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The limited Frank’s chiral amplification model
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Frank’s law of mass action-based model of chiral amplification is modified so as to avoid the un-
limited increase in the concentration of one enantiomer. The basic features of this limited Frank
model could be established without knowing the actual form of the solution of the respective system
of differential equations. The model predicts two distinct time-evolutions of the system, one leading
to complete monochirality and the other resulting in a racemic final state. The conditions for each of
the two possible terminations of the process are established; they depend on the ratio of two certain
rate constants and are independent of the initial composition of the system.

In 1953 Frank! proposed a simple kinetic scheme
by which an almost racemic mixture (containing
only a minute excess of a chiral molecule L over
its enantiomer p) could spontaneously transform
into a monochiral state (in which only the L form
is present whereas the p species has completely
vanished). By this he offered a possible and plaus-
ible solution of the long-existing problem of how
monochirality of the biomolecules in the modern
terrestrial life forms could have evolved from the
racemic “primordial soup”?3. Although Frank’s
model is only one of the several approaches put
forward to rationalize the origin of the chirality of
biomolecules (see refs 2-10 and the works quoted
therein), it attracted and still attracts the attention
of quite a few researchers (ref. 11 and the papers
quoted therein). The importance of the Frank me-
chanism became clear after the discovery of the
nonequivalence of the two enantiomeric forms of
a molecule, caused by parity-violating effects in
weak interactions. The slight thermodynamic bias
in favour of one enantiomer, the so-called “parity-
violating energy difference” (PVED)!213 could ex-
plain the small initial deviation from racemity, re-
quired for the success of Frank’s chiral amplifica-
tion mechanism!#!*. In connection with this, the
recently found examples of chiral biomolecules
with exoeptionally large PVEDs!®!7 might be of
particular importance.

The Frank model assumes that the enantiomers
L and D are capable of self-replication, cf. (a’) and
(a”). Although only a few years ago the existence
of such chemical reactions seemed to be quite im-
probable’®, self-replicating molecules were recent-
ly obtained in laboratory'*2’. Hence, an experi-
mental realization of a Frank-type chiral amplifi-

cation process may be expected in the foreseen
future.

The Frank model consists of the chemical reac-
tions (@', @” and B) occurring in a homogeneous
solution:
L+A~2L
D+A-2p
L+ D - precipitate

Applying to (a) and (f) the law of mass action
and assuming that the concentration of the achiral
species A is time-independent, the time-evolution
of the concentrations #n; and nj of the enantio-
mers L and D is described by the differential equ-
ations (1a)and (1b) ~

dny/dt=k n.—k,n_np ...(1a)
an/dt=k1 nD_kannD ...(lb)
with the initial conditions n =n;, and ny= np,
for t=0. Without loss of generality, throughout
this paper we will assume that n; > npg.

Equations (1a) and (1b) are readily solved'. The
fundamental property of the solution is that if
n,—npe>0, then n;, exponentially increases
whereas nyp,, exponentially decreases with increas-
ing ¢ Consequently, no matter how small is the
initial excess of [L] over [D], the system will even-
tually become monochiral. Whereas for t— «, nj
vanishes, n; unboundedly increases. This latter
feature of the Frank model is clearly unrealistic.
In order to avoid it we have extended the Frank
model with an additional pair of enantiomeric
reactions;

L+ L~ precipitate
D + D - precipitate
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Then instead of Eq. (1) we have
dnL/dt=k nL—kannD_k3n]2_
an/dt= 1nD_k2nLnD—k3n12) . (2b)

The solyitions of Eq. (2) cannot unboundedly
increase. Namely, for sufficiently large n;| the
right-hand|side of (2a) will necessarily becomge ne-
gative-valued. Hence, if n, is large, it must be a
decreasing function of ¢ In other words, the func-
(#)issbounded from above.
e conclusion is, of course, applicable
also to the function 7, = np (#).

In view pf the above, we call the kinetic scheme
consisting [of the chemical reactions (a), (8) and
(y) the “limmited Frank model”. Its time-evolution
is described by the system of differential | equ-
ations (2a)jand (2b).

Some properties of the limited Frank model

The finding of the functions ny (#) and np
tisfying the differential equations (2a and 2b)
seems to be a hard task. In what follows, how-
ever, we show that all the important properties of
these fundtions can be deduced without knowing
their actudl analytical forms.

As usudl in chemical kinetics (see, for insfance,
e system (2) is simplified by introducing
the auxiliary dimensionless functions x=x(1) and

1) sa-

dx/dr=x+xy — gx* .(3a)

dy/dr=y - xy - gy’ (3b)

where

g=ki/k; .(4)
We haye already demonstrated the validity of

property 1.

Property {1 —For all values of 7, 0< 7<%, the

functions [x( 7) and y(7) are bounded from aboye.
From Kqs (3a and 3b) we immediately sge the
following| If for a given fixed value of the variable
7, we knpw the values of the functions x and vy,
then we |can compute the values of ax/dr and
dy/dr. Then from the known values of x, y,| dx/dt
and dy/dr we can compute d’x/dv* and dty/dv.
By continuing this argument we see that all deriv-
atives of |the functions x and y exist and are un-
iquely defermined by x and y.
nsequence of the above, if for 3 given
value of | 7, x=y, then d*x/dr*=d'y/dz* for all
(k=1,2,...). On the other hand, if for a
e of 7 all the respective derivatives of
ical) functions x(r) and y(7) are|equal,

—_—

..l (2a)-
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then these functions coincide for all values of t,
ie,x(1)=y(7).

Conversely, if for a given value of 7, x>y, then
for all values of 7, x>y. In other words: the func-
tions x and y can never cross. Because the basic
assumption of the Frank model is that at the in-
itial moment there is a slight excess of one enan-
tiomer over the other (conventionally, of L over
D), we arrive at property 2.

Property 2—For all values of 7, 0< < ®, x(7)>
y(7).

Suppose that for a given fixed value of 7 both
x(7) and y(7) have very small (but positive) values,
then the right-hand sides of Eqs (3a) and (3b) are
necessarily positive-valued, ie., x and y are in-
creasing functions of 7. We thus obtain property
3.

Property 3—The functions x(7) and y() cannot si-
multaneously vanish. In particular, it is not possi-
ble to have both x>0 and y ~ 0 when 7— .

From property 1 it follows that for 7— %, both
x(7) and y(7) have finite limit values. These limits
are obtained by solving the equations dx/dr=0
and dy/dr=0. Using Eqs (3a and 3b) and bearing
in mind property 3, we thus obtain property 4.

Property 4—Let g#1. Then for 7 we have
either (A) or (B):

(A)x—~1/gandy—0
(B)x—~1/(1+g)andy—1/(1+g).

In connection with properties 3 and 4 it should
be noted that the limit 7— © is just a mathemati-
cal convenience. What we actually are interested
in is the behaviour of the system when sufficient
time has elapsed after the initial moment. As seen
from Figs 1 and 2 the Frank system may practi-
cally reach its limit state quite soon after the start
of the reactions.

In the subsequent section it is shown that the
case g=1 is exceptional, since, then the limited
Frank model suddenly jumps from the evolution
mode (A) to the evolution mode (B). Therefore
the case g =1 is studied separately.

The two evolution modes of the limited Frank

model and their dependence on the parameter g
From property 4 we see that the limited Frank

model has precisely two modes of evolution:

(A)—resulting in a complete L-monochirality, and

(B)—resulting in a fully racemic final state. We

now establish the conditions needed for A and B.
Equations (3a and 3b) are rewritten as

dx/x=(1-y—gx)drand dy/y=(1—-x—gy)dr.
Integration of these expressions yields
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Fig. 1—~The time-evolution of the limited Frank model for

g <1; the curves x1,y1, x2,y2, x3,y3 and x4,y4 correspond to

g=0.5, 0.7, 0.8 and 0.9, respectively; in all the cases the in-
itial values of x and y are 0.5 and 0.499, respectively
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Fig. 2—The time-evolution of the limited Frank model for
g>1; the pairs of curves 1, 2, 3 and 4 (x above, y below)
correspond to g=1.5, 3, 5 and 10, respectively; in all the
cases the initial values of x and y are 0.4 and 0.3, respectively

In(x/xo)= (1 -y=gx)dr and
[1]

In(y/yo)=[(1—x—gy)dr
0

from which

X/Y=(xo/Yo)exP[(1 -g { (x—y)dr} ...(5)

Because of the property 2, x—y is positive for

all values of 7. Consequently, the integral [(x—y)dz
[}

is necessarily positive-valued. When 7— 0, this
integral either tends to a finite constant C or be-
comes infinite.

If [ (x—y)dvis finite, then for 7—» © the func-
0
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tions x(7) and y(7) must become asymptotically

Consider first the case when the parameter g is
less than unity.

Suppose that for ¢— o, [(x—y)dr~C<w,
0

Then the limit value of the right-hahd side of
Eq.(5) is equal to (xo/y,) exp[(1—g)C]. Because
both (x,/v,) and exp[(1—g)C] are greater than
unity, it follows that lim(x/y)>1.On the other

Ll

hand, the finiteness of the integral [ (x—y)dr
0

implies that im(x —y)=0, i, lim(x/y)=1, a con-

tradiction. Hence, it must be [ (x—y)dr= .
]
If g<1 and [ (x—y)dr=, then for 7— =, the
0

right-hand side of Eq. (5) tends to infinity. Conse-
quently, lim{x/y)= . Bearing in mind property

L and

4, we see this latter limit value occurs only in the
case (A).
Thus we conclude that the evolution mode (A)
occurs if g<1. Consider now the case when the
parameter g is greater than unity.

Suppose that for -, [(x—y)dr— . Then
A

the right-hand side of Eq. (5) tends to zero. Con-
sequently, x/y—~0. This, however, is impossible,
because by property 2, x/y cannot be less than
one.

©0

Therefore, if g>1, it must be [ (x—y)dr=
0

C< . Then, however, x(7) and y(7) become
asymptotically equal for 7— . Bearing in mind
property 4, we see that this can occur only in the
case (B).
Thus we conclude that the evolution mode (B)
occurs if g> 1. By this we arrived at our main re-
sult, i.e., property 5.
Property 5—The limited Frank mechanism leads
to chiral amplification if, and only if the parame-
ter g [given by Eq. (4)] is less than unity. If g<1,
then the final state is (fully) monochiral. If g> 1,
then the final state is (fully) racemic.
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Fig. 3—The [time-evolution of the limited Frank modgl for
g=1; the initfal values of x and y are (.4 and 0.3, respegtively

The initjal composition of the system (i.e) the
values of h;, and np,) as well as the numerical
values of the rate constants k,, k, and k; (except
the ratio K,/k,) have no influence of the type of
time-evolution of the system.

If g<1, then the direction of the chiral amplifi-
cation is fplly determined by the difference be-
tween n;, and np, (L-monochirality is achieved if
ny, > np, and vice versa).

We see that the basic features of the original
Frank model are preserved in its limited version,
are
less efficient than the reaction (8) of the mutual
destruction| of the enantiomers. Otherwise, no chi-

The disgussion in the previous section reyeals
that when jthe parameter g is equal to unity, the
k model has a specific behaviour. In
view of prpperty 5, g=1 can be considered|as a
critical point of the Frank mechanism. If the yalue
of g 1s mopotonically varied from less than pnity
to greater| than unity, then at g=1 a sufden
change in jthe type of the time-evolution cf the
system is gbserved. This is illustrated in Figs|1, 2
and 3. In these figures (especially in Figs 2 and 3)
the initial yalues for the difference x—y are ¢hos-
en to be uprealistically large (since otherwis¢ the
curves x(7) and y(7) would lie too close to leach
other).

When g# 1, the solution of the limited Rrank
model is not difficult. First of all, from Eq. (3) we
immediately obtain

X/V=Xy/ygie, n /ny= Ry / Ny

Hence, when g=1, the ratio of the concentrations
of the two enantiomers is time-independent. Be-
cause the initial composition of the system is as-
sumed to only slightly deviate from racemity, we
see that the system will always remain almost ra-
cemic.

For g=1 Eqs (3a and 3b) can be rewritten as

d(x+y)/dr=(x+y)—(x+y)? ...(6a)

d(x—y)dr=(x—y)—(x—yXx+y) . (6b)
This makes it possible to find (x+y) from (6a)
and using this solution to fina (x—y) from (6b). A
tedious, but eiementary calculation yields:

NgmJo_.____expld
Xo+Yo exp(7)—[1-1/(xo+Yo)
y(z)=—Yo_. exp(7)

=x0+y0 exp(7)—[1—1/(x¢+y,)]

Note that for x—xy/(xo+y,) and
y=yo/(Xo+Yo)- Only in the special case of g=1,
the limit values of x(7) and y(7) depend on the in-
itial composition of the system.

T 0,
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