd the m-values for which K (h,m)
is maximal and minimal, we have to distinguish
between four cases:

(i) X= YandZ=O
(ii) X= Yand Z> 0
(iii) X~ Yand Z= 0, and
(iv) X~ Yand Z> o.

Without loss of generality, we will assume that
X~ Y. By this assumption, the considerations that
follow are somewhat simplified.
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The analysis of the first three of the above
cases is elementary.

(i): In this case K (h,m) = K (0,0) + h Y and the
Kekule structure count is independent ·of m.
Therefore, mmin= mmax= 0, 1, ... , h. An example
of a B-graph for.which (i) applies is 1 depicted in
Fig. 2.

(ii): In this case K (h,m) = K (0,0) + h Y+
m(h- m) Z. The minimum K-values are achieved
for m=O and m=h: Kmin=K(h,O)=K(h,h). If
h is even, then mmaxis unique and Kmaxis equal
to K (h,h!2). If h is odd, then there are two maxi-
mum K-values, for mmax= Lh!2J and mmax= fh!2l.
System 2 in Fig. 2 is an example for the case (ii) .
Notice that this case is usually encountered when
in the parent molecular graph B the edges (p,q)
and (r,s) are symmetry-equivalent.

(iii): In this case K is an increasing linear func-
tion of m, i.e, K (h,m) = K (0,0) + h Y +
(X - Y) m. Consequently, both mmin and mmixare
unique and Kmin= K (h,O), KmaxK (h,h). One
should recall that, conventionally, the edges (p,q)
and (r,s) of B are selected so that X> Y. For an
example see 3 in Fig. 2.

The examination of case (iv) is somewhat more
complicated. We first transform Eq. (1) into the
form
K(h,m)=[K(O,O)+hy]+[X- Y+hZ] m-Zm2

... (2)

noting that both [K(O,O)+hY] and [X- Y+hZ]
depend on h and that [X - Y+ hZ] is necesarily
positive. If K (h,m) in eq. (2) is considered as a
function of a continuous variable m, then we im-
mediately see that K (h,m) has the form of a con-
cave parabola. The maximum of this parabola is
at m = M, where

1M=-[(X- Y)/Z+ h]
2

... (3)

Evidently, M> h!2.
Two subcases of the case (iv) have to be distin-

guished:
(iv-a) M~ h

(iv-b) h!2<M<h
(iv-a): In this case, for O~ ms: h, K (h,m) is a

monotonously increasing function of m. Conse-
quently, mmin= 0, Kmin= K (h,O); mmax= h,
Kmax= K (h,h). In view of Eq. (3), the condition
M~h is tantamount to (X- Y)tZ~h. Because X,
Y, and Z are constants, subcase (iv-a) can occur
only for some limited values of h. For instance, if
the parent hydrocarbon B is of the form 4 (see
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1 2
X=Y=5, Z=O X~Y=6, Z=3

L.
3 X=lL., Y=3, Z=2

X=6, Y=o, Z=Q

w~~c:C6@
5 6

x=L., Y=3, Z=l x=7, Y=l" Z-4

Fig. 2-Examples of various types of parent benzenoid sys-
tems 8"" 8(0.0) from which the isomers 8(rn,n) are con-
structed by attaching linear polyacene fragments to the sites
indicated by heavy dots; for details see tex~Ml

Fig. 2), then (X- Y)/Z= 5.5 and condition (iv-a) is
obeyed only for h s: 5.

(iv-b): The determination of the minimum K-
value is simple: mm,"= 0, K mill= K (h, 0). The find-
ing of maximum K is somewhat more complica-
ted:

(1) If M is an integer, then mmax= M, Kmax=
K (h,M). Example 5, h= 3, 5,,7, ... (see Fig. 2).

(2) If M is not an integer and
M -LMJ < rM]- M then the maximum is unique
and 111max = [MJ· Examples: 4, h=7, 9,11, ... and 6,
h= 2, 4, 6, ... (see Fig. 2).

(3) If M is not an integer and
M -l.MJ > iMl- M then the maximum is unique
and millax = rMl. Examples: 4, h = 6, R, 10, ... and
6, h= 3,5,7, ... (see Fig. 2).

(4) If M is not integer and M-LMJ=ri\1]-M
then there are two maximal K-values, for
111max = [MJ and 111max = [MJ. Example: 5, h + 2. 4, 6, ...
(see Fig. 2).

For h being sufficiently large, all examples of
type (iv) belong to the subcase (iv-b). For instance,
this happens with the system 4 if h ~ 6. Numerous
henzenoid systems H obey the condition (iv-b] for
all values of h, for example 5 and 6 (see Fig. 2).

Concluding Remarks
In the preceding section we determined, case-

by-case, the extremal values of the Kekule struc-
ture count of H( m, n). The examination of each in-

dividual case was quite simple and required only
elementary mathematical reasoning. What makes
the problem relatively difficult is the unusually
large number of cases which must be treated se-
parately. Yet, systems of the type B(m,n) seem to
pertain to one of the simplest minimax problems
as far as Kekule structures of isomeric benzenoid
hydrocarbons are concerned.

The analogous problem for other types of
henzenoid isomers turns out to he significantly
more perplexing. For instance, if instead of linear
polyacene fragments we attach to H zig-zag
henzenoid chains (with m and n hexagons), then
the corresponding Kekule structure count is given
by

f;II_' F,,-, K (0,0) + F,IIF,,-, X + F,II-' F" Y+ F",f~,Z
... (4)

where F, IS the k-th Fibonacci number
(F;) = F, = 1, F, = 2, F, = 3, F, = 5, F5 = 8, ... ,
Fk=Fk-1 +FA-2). Formula (4) should be com-
pared with Eq. (1 ). The finding of the minima and
maxima of the expression (4) is a hard task.

Further generalizations of the above problem
are straightforward: One may consider a given
"core" benzenoid H, to which one, two (or more)
henzenoids, S, T, ... , are attached. The fragments
S, T, ... may be chosen to be cat a- and/or peri-
condensed benzenoids, subject to some con-
straints (e.g. that the total number of hexagons is
fixed). Chemical sense should be an additional
criterion for deciding which of these numerous
options to pursue.

References
I Cyvin S 1 & Gutman I, Kekule structures in benzenoid

hydrocarbons (Springer-Verlag, Berlin), 1988.
2 Gutman I & Cyvin S J, Introduction of the theory of

benzenoid hydrocarbons (Springer-Verlag, Berlin), 1989.
3 Chen R S. Cyvin S 1. Cyvin B N, Brunvoll 1 & Klein D J.

Topics curr Chem, 153 (1990) 227.
4 Herndon W C, Thermochim Acta, 8 (1974) 225.
S Guttnan I, Trinajstic N & Wilcox C F. Tetrahedron, 31

(1975)143.
6 Wilcox C F, Gutman 1 & Trinajstic N, Tetrahedron, 31

(1975) 147.
7 Biermann D & Schmidt W. J Am chern Soc. 102 (1980)

3163.3173.
s Herndon W C, JAm chem Sac, 95 (1973) 2404.
9 Swinborne-Sheldrake R, Herndon W C & Gutman I, T~

trahedron Leu. (1975) 755.
\() Cioslowski 1 & Polansky 0 E, Theoret chim Acta; 74

(1988) 55.
11 Gutman I, Topics curr Chern, 162 (1992) 29.
12 Gutman I. Markovic S & Hall G G. Chern Phys Leu. 234

(1995)21.
13 Graovac A & Gutman I, Croat chem Acta, 53 (1980) 45.



GUTMAN et aL: KEKUI£STRUCTIJRE COUNT OF BENZENOID ISOMERS

14 EiHeld P & Schmidt W, J Electron Spectr rei Phenom, 24
0'981 nor.

15 Gutman 1 & Cyvin S J, Chern Phys Lett, 147 (I98H) 121.
16 Brunvoll J, Gutman 1 & Cyvin S J, Z phys Chem (LeiJr

1.ig), 270 (1989) 982.
17 Balaban AT. Liu X, Cyvin S J & Klein D J. J chem Inf

Comput Sc;'33 (1993) 429.

457

18 Gutman I & Polansky 0 E, Mathematical concepts ill 01-

ganic chemistry (Springer-Verlag, Berlin), 1986.
19 Gutman I, Croat chem Acta. 55 (19R2) 371.
20 Cyvin S)& Gutman I, J Serb chem Soc. 50 ( 1985) 443.
21 Graham R L, Knuth D E & Patashnik 0, Concrete

mathematics: A foundation for computer science (Addis-
on-Wesley, Reading), 19R9.




