Water soluble mixed-ligand oxovanadium(IV) complexes of acetylacetone and aldimine ligands

Sankar Prasad Rath, Sujit Mondal & Tapas Ghosh* Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Calcutta 700 032

Received 21 June 1995; revised 18 December 1995

Water soluble mixed-ligand oxovanadium(IV) complexes of sulphonated salicylaldimine ligands of α amino acids Na₂HL.H₂O[1, R=H, CH₃, CH(CH₃)₂ and CH₂Ph] and acetylacetone of the formula Na₂[VO(L)(acac)].3H₂O have been synthesized and characterized by IR, UV/VIS, EPR, magnetic moments and redox behaviour. The coordination sphere of the complexes are of the type VO(ONO)(OO), where O atoms are phenolic, carboxylic, ketonic and enolic type and N is of azomethine type. The complexes are one electron paramagnetic and show 1:2 electrolytic conductivity. The complexes display irreversible one electron oxidation peaks in H₂O in the range 0.46-0.55 V vs SCE.

Tridentate ONO donor schiff bases derived from salicylaldehyde and amino acids have good affinity for oxovanadium $(IV/V)^{1-5}$. The complexes are usually soluble in organic solvents but water soluble species are rare⁶. Herein we report a group of water soluble oxovanadium(IV) complexes incorporating the schiff base of sodium salicylaldehyde-5-sulphonate and α -amino acids. I (Na₂-HL, where H refers to dissociable phenolic proton). Acetylacetone (Hacac) is utilized as the coligand. Complexes of the type Na₂[VO(L)(acac)].3H₂O have been isolated and characterized. Their spectra (IR, UV/VIS and EPR), conductance, magnetism and redox behaviour are discussed.

Experimental

Commercially available VOSO₄.5H₂O, salicy-

laldehyde, glycine, L(-), α -alanine, L(-)valine and L(-) phenylalanine were used as received. $[VO(acac)_2]^7$ and sodium salicylaldehyde-5-sulphonate monohydrate were prepared as reported⁸. All other chemicals and solvents were of AR grade and were used as such.

Electronic spectra were recorded on a Hitachi 330 spectrophotometer, infrared spectra on a Perkin Elmer 783 spectrophotometer and EPR spectra in the X-band on varian E-109C spectrometer equipped with a quartz Dewar flask for low-temperature (77 K) measurements. For the measurement of room temperature EPR spectra in aqueous solution, a flat cell was used. Diphenylpicrylhydrazyl (dpph) (g=2.0037) was used to calibrate the spectra. Magnetic susceptibilities were measured using a PAR model 155 Vibrating-Sample magnetometer fitted with Walker Scientific L75 FBAL magnet. Electrochemical measurements were performed on a PAR model, 370-4 electrochemistry system following the reported procedure⁹. All potentials reported in this work were uncorrected for junction contribution. Solution conductivities were measured with Systronics PR 304 bridge. A Perkin Elmer 240C elemental analyser was used for microanalytical data.

Synthesis of the ligands

The four schiff base ligands used in this work are of the type Na₂HL (I) containing different R groups $[R=H, CH_3, CH(CH_3)_2$ and $CH_2Ph]$. All the ligands were prepared by the same general method. Details are given for one representative case only.

Sodium N-5-sulphonato salicylidene glycinate monohydrate, $Na_2HL^1.H_2O(R=H)$

To a methanolic (20 cm^3) solution of NaOH (256 mg, 6.4 mmol), glycine (480 mg, 6.4 mmol) was added while stirring at room temperature. Then 1.55 g (6.4 mmol) sodium salicylaldehyde-5-sulphonate monohydrate was added and the mixture stirred at room temperature. After 10 min, a canary yellow precipitate appeared which was filtered after stirring the mixture for another 1¹/₂ h, washed with cold methanol and dried over P₄O₁₀ for 48 h. Yield: 71% [Found: C, 33.56; H, 2.78; N, 4.37; Reqd. for C₉H₉O₇SNa₂ : C, 33.64; H, 2.80; N, 4.36%]. The yields with other amino acids are within the same range.

	Table 1—Analytical and physical data of vanadium complexes						
	Complex (yield %)	Found (Calcd). %			μ_{eff} (BM)	Λ_{M} Ω^{-1} cm ² mol ⁻¹	$E^{\mathrm{a}}_{\mathit{pa}}, \mathrm{V}$
		С	н	/ N	. ,		
$Na_2[VO(L^1)]$	(acac)].3H ₂ O (85)	32.25(32.18)	3.68(3.64)	2.69(2.68)	1.66	218	0.55
$Na_2[VO(L^2)]$	$(acac)].3H_2O(92)$	33 52(33.58)	3.89(3.92)	2.60(2.61)	1.66	189	0.54
$Na_2[VO(L^3)]$	(acac)].3H ₂ O(89)	36.22(36.17)	4.40(4.43)	2.49(2.48)	1.69	190	0.53
$Na_2[VO(L^4)]$	(acac)].3H ₂ O(86)	41.22(41.18)	4.07(4.08)	2.29(2.29)	1.72	197	0.46
^a In water: w reference el	orking electrode is plat ectrode is SCE; support	inum; ting electrolyte is KC	l.				

Synthesis of the complexes

The four complexes reported in this work are of the type $Na_2[VO(L)(acac)].3H_2O$ and were prepared by the same general method. Details are given for one representative case only.

Sodium(acetylacetonato)(N-5-sulphonato salicylidene/glycinato)oxo-vanadium(IV)trihydrate, Na₂[VO(L¹)(acac)].3H₂O

To a methanolic (20 cm^3) suspension of Na₂HL¹.H₂O (229 mg, 0.71 mmol), methanolic solution (10 cm^3) of VO(acac)₂ (210 mg, 0.79 mmol) was added dropwise with constant stirring at room temperature. After 20 min, a clear yellowish-green solution was obtained. After stirring the solution for another 2 h, the solvent was vacuum evaporated and then washed thoroughly with acetone and dried over P₄O₁₀ for 24 h.

Results and discussion

Four sulphonated salicylaldimine ligands $Na_2HL^1-Na_2HL^4$ (general abbreviation Na_2HL) have been used in the present work. Acetylacetone (Hacac) is used as coligand. Upon treating a methanolic solution of VO(acac)₂ with an equimolar mixture of $Na_2HL.H_2O$, facile displacement of one acaction occurs with the incorporation of schiff base ligand forming a yellowish-green 1:2 electrolytic species. The reaction can be represented as follows:

 $VO(acac)_2 + Na_2HL \rightarrow Na_2[VO(L)(acac)] + acacH$

The analytical and physical data are presented in Table 1. All the species display the expected solution conductivities¹⁰ in water for 1:2 electrolyte and have magnetic moments corresponding to one unpaired electron.

The complexes display strong V=O frequencies in the region 940-955 cm⁻¹ which is compatible with six-coordination^{11,12}. The schiff base nature of the ligand is confirmed by the appearance of a band at 1630 cm⁻¹ associated to C=N group. The band at 1650 cm⁻¹ is characteristic of bonded CO₂⁻ moiety. The $v_{C=O}$ band of acetylacetone expected¹³ near 1580 cm⁻¹ could not be identified unambiguously due to the presence of other strong bands in the same region. The band at 540-570 cm⁻¹ is assigned to V-O (aryl) and those at 440-450 cm⁻¹ to the V-O(carboxyl)¹⁴. The broad water band in the region 3400-3500 cm⁻¹ shows that there is no water coordinated to vanadium which should appear at longer wavelength.

Inspite of our best efforts, none of the complexes afforded crystals suitable for X-ray work. However, the meridional tridentate binding of α arnino acid schiff bases of salicylaldehyde have been documented in several instances by X-ray crystallography³⁻⁵. The bidentate binding of acac⁻ to oxovanadium is also well established¹⁵. On the basis of above assumption, the most logical structure of the present family of complexes is as shown in Structure II.

All the complexes display two ligand field transitions¹⁶, one at 820 and another in the region 550-560 nm. Strong absorptions at higher energies preclude observation of other possible ligand field transitions. A medium intensity band near 360 nm in the complexes corresponds to a $\pi \rightarrow \pi^*$ transition of salicylaldimine chromophore. All the complexes are EPR-active displaying characteristic eight-line pattern due to hyperfine splitting by ⁵¹V (I=7/2) at room temperature ($g_{av} = 1.971$ and $A_{av} = 99-100$ G in water).

At 77 K in 1:2 water-ethylene glycol mixture, axially anisotropic spectra are observed with $g_{\parallel} < g_{\perp}$ and $A_{\parallel} \ge A_{\perp}$. Some of the pertinent values of EPR spectral data of Na₂[VO(L)(acac)]. 3H₂O [where R = H, CH₃, CH(CH₃)₂ and CH₂Ph in L] complexes are for R = H: $g_{\parallel}(A_{\parallel}/G)$ 1.950 (176.6); $g_{\perp}(A_{\perp}/G)$ 1.982(62.4); $g_{av}(A_{av}/G)$ 1.971(100.5); for R = CH₃: $g_{\parallel}(A_{\parallel}/G)$ 1.950 (182.6): $g_{\perp}(A_{\perp}/G)$ 1.981 (62.1); $g_{av}(A_{av}/G)$ 1.971(102.3); for $|R = Ch(CH_3)_2$: $g_{\perp}(A_{\perp}/G)$ 1.953(183.6); $g_{\perp}(A_{\perp}/G)$ 1.981(64.0); $g_{av}(A_{av}/G)$

528

1.972(103.9); and for $R = CH_2Ph : g_{\parallel}(A_{\parallel}/G)$ 1.950 (181-0); $G_{\perp}(A_{\perp}/G)$ 1.980 (63.3); $g_{av}(A_{av}/G)$ 1.970 (102.5), where $g_{av} = 1/3$ [$2g_{\perp} + g_{\parallel}$] and $A_{av} = 1/3$ [$2A_{\perp} + A_{\parallel}$]. This is usual for VO²⁺ complexes (axially compressed d_{xy}^1 configuration)^{15,17,18}.

The redox behaviour of all the complexes was electrochemically examined in aqueous solution at Pt electrode. The complexes uniformly exhibit one-electron irreversible oxidation peak in water:

 $[VO^{V}(L)(acac)]^{2-} \longrightarrow [VO^{V}(L)(acac)]^{-} + e$. The oxovanadium(V) complexes so formed are unstable. The anodic peak potentials, E_{pa} are listed in Table 1. The E_{pa} values span in the range 0.46-0.55 V vs. SCE.

Acknowledgement

We are thankful to Prof. A Chakravorty for providing facilities and useful discussions. Financial support from the DST and CSIR, New Delhi, is acknowledged.

References

- 1 Theriot L J, Carlisle G O & Hu H J, J inorg nucl Chem, 31 (1969) 2841.
- 2 Hamalainen R & Turpeinen U, Acta Crystallogr, C41(1985) 1726.

- 3 Nakajima K, Kojima M, Toriumi K, Saito K & Fujita J, Bull chem Soc Japan, 62 (1989) 760.
- 4 Cavaco I, Pessoa J C, Cosa D, Duarte M T, Gillard R D & Matias P, J chem Soç, Dalton Trans, (1994) 149.
- 5 Mondal S, Dutta S & Chakravorty A, J chem Soc, Dalton Trans, (1995) 1115.
- 6 Evans D F & Missen P H, J chem Soc, Dalton Trans, (1987) 1279.
- 7 Rowe R A & Jones M M, Inorg Synth, 5 (1957).113.
- 8 Botsivali M, Evans D F, Missen P H & Upton M W, J chem Soc, Dalton Trans, (1985) 1147.
- 9 Chandra S K, Basu P, Ray D, Pal S & Chakravorty A, Inorg Chem, 29 (1990) 2423.
- 10 Dutta R L, Inorganic Chemistry-Part II: Chemical Elements & their compounds (The New Book Stall, Calcutta) 1981, p 385.
- 11 Carrano C J & Bonadies J A, J Am chem Soc, 108 (1986) 4088.
- 12 Chakravarty J, Dutta S, Dey A & Chakravorty A, J chem Soc, Dalton Trans, (1994) 557.
- 13 Caira M R, Haigh J M & Nassimbeni L R, J inorg nucl Chem, 34 (1972) 3171.
- 14 Pessoa J C, Silva J A L, Vieira A L, Vilas-Boas L, Brien P O & Thornton P, J chem Soc, Dalton Trans, (1992) 1745.
- 15 Cornman C R, Kampf J, Lah M S & Pecoraro V L, Inorg Chem, 31 (1992) 2035.
- 16 Ballhausen C J & Gray H B, Inorg Chem, 1 (1962) 111.
- 17 Basu P, Pal S & Chakravorty A, J chem Soc, Dalton Trans, (1991) 3217.
- 18 Hausan G R, Kabanos T A, Keramidas A D, Mentzafos D & Terzis A, Inorg Chem, 31 (1992) 2587.