Indian Journal of Chemistry Vol. 37A, April 1998, pp.308 - 315

Thermodynamical investigations of some non-electrolytic ternary mixtures

K.C. Kalra*, V.K. Sharma & Ashma Katoch

Department of Chemistry, Maharshi Dayanand University,

Rohtak 124 001, India

Received 16 December 1996; revised 19 May 1997

Molar excess volume, V_{ijk}^E and molar excess enthalpies H_{ijk}^E of various nitrobenzene (i) + benzene (j) + toluene (k) nitrobenzene (i) + benzene (j) + o- xylene (k) and nitrobenzene (i) + benzene (j) + p-xylene (k) ternary mixtures have been measured as a function of composition at 298.15 K. The observed data have been analysed in terms of i) Graph theory, ii) Sanchez and Lacombe and iii) Flory's theories. The calculated X_{ijk}^E values (X = V or H) by Graph and Flory's theories compare well with their corresponding experimental values.

Recent studies have revealed¹⁻⁴ that excess thermodynamic functions of a multicomponent system (i+j+k) can be evaluated from the corresponding data of (i+j), (j+k) and (i+k) binary mixtures. We report here molar excess volumes and molar excess enthalpies of nitrobenzene (i) + benzene (j) + toluene (k); nitrobenzene (i) + benzene (j) + o-xylene (k) and nitrobenzene (i) + benzene (j) + p - xylene (k) ternary mixtures at 298.15K.

Meterials and Methods

Nitrobenzene (NB), benzene, toluene, o and pxylenes (AR grade) were purified by standard methods⁵⁻⁶ and their purities checked by measuring their densities at 298.15 ± 0.01K and these agreed to within ± 5×10⁻⁵ gm cm⁻³ with their corresponding literature⁷ values.

Molar excess volumes, V_{ijk}^E , for (i+j+k) mixtures were measured by means of a dilatometer as described elsewhere⁸ The uncertainty in the measured V^E values is $\pm 0.5^{6}a$

Molar excess enthalpies H_{ijk}^E , for the ternary mixtures were measured in a flow microcalorimeter (LKB, Broma, Sweden) in the manner described elsewhere³. The uncertainty in the measured H_{ijk}^E values is about 1%

Results

X

Molar excess volumes, V_{ijk}^{E} and molar excess enthalpies, H_{ijk}^{E} , for various ternary (NB(i) + benzene (j) + toluene or + o-xylene or + p-xylene (k) mixtures as a function of composition at 298.15K are recorded in Table 1 and were expressed⁹ as

$$\begin{split} i_{ijk} \left(X = V \text{ or } H \right) &= \begin{bmatrix} x_i x_j \left[\sum_{n=0}^{2} X_{ij}(n) \left(x_i - x_j \right)^n \right] + \\ x_j x_k \left[\sum_{n=0}^{2} X_{jk}(n) \left(x_j - x_k \right)^n \right] + \\ x_k x_i \left[\sum_{n=0}^{2} X_{ki}(n) \left(x_k - x_i \right)^n \right] + \\ x_i x_j x_k \left[\sum_{n=0}^{2} X_{ijk}(n) \left(x_j - x_k \right)^n x_i^n \right] \end{bmatrix} \end{split}$$

where x_i and x_j are the mole fractions of the ith and jth components in the (i+j+k) mixture and X_{ijk} (n=0-2) etc. are the parameters characteristic of the ternary mixture. The parameters for X_{ij} ⁽ⁿ⁾, X_{jk} ⁽ⁿ⁾ and X_{ki} ⁽ⁿ⁾ for various binary mixtures were taken from literture^{1.2.10} The parameters, X_{ijk} ⁽ⁿ⁾ in Eq. (1) were ev; ated by fitting χ^E_{ijk} data to

$$\begin{aligned} & \left[X_{ijk}^{\mathcal{E}} (X = V \text{ or } H) - x_i x_j \left[\sum_{n=0}^{2} X_{ij}(n) (x_i - x_j)^n \right] - x_j x_k \left[\sum_{n=0}^{2} X_{jk}(n) (x_j - x_k)^n \right] - x_k x_i \left[\sum_{n=0}^{2} X_{ki}(n) (x_i - x_k)^n \right] - x_k x_i \left[\sum_{n=0}^{2} X_{ki}(n) (x_i - x_k) ($$

by a least squares method and are recorded together with the standard deviation, $\sigma(X^{E}_{ijk})$ defined by

$$\sigma[X_{ijk}^{E} (X = V \text{ or } H) = \sum_{\{X_{ijk}^{E} (\text{exptl}) - X_{ijk}^{E} (\text{calc Eq. 1})\}^{2} / (m-n)]^{0.5} \dots (3)$$

where X^{E}_{ijk} (calcd using Eq.1) are the values evaluated from Eq. (1); m is number of data points and n is the number of adjustable parameters in Eq. (1), in Tables 1 and 2. The choice of n to have 0-2 or 3 values was dictated by consideration that the maximum deviation $\sigma_{m} (X^{E}_{ijk}) \text{ of } X^{E}_{ijk} (X = V \text{ or } H)$ satisfies the relation $\sigma_{m} (X^{E}_{ijk}) \leq 2\sigma (X^{E}_{ijk})$.

Discussion

There are no literature values of V^E and H^E for the studied ternary mixtures with which to compare our results: V^E_{ijk} values for NB (i) + benzene (j) + toluene (k) and NB (i) + benzene (j) + o-xylene (k) mixtures are negative over the whole composition range; however sign of V^E_{ijk} values for NB (i) benzene (j) + p-xylene (k) mixtures are dictated by the relative proportion of components in the mixture. H^E_{ijk} values for all these mixtures are positive over the entire range of composition.

The more negative values of V^E_{ijk} for NB (i) + benzene (j) + toluene (k) than NB (i) + benzene (j) + o- xylene (k) or NB (i) + benzene (j) + p-xylene (k) mixtures suggest that addition of toluene to NB (i) + benzene (j) mixture favours more compact structure as compared to the addition of o- or p-xylene. This is due to the two-CH₃ groups of xylenes which hinder the approach of xylene molecules to the NB (i) + benzene (j) mixture.

The V^E_{ijk} and H^E_{ijk} data for these mixtures are analysed in terms of Graph theory.

Conceptual aspect of the Graph approach and results

If NB (i), in the pure state exists as associated entity, then NB (i) + benzene or + toluene or + xylene (j) binary mixture formation may be assumed¹⁰ to involve (i) the establishment of $i_n - j$ contact between i and j, (ii) the unlike contact formation between $i_n - j$ would then cause depolymerization of i_n to yield monomer and (iii) monomers of i and j form i:j molecular entity. Consequently the overall change in the molar property (X = V or H) due to processes (i) - (iii) were expressed¹⁰ by

$$\chi^{e} = [(x_{i} x_{j} v_{j})/\Sigma x_{i} v_{i}] [\chi_{ij} + x_{j} \chi_{ii} + x_{j} \chi_{12}] \qquad \dots (4)$$

where χ_{ij} and χ_{12} are the molar volume or enthalpy interaction parameters of unlike i-j contact formation and specific interaction. The basic arguments in deriving Eq. (4) were justified¹⁰, as the X^{E} data of the various (i+j) mixtures were reproduced by the χ_{ij} and χ_{12} parameters (evaluated from H^{E} data at $x_i = 0.4$ and 0.5 for NB (i) + benzene, + toluene or + xylene binary mixtures). Thus the analysis of (i+j) mixtures suggests that these mixtures are characterised by the presence of 1:1 molecular entity, also the depolymerization of i contributes to measured X^{E} data.

If toluene or *o*-xylene or *p*-xylene (k) is added to NB (i), then ternary (i+j+k) mixture formation would involve (i) formation of (a) i_n -j, (b) j-k and (c) i_n -k contacts between i_n , j and k components of (i+j+k) mixture, (ii) the unlike contact formation between i_n -j and i_n -k would then cause depolymerization of i_n to yield monomers of i and (iii) the monomers of i then undergo specific interaction to yield i-j, j-k or i-k molecular entity. Consequently, if, χ'_{ij} , χ'_{jk} and χ'_{ik} are the molar interaction energies of unlike contact i_n -j, j-k and i_n - k, then change in molar X (V or H) property due to process (i) a,b,c would be given ^{11,12} by

$$\Delta X_1 = x_i \chi_{ij} S_j + x_j \chi_{jk} S_k + x_k \chi_{ik} S_j$$
(5)

$$\Delta X_{i} = [(x_{i} x_{j} V_{j})/\Sigma x_{i} V_{i}] [\chi_{ij} * \chi_{jk} + \chi_{ki}] \qquad \dots (6)$$

where Si etc. are defined by

 $S_i = x_i v_i / \sum x_i v_i$

Further if χ'_{ii} and χ_{12} , χ'_{12} , χ''_{12} , are the molar interaction energies i-i and specific interaction (leading to the formation of i:j, j:k and i:k molecular entities) then change in molar volume due to processes (ii) and (iii) is given¹³ by Eqs (7-10).

$$\Delta X_2 = (x_i^2 x_j V_j \chi_{ii}) / \Sigma x_i v_i \qquad \dots (7)$$

$$\Delta X_3 = (x_i x_j^2 V_j \chi_{12}) / \Sigma x_i v_i$$
(8)

$$\Delta X_4 = (x_j x_k^{-1} V_k \chi_{12}) / \Sigma x_i v_i$$
(9)

$$\Delta X_5 = (x_k x_i^2 V_i \chi_{12}) / \Sigma x_i v_i \qquad \dots (10).$$

The overall change in thermodynamic property due to processes (i) (a,b,c), (ii) and (iii) would be expressed by Eq. (11)

$$\chi^{E} = \begin{bmatrix} (x_{i}, x_{j}, V_{j}) / \Sigma x_{i} V_{i}] [\chi_{ij} + x_{i} \chi_{1i} + x_{j} \chi_{12}] + \\ [(x_{j}, x_{k}, V_{k}) / \Sigma x_{i} V_{i}] [\chi_{jk} + x_{k} \chi_{12}] + \\ [(x_{i}, x_{k}, V_{j}) / \Sigma x_{i} V_{j}] [\chi_{ik} + x_{i} \chi_{12}] \end{bmatrix}$$
 ...(11)

since $v_i/v_j = {}^3\xi_j/{}^3\xi_i$ where ${}^3\xi_i$ etc. are the connectivity parameter of the third degree of pure i etc. and is defined 14 by Eq. (12)

$${}^{3}\xi = \sum_{m:m:o\circ c_{p}} \left(\delta_{m}^{\nu} \delta_{n}^{\nu} \delta_{o}^{\nu} \delta_{p}^{\nu} \right)^{0.5} \qquad \dots (12)$$

where δ_m^{o} reflects explicitly the valency of the mth vertex in the molecular graph, and is related to the

maximum valency, Z_m , and number of hydrogen atoms, h_m attached to mth vertex by $\delta^m = Z_m-h_m$. Equation (11) then reduces to Eq. (13)

$$\begin{aligned} \chi^{E} &= \left[\{x_{i} x_{j} \left({}^{3} \xi_{i} / {}^{3} \xi_{j} \right) \} / \{x_{i} + x_{j} \left({}^{3} \xi_{j} / {}^{3} \xi_{j} \right) \} \right] \left[\chi_{ij} + x_{i} \chi_{ij} + x_{j} \chi_{12} \right] \\ &+ \left[\{x_{j} x_{k} \left({}^{3} \xi_{j} / {}^{3} \xi_{k} \right) \} / \{x_{j} + x_{k} \left({}^{3} \xi_{j} / {}^{3} \xi_{k} \right) \} \right] \left[\chi_{jk} + x_{k} \chi_{12} \right] \\ &+ \left[\{x_{i} x_{k} \left({}^{3} \xi_{i} / {}^{3} \xi_{k} \right) \} / \{x_{i} + x_{k} \left({}^{3} \varepsilon_{j} / {}^{3} \xi_{k} \right) \} \right] \left[\chi_{ik} + x_{i} \chi_{12} \right] \dots (13) \end{aligned}$$

Further if it be assumed that $\chi'_{ij} \cong \chi_{12}$; $\chi'_{jk} \equiv \chi'_{12}$; and $\chi'_{ik} \cong \chi''_{12}$, then Eq. (13) reduces to Eq. (14)

$$\begin{split} \chi^{\mathsf{E}} &= [\{x_{j} x_{j} ({}^{3}\xi_{j} / {}^{3}\xi_{j})\}/\{x_{i} + x_{j} ({}^{3}\xi_{i} / {}^{3}\xi_{j})\}][x_{i}\chi_{ii} + (1 + x_{j})\chi_{ij}] \\ &+ [\{x_{j} x_{k} ({}^{3}\xi_{j} / {}^{3}\xi_{k})\}/\{x_{i} + x_{k} ({}^{3}\xi_{j} / {}^{3}\xi_{k})\}][(1 + x_{k})\chi_{jk}] \\ &+ [\{x_{i} x_{k} ({}^{3}\xi_{i} / {}^{3}\xi_{k})\}/\{x_{i} + x_{k} ({}^{3}\xi_{i} / {}^{3}\xi_{k})\}][(1 + x_{j})\chi_{ik}] \dots (14) \end{split}$$

Equation (14) contains four unknown parameters and for the present analysis, we employed χ^{E}_{ijk} data at four arbitrary compositions to evaluate them. These parameters were subsequently utilized to obtain χ^{E}_{ijk} at other values of x_i and x_j . Such χ^{E}_{ijk} (X = Vor H) data along with χ'_{ii} , χ'_{ij} , χ'_{jk} and χ'_{ik} parameters are recorded in Tables 1 and 2 and are also compared with their corresponding experimental values.

Examination of the data in Tables 1 and 2 reveals that V_{ijk}^E and H_{ijk}^E values compare reasonably well with their corresponding experimental values, (for $x_i \le 0.1$, the calculated V_{ijk}^E values are not of the right magnitude) which lends additional support to our assumptions made in deriving Eq. (14).

According to Sanchez and Lacombe theory^{15,16} V_{ijk}^{E} and H_{ijk}^{E} for a ternary mixture are given by Eqs 15 and 16

$$V^{E}_{ijk} = r_{mix} v^{*}_{mix} \left[\overline{v}_{mix} - \Sigma \phi_{i} \overline{v_{i}} \right] \qquad \dots (15)$$

$$H^{\rm t}_{ijk} = r_{\rm mix} kT \left[\overline{\rho}_{ijk} \sum_{i=1}^{3} \sum_{j=1}^{3} \phi_i \phi_j \chi_{ij} + \sum_{i=1}^{3} (\overline{\rho}_i \phi_i^0 - \overline{\rho}_{ijk} \phi_i) / T_i \right]$$

$$= [r_{\text{mix}} \rho_{ijk}(2\phi_i \phi_j \chi_{ij} + 2\phi_j \phi_k \chi_{jk} + 2\phi_i \phi_k \chi_{ki}) + r_{\text{mix}} kT + \Sigma (\tilde{\rho}_i \phi_i^0 - \tilde{\rho}_{ijk} \phi_i) / T_i] \qquad \dots (16)$$

where

$$\phi_{i} = m_{i} (\rho_{i}^{*})^{-1} \Sigma (m_{i}/\rho_{i}^{*})^{-1} \qquad ...(17)$$

$$m_{i} = x_{i} M_{i} [(\Sigma x_{i} M_{i})^{-1}]$$

$$r_{\rm mix} = \sum_{i=1}^{3} x_i r_i$$
 ...(18)

$$r_{i} = r_{i}^{0} \{ v_{i}^{*} (v_{mix}^{*})^{-1} \} \qquad \dots (19)$$

$$v_{\rm mix} = \Sigma \phi_i^m v_i^m \qquad (20)$$

$$\phi_{i}^{0} = m_{i} \left(\rho_{i}^{*} v_{i}^{*} \right)^{-1} / \Sigma(m_{i} / \rho_{i}^{*} v_{i}^{*})$$

$$\dots (21)$$

$$\overline{v_{mix}} = 1 / \rho_{mix}$$

$$\chi_{ij} = \varepsilon_{ii}^{+} + \varepsilon_{jj}^{+} - 2\varepsilon_{ij}^{+} \text{ etc} \qquad \dots (22)$$

and all the terms have the same significance as described by Lacombe and Sanchez¹⁵⁻¹⁶.

Evaluation of V_{ijk}^E and H_{ijk}^E through Eqs (15-22) requires a knowledge of, ρ_{ijk} , reduced density of the (i+j+k) ternary mixture, which can be determined from the equation of state of the (i+j+k) mixture.

$$(\overline{\rho_{ijk}})^2 + \overline{\rho} + (RT/\varepsilon^*_{ijk})[\ln(1-\overline{\rho_{ijk}}) + \{1-(1/r_{mix})\}\overline{\rho_{ijk}}] = 0...(23)$$
where
$$\varepsilon^*_{ijk} = (\varepsilon_{ii}^*\phi_i + \varepsilon_{ij}^*\phi_j + \varepsilon_{kk}^*\phi_k) - (\phi_i \phi_i + \phi_i \phi_i + \phi_i \phi_i) + (\phi_i \phi_i + \phi_i \phi_i + \phi_i) + (\phi_i \phi_i + \phi_i \phi_i) + (\phi_i \phi_i + \phi_i \phi_i) + (\phi_i \phi_i + \phi_i) + (\phi_i \phi_i + \phi_i) + (\phi_i \phi_i) +$$

and

$$\vec{\rho}_{ijk} = \rho v_{ijk}^* (\epsilon_{ijk}^*)^{-1} \dots (25)$$

 χ_{ij} etc. parameters for the various binary mixtures have been evaluated from the single H^E value (at $x_i =$ 0.5) for the various binary mixtures ^{1,2,10} by employing Eq. (26)

$$H_{ij}^{E} = 2\phi_{i}\phi_{j}\overline{\rho}_{ij}(\varepsilon_{ii}^{*} + \varepsilon_{jj}^{*} - 2\varepsilon_{ij}^{*}) + RT\gamma_{mix}[\sum_{i}(\overline{\rho}_{i}\phi_{i}^{0} - \overline{\rho}_{ij}\phi_{i})/\widetilde{T}_{i}].(26)$$

Since (i+j), (j+k) and (k+i) binary mixture of i,j and k components of the present (i+j+k) ternary mixtures satisfy Eq. (27)

$$\tilde{\rho}_{ij}^{2} + \tilde{P} + RT/\epsilon^{*}_{mix} \left[\ln(i - \tilde{\rho}_{ij}) + (1 - r_{mix}^{-1})\tilde{\rho}_{ij} \right] = 0.0140 - 0.0244 \qquad \dots (27)$$

it follows that these (i+j+k) mixtures would also not satisfy Eq. (23). If the addition of kth component to the (i+j) mixture does not drastically alter the i-j, j-k and k-i interactions, then the present ternary mixtures would also satisfy an equation of state like Eq. (27). Since the ternary (i+j+k) mixture is considered to be composed of three (i+j), (j+k) and (i+k) binary mixtures, the extent to which a (i+j+k) mixture deviates from Eq. (23) would be nearly one third of the sum to which (i+j), (j+k) and (i+k) mixture deviate from Eq. (16). Thus Eq. (23) reduces to

$$(\vec{\rho}_{ijk})^2 + \vec{P} + RT/\epsilon^*_{ijk} [\ln(i - \vec{\rho}_{ijk}) + (1 - r_{ijk}^{-1})\vec{\rho}_{ijk}] = \frac{1}{3[\Sigma R.H.S \text{ of Eq.27 for } (i+j), (j+k) \text{ and } (k+i) \text{ binary mixtures]}}(28)$$

Once the equation of state for a ternary mixture is established, V^{E}_{ijk} and H^{E}_{ijk} values can be easily determined from Eqs (15 and 16).

 V^{E}_{ijk} and H^{E}_{ijk} so evaluated for the various ternary mixtures are recorded in Tables 1 and 2 and are Table 1—Comparison of the measured V_{ijk}^E values for the various ternary mixtures at 298.15K with the corresponding values evaluated from Graph, Flory and Sanchez & Lacombe theory; also recorded are the various V_{ijk}^n (n=0-2) parameters, standard deviation, $\sigma(V_{ijk}^E)$ interaction energies ($\chi'_{ii}, \chi'_{ij}, \chi'_{jk}, \chi'_{ik}$ etc.) and ${}^{3}\xi_{i}$ etc.

			$V^{\rm E}$ ijk (cm ³ mol ⁻¹)				
xi.	xj	Exptl.	Graph	Flory	Sanchez & Lacombe		
		NB (i) + t	enzene (j) + toluene	(k)			
0.0403	0.8608	-0.004	-0.005	-0.021	0.229		
0.0643	0.7761	-0.006	-0.007	-0.042	0.188		
0.1256	0.5781	-0.017	-0.017	-0.074	0.063		
0.1567	0.2754	-0.048	-0.014	-0.076	0.030		
0.1874	0.6628	-0.072	-0.068	-0,141	-0.144		
0.2581	0.4261	-0.081	-0.078	-0.169	-0.267		
0.2974	0.2169	-0.090	-0.090	-0.177	-0.326		
0.3257	0.5827	-0.113	-0.110	-0.241	-0.511		
0.3600	0.5156	-0.121	-0.118	-0.242	-0.578		
0.3954	0.3628	-0.125	-0.127	-0.224	-0.613		
0.4519	0.5042	-0.122	-0.115	-0.278	0.832		
0.5268	0.4347	-0.114	-0.115	-0.268	-1.000		
0.6280	0.3575	-0.099	-0.099	-0.250	-1.221		
0.6614	0.1454	-0.123	-0.150	-0.210	-1.210		
0.7315	0.2028	-0.171	-0.167	-0.170	-1.330		
0.8100	0.0719	-0.110	-0.115	-0.136	-1.537		
$v_{ijk}^{(o)} = 1.407$:	$\mathcal{V}_{ijk}^{(1)} = -16.352; \mathcal{V}_{ijk}^{(2)}$	$= 59.955; \sigma(V_{ijk}^E = 0.$	001 $({}^{3}\xi_{i}) = 1.30; ({}^{3}\xi_{j})$	$= 0.667; ({}^{3}\xi_{k}) = 0.84$	$x_{i}, \chi'_{ii} = 0.002; \chi'_{ij} = -0.199;$		
$\chi'_{jk} = 0.280$;	$\chi'_{ik} = -0.380; \chi_{ij} = 14$	4.372; $\chi_{jk} = 3.607$; χ_{ki}	= 13.301				
		NB (i) + b	enzene (j) + o-xylene	(k)			
0.0571	0.0716	-0.007	0.081	0.012	0,734		
0.1008	0.7989	0.005	-0.008	-0.047	0.512		
0.1306	0.3542	0.052	0.141	0.040	0.521		
0.1329	0.1268	-0.043	0.064	0.006	0.535		
0.1978	0.6898	-0.039	-0.040	-0.120	0.235		
0.2696	0.6350	-0.069	-0.059	-0.176	0.044		

$V_{ijk}^{(o)} = -2.193; V_{ijk}^{(1)} = 7.541; V_{ijk}^{(2)} = 1.998; \sigma(V) \frac{E}{ijk} = 0.002; (^{3}\xi_{i}) = 1.998; \sigma(V) \frac{E}{ijk} = 0.002; (^{3}\xi_{i}) = 0.002; \sigma(V) \frac{E}{ijk} = 0.002; \sigma(V) \frac{E}{ij$	1.30; $({}^{3}\xi_{j}) = 0.667$; $({}^{3}\xi_{k}) = 1.426$; $\chi'_{ii} = 0.049$; $\chi'_{ij} = -0.089$;
$\chi'_{ik} = 1.260$; $\chi'_{ik} = -1.044$; $\chi_{ij} = 14.372$; $\chi_{jk} = 9.259$; $\chi_{ki} = 12.247$	

-0.077

-0.088

0.161

-0.136

-0.106

-0.043

-0.142

-0.143

-0.079

-0.143

0.4825

0.4561

0.1901

0.2650

0.3125

0.1612

0.1108

0.1446

0.0431

0.3406

0.3787

0.4835

0.4969

0.5763

0.6872

0.6950

0.7591

0.7940

0.8476

-0.076

-0.090

-0.165

-0.134

-0.107

-0.084

-0.115

-0.099

-0.072

-0.072

-0.163

-0.179

-0.125

-0.154

-0.201

-0.216

-0.145

-0.118

-0.131

-0.071

(Contd)

-0.112

-0.206

-0.388

-0.451

-0.689

-0.988

-0.928

-1.073

-1.176

-1.255

Table 1—Comparison of the measured V_{iik}^E values for the various ternary mixtures at 298.15K with the corresponding values evaluated from Graph, Flory and Sanchez & Lacombe theory; also recorded are the various V_{iik}^{n} (n=0-2) parameters, standard de-(Contd....)

viation, $\sigma(V_{iik}^{E})$ interaction energies ($\chi'_{ii}, \chi'_{ij}, \chi'_{jk}, \chi'_{ik}$ etc.) and ${}^{3}\xi_{i}$ etc.

			V^{E} ijk (cm ³ mol ⁻¹)			
xi	xj	Exptl.	Graph	Flory	Sanchez & Lacombe	
		NB (i) + b	enzene (j) + p-xylene	(k)		
0.0489	0.8858	0.004	-0.030	-0.021	0.213	
0.0580	0.8662	0.003	-0.035	-0.021	0.192	
0.0581	0.6385	0.091	-0.080	0.073	0.289	
0.0963	0.5602	0.040	-0.094	0.034	0.185	
0.1516	0.3330	-0.030	-0.111	-0.023	-0.085	
0.1840	0.7160	-0.074	-0.072	-0.136	-0.134	
0.2567	0.0414	-0.162	-0.019	-0.165	0.189	
0.3270	0.1714	-0.078	-0.078	-0.163	-0.370	
0.3450	0.5738	-0.098	-0.093	-0.233	-0.551	
0.3931	0.5487	-0.094	0.095	-0.241	-0.674	
0.5214	0.4227	-0.094	-0.094	-0.261	-0.969	
0.6002	0.3840	-0.092	-0.091	-0.262	-1.164	
0.6465	0.1832	-0.172	-0.061	-0.210	-1.185	
0.6700	0.3184	-0.083	-0.082	-0.230	-1.316	
0.7763	0.1089	-0.114	-0.037	-0.159	-1.474	
0.8866	0.0653	-0.052	-0.022	-0.095	-1.704	
1(0) - 7 168	. 1(1) - 25 242 - 1(2) - 222 076: - (VE -	-0.001 (35) - 1.20	13EN - 0 667 . 13E. 1-	1 217	

$$\mathcal{V}_{ijk}^{(0)} = -2.468; \quad \mathcal{V}_{ijk}^{(1)} = -25.342; \quad \mathcal{V}_{ijk}^{(2)} = 227.076; \quad \sigma(\mathcal{V}_{ijk}^{(1)}) = 0.001; \quad ({}^{3}\xi_{i}) = 1.30; \quad ({}^{3}\xi_{j}) = 0.667; \quad ({}^{3}\xi_{k}) = 1.217; \quad ({}^{3}\xi_{i}) = 0.001; \quad ({}^{3}\xi_{i}) = 0.001; \quad ({}^{3}\xi_{i}) = 0.667; \quad ({}^{3}\xi_{i}) = 1.217; \quad ({}^{3}\xi_{i}) = 0.001; \quad$$

 $\chi'_{ii} = 0.034; \ \chi'_{ij} = -0.208; \ \chi'_{jk} = -0.381; \ \chi'_{ik} = +0.077; \ \chi_{ij} = 14.372; \ \chi_{jk} = 7.866; \ \chi_{ki} = 12.012; \ \chi_{ij} \text{ etc.} - \text{ are in J mol}^{-1}; \ \chi_{ij} = 14.372; \ \chi_{jk} = 7.866; \ \chi_{ki} = 12.012; \ \chi_{ij} \text{ etc.} - \text{ are in J mol}^{-1}; \ \chi_{ij} = 14.372; \ \chi_{jk} = 7.866; \ \chi_{ki} = 12.012; \ \chi_{ij} \text{ etc.} - \text{ are in J mol}^{-1}; \ \chi_{ij} = 14.372; \ \chi_{jk} = 7.866; \ \chi_{ki} = 12.012; \ \chi_{ij} \text{ etc.} - \text{ are in J mol}^{-1}; \ \chi_{ij} = 14.372; \ \chi_{ij} = 14.372; \ \chi_{ij} = 12.012; \ \chi_{ij} \text{ etc.} - \text{ are in J mol}^{-1}; \ \chi_{ij} = 14.372; \ \chi_{ij} = 12.012; \ \chi_{ij} \text{ etc.} - \text{ are in J mol}^{-1}; \ \chi_{ij} = 14.372; \ \chi_{ij} = 14.372; \ \chi_{ij} = 12.012; \ \chi_{ij} \text{ etc.} - \text{ are in J mol}^{-1}; \ \chi_{ij} = 12.012; \ \chi_{ij} \text{ etc.} - \text{ are in J mol}^{-1}; \ \chi_{ij} = 12.012; \ \chi_{ij} \text{ etc.} - \text{ are in J mol}^{-1}; \ \chi_{ij} = 12.012; \ \chi_{ij} \text{ etc.} - \text{ are in J mol}^{-1}; \ \chi_{ij} = 12.012; \ \chi_{ij} \text{ etc.} - \text{ are in J mol}^{-1}; \ \chi_{ij} = 12.012; \ \chi_{ij} \text{ etc.} - \text{ are in J mol}^{-1}; \ \chi_{ij} = 12.012; \ \chi_{ij} \text{ etc.} - \text{ are in J mol}^{-1}; \ \chi_{ij} = 12.012; \ \chi_{ij} \text{ etc.} - \text{ are in J mol}^{-1}; \ \chi_{ij} = 12.012; \ \chi_{ij} \text{ etc.} - \text{ are in J mol}^{-1}; \ \chi_{ij} = 12.012; \ \chi_{ij} \text{ etc.} - \text{ are in J mol}^{-1}; \ \chi_{ij} = 12.012; \ \chi_{ij} \text{ etc.} - \text{ are in J mol}^{-1}; \ \chi_{ij} = 12.012; \ \chi_{ij} \text{ etc.} - \text{ are in J mol}^{-1}; \ \chi_{ij} = 12.012; \ \chi_{ij} \text{ etc.} - \text{ are in J mol}^{-1}; \ \chi_{ij} = 12.012; \ \chi_{ij} \text{ etc.} - \text{ are in J mol}^{-1}; \ \chi_{ij} = 12.012; \ \chi_{ij} \text{ etc.} - \text{ are in J mol}^{-1}; \ \chi_{ij} = 12.012; \ \chi_{ij} \text{ etc.} - \text{ are in J mol}^{-1}; \ \chi_{ij} = 12.012; \ \chi_{ij} = 12.012;$

...(38)

 $V^{(c)}_{ijk}$ etc.-are in cm³ mol⁻¹; χ'_{ij} etc. are in cm³ mol⁻¹

also compared with their corresponding experimental values.

According to Flory's theory ¹⁷⁻¹⁸, V^E_{ijk} and H^E_{ijk} for a ternary (i+j_k) mixtures are given by

$$V_{ijk}^{E} = \overline{V}_{cal}^{E} [x_{i}v_{i}^{*} + x_{j}v_{j}^{*} + x_{k}v_{k}^{*}] \qquad \dots (29)$$

$$H_{ivk}^{E} = \Sigma x_{i} p_{i}^{*} v_{i}^{*} [\overline{v_{i}}^{-1} - \overline{v}_{i}^{*} - 1] + x_{i}v_{i}^{*} \phi_{i}v_{i}^{*} \overline{v}_{i}^{-1}$$

$$+ x_j v_j^* \phi_k \chi_{jk} v_{cal}^{-1} + x_k v_k^* \phi_i \chi_{ki} \overline{v_{cal}}^{-1} \qquad \dots (30)$$

where

$$\tilde{v}_{i}^{-1} = [\{\alpha_{i}T / (3\alpha_{i}T+3)\}+1]^{3}$$
 ...(31)
 $v_{i}^{*} = v_{i} / \tilde{v}_{i}$...(32)
 $T_{i}^{*} = T_{i} \bar{v}_{i}^{4/3} / (\tilde{v}_{i}^{1/3} - 1)$...(33)
 $\underline{p}^{*} = \Sigma \phi_{i} p_{i}^{*} - \Sigma \phi_{i}^{*} \theta_{j} \chi_{ij}$...(34)
 $\overline{T} = (T / p^{*}) \Sigma \phi_{i} p_{i}^{*} / T_{i}^{*}$...(35)
 $\bar{v}^{0} = \Sigma \phi_{i} v_{j}$...(36)
 $\overline{T}^{0} = \{(\tilde{v}^{0})^{1/3} - 1)\} / (\tilde{v}^{0})^{4/3}$...(37)

$$\tilde{V}_{cal}^{E} = (\tilde{v}^{0})^{7/3} (\tilde{T} - \tilde{T}^{0}) / \{(4/3) - \tilde{v}^{0}\}^{4/3}$$

and all the terms have the same significance as described elsewhere¹⁷⁻¹⁸,

Evaluation of V^{E}_{ijk} etc. and H^{E}_{ijk} according to this theory requires a knowledge of adjustable parameters $\theta_j \chi_{ij}$ etc. characteristic of (i+j), (j+k) and (k+i) binary mixtures. These parameters for a particular binary mixture were evaluated by fitting the corresponding $H_{(exptl)}^{E}$ values^{2,10} at $x_i = 0.5$ via Eq. (39)

$$H_{ij}^{E} = \sum x_i p_i^* v_i^* [\vec{v}_i^{-1} - v_{cal}^{-1}] + x_i v_i^* \phi_j \chi_{ij} \vec{v}_{cal}^{-1} \qquad \dots (39)$$

and were subsequently employed to predict V_{ijk}^E and H_{ijk}^E values. Such V_{ijk}^E and H_{ijk}^E values evaluated by

Table 2—Comparison of the measured H_{ijk}^E values for the various ternary mixtures at 298,15K with the corresponding values evaluated from Graph, Flory and Sanchez & Lacombe theory; also recorded are the various H_{ijk}^n (n=0-2) parameters. standard deviation $\sigma(H^E_{ijk})$, interaction energies ($\chi'_{ii}, \chi'_{ij}, \chi'_{jk}, \chi'_{ik}$ and $\chi_{ij}, \chi_{jk}, \& \chi_{ki}$), and $3\xi_i$ etc.

		$H_{L,t}^{E}$ (J mol ⁻³)				
xī	xj	Exptl.	Graph	lyk Flory	Sanchez & Lacombe	
		NB (i) + benz	ene (j) + toluene (k)			
0.0433	0.7583	96.1	76.8	82.3	222.1	
0.0479	0.1915	88.3	74.7	87.1	247.9	
0.0915	0.7202	147.1	132.3	119.9	218.1	
0.1117	0.1787	127.2	116.6	138.3	278.2	
0.1534	0.6711	205.4	192.1	161.4	204.1	
0,1676	0.1675	151.2	143.8	170.9	297.1	
0.1847	0.6463	231.6	217.6	181.8	195.4	
0.2010	0.1607	158.2	156.6	199.3	302.8	
0.2319	0.6088	257.6	250.5	202.9	172.4	
0.2512	0.1507	162.9	171.6	225.2	72.7	
0.3117	0.5455	292.1	291.0	234.1	124.4	
0.3348	0.1338	171.2	187.0	257.3	280.9	
0.3765	0.4942	305.9	310.3	250.4	72.1	
0.4015	0.1204	178.2	192.1	273.7	243.3	
0.4753	0.4159	305.9	317.9	255.9	-23.4	
0,5016	0.1003	188.1	189.3	277.6	153.0	
0.6443	0.2819	274.1	274.5	226.0	-233.4	
0.6681	0.0668	192.2	159.2	240.7	-74.6	
0.7512	0.0501	172.2	132.5	201.2	-241.8	

 $H_{ijk}^{(0)} = 1466.34; H_{ijk}^{(1)} = 21498.72; H_{ijk}^{(2)} = -133636.49; \sigma(H^{\ell'})_{ijk} = 1.64; \ \chi'_{ii} = -111.25; \ \chi'_{ij} = 682.05; \ \chi'_{jk} = 122.29; \ \chi'_{jk} = 189.13$

	1.1.1.1.	NB (i) + benze	ne (j) + o-xylene (k)		
0.0446	0.7659	124.8	79.7	155.7	434.7
0.0530	0.1892	137.2	109.9	153.5	414.5
0.0940	0.7263	152.4	129,6	188.3	420.3
0.1227	0.1753	180.5	170.6	203.4	427.0
0.1573	0.6756	187.2	179.3	223.3	389.1
0.1829	0.1633	214.9	213.4	235.4	425.6
0.2187	0.1561	234.4	234.9	252.8	415.3
0.2718	0.1455	261.8	261.5	274.6	403.1
0.3182	0.5466	252.1	253.6	274.4	279.0
0.3589	0.1281	290.2	292.1	300.6	360.2
0.3835	0.4942	270.4	263.3	280.4	221.8
0.4274	0.1144	304.9	304.8	306.4	311.0
0.4827	0.4147	277.9	268.6	277.9	118.3
0.5282	0.0943	307.1	305.2	300.4	213.1
0.6268	0.0745	282.9	284.1	278.1	80.4
0.6511	0.2797	250.9	229.8	235.6	-105.5
0.6913	0.0617	256.8	258.5	251.4	-25.9
0.7706	0.0458	216.1	213.9	204.6	-161.1

$$H^{\circ}_{ijk} = -981.87; H^{(1)}_{iik} = -2789.96; H^{(2)}_{iik} = 34263.06; \sigma(H^{E})_{ijk} = 1.49$$

 $\chi'_{ii} = -5.75; \chi'_{ij} = 413.04; \chi'_{jk} = 233.58; \chi'_{ik} = 704.22$

Table 2—Comparison of the measured H_{ijk}^E values for the various ternary mixtures at 298.15K with the corresponding values evaluated from Graph, Flory and Sanchez & Lacombe theory; also recorded are the various H_{ijk}^n (n=0-2) parameters, standard deviation $\sigma(H^E_{ijk})$, interaction energies ($\chi'_{ii}, \chi'_{ij}, \chi'_{jk}, \chi'_{ik}$ and $\chi_{ij}, \chi_{jk}, \& \chi_{ki}$), and $3\xi_i$ etc. (Contd....)

Xi	x	Exptl.	Graph	Flory	Sanchez &
	· · · ·			1000	Lacombe
		NB (i) + benz	ene (j) p-xylene (k)	1	
0.0448	0.7671	126.1	98.8	142.7	301.8
0.0944	0.7273	172.4	139.1	175.1	280.2
0.1215	0.0768	135.7	141.9	149.6	233.1
0.1579	0.6763	207.2	181.5	210.4	248.1
0.1849	0.1767	231.2	231.7	228.0	282.6
0.2209	0.1689	244.8	246.2	244.3	268.4
0.2382	0.6118	236.1	223.2	243.3	196.3
0.2461	0.0533	198.2	180.4	220.7	230.0
0.2744	0.1573	262.1	264.1	265.6	250.3
0.3192	0.5467	254.1	253.2	263.7	138.0
0.3620	0.1384	281.4	283.5	288.0	200.8
0.3847	0.4942	261.3	268.9	273.6	76.5
0.4306	0.1235	289.1	290.0	296.2	148.5
0.4541	0.2918	358.9	320.1	303.1	90,2
0.4840	0.4144	267.2	278.4	272.8	-33.5
0.5315	0.1016	289.2	284.9	288.7	44.3
0.6523	0.2793	250.4	252.7	230.9	-258.6
0.6941	0.0663	257.1	237.4	232.9	-189.3

$$H_{ijk}^{(o)} = 1563.37; H_{ijk}^{(I)} = -3130.09; H_{ijk}^{(2)} = -9562.43; \sigma(H_{ijk}^E = 1.83; \chi'_{ii} = 248.07; \chi'_{ij} = 358.08; \chi'_{jk} = 486.94; \chi'_{ik} = 474.95; H_{ijk}^{(o)}$$
 etc and σH_{ijk}^E are in j mol⁻¹; χ'_{ii} etc are in j mol⁻¹

means of Eqs (29-39) alongwith various χ_{ij} , χ_{jk} , χ_{ki} parameters are recorded in Tables 1 and 2 and also compared with their corresponding experimental values.

Examination of data in Tables 1 and 2 has revealed that while V_{ijk}^{E} and H_{ijk}^{E} values evaluated from Flory's theory make reasonably good agreement with their corresponding experimental values V_{ijk}^{E} and H_{ijk}^{E} values calculated from Sanchez and Lacombe approach make only qualitative agreement with their experimental values.

Acknowledgement

The authors express their thanks to the Head, Chemistry Department and authorities of Maharshi Dayanand University, Rohtak for providing research facilities.

References

1

9

Singh P P & Sharma V K, Can J Chem, 61 (1983) 2321.

- 2 Singh P P & Sharma V K, Z Phys Chemic, 265 (5) (1984) 915.
- 3 Singh P P, Malik R, Maken S, William E Acree Jr & Sheryl A, Thermochim Acta, 162 (1990) 291.
- Singh P P, Maken S & Malik R, Indian J Chem, 32A (1993) 942.
- 5 Vogel A I, A text book of practical organic chemistry (English Language Book Society, London) 1983.
- 6 Riddick J A & Bunger W B, Techniques of organic chemistry, by Weissberger (Wiley Interscience, New York), 1970.
- Riddick J A, Bunger W B & Sakano T K, Organic solvents, physical properties and methods of purification, (Wiley Interscience, New York), 4th edn., 1986.
- 8 Singh P P & Sharma S P, J Chem Engg Data, 30 (1985) 477.
 - Wisniak J & Tamir A, Mixing and excess thermodynamic properties, Elsevier Scientific Publishing Co., Amsterdam), 1978. p.25.

315

- 10 Kalra K C, Sharma V K & Katoch Ashma, Indian J Chem. (In Press, 1996).
- 11 Huggins M L, J phys Chem, 34 (1970) 371.
- 12 Huggins M L, Polymer, 12 (1971) 389.
- 13 Singh P P & Bhatia M, J chem Soc. Faraday Trans. 1, 86 (1990) 3807.
- 14 Kier L B, Physico chemical properties of drugs edited by S Yalkowski, A A Sinkula & Valvani S C (Mariel-Bekker, New York) 1980, Chap 9, p.295.
- 15 Sanchez I C & Lacombe R H, J phys Chem. 80 (1976) 2352.
- 16 Lacombe R H & Sanchez I C. J phys Chem. 80 (1976) 2568.
- 17 Flory P J, J Am chem Soc, 87 (1965) 1833.
- 18 Flory P J & Abe A, J Am chem Soc, 87 (1965) 1838.