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Monocrotophos (MCP) is an organophosphate pesticide widely used in India for controlling various pests. In this study, 
we evaluated the oxidative stress and genotoxic potential of MCP on the freshwater mussel Lamellidens marginalis 
(Lamarck) after 7 days exposure and repair of the damaged DNA after 4 days recovery. The bivalves were exposed to  
5.25 mg/L of MCP for 7 days and then allowed to recover for 4 days in pesticide-free water. Increase in the levels of 
thiobarbituric acid reactive substances was recorded in the gill, muscle, foot and mantle tissues. Cellular antioxidant 
defences i.e. antioxidant enzyme activities like catalase, superoxide dismutase, glutathione reductase and glutathione-S-
transferase were used as biomarkers of oxidative stress. Altered activities of antioxidant enzymes were observed after 
exposure. There was a significant recovery in the antioxidative enzymes in the tissues after the recovery period. To monitor 
genotoxicity of MCP, we used micronucleus and comet assay. Increase in Olive tail moment in the gill cells of exposed 
mussels as compared to that of control ones indicated significant DNA damage. Our findings suggest that the MCP-induced 
oxidative stress may be contributing partly to genotoxic damage of gill cells. Thus, these biomarkers are found to be useful 
in evaluating the toxicity of MCP in mussels. 
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Excessive use of pesticides in modern agriculture 
enters into aquatic habitats either from direct 
application, terrestrial runoff or wind borne drift. 
This, over the years, has gradually increased the level 
of several pesticides and their metabolites in  
water column and then into benthic sediments, 
contaminating the aquatic environment1. The 
genotoxic effects of several chemical groups of 
pesticides such as organochlorine, organophosphorus 
(OP) and pyrethroid, etc. have been shown by in-vivo 

and in vitro experiments2-4. In addition to 
cholinesterase inhibition, induction of oxidative stress 
has been reported as the main mechanism of OP 
pesticide’s toxicity in different exposure conditions2. 
The most susceptible targets for oxidative stress  
are polyunsaturated fatty acids of the cell  
membrane, which undergo peroxidation rapidly5. 
Lipid peroxidation has been suggested as one of  
the molecular mechanisms involved in pesticide-
induced toxicity6. The pro-oxidants (environmental 

contaminants) and antioxidant defences (enzymatic 
and non enzymatic) in biological systems can be used 
to evaluate the toxic effects in stressful environmental 
conditions, hence the environmental toxicology 
studies are primarily focused on oxidative stress7.  

It is well established that toxicants with oxidative 
stress potential, attack DNA result in clastogenic and 
molecular damages8,9. Besides being potent source of 
ROS, OP compounds also exhibit alkylating 
properties, known to cause DNA damage10. OP 
pesticides are reported as genotoxic in various 
organisms including mussels, and fishes11,12. Both,  
in vivo and in vitro studies have demonstrated 
monocrotophos (MCP) to be genotoxic in various 
animals13, including chick14, human lymphocytes15, 
etc.; however information available about genotoxic 
effect of MCP on mussels like Lamellidens 

marginalis (Lamarck, 1819) (Bivalvia: Unionidae) is 
inadequate. In ecotoxicological studies, genotoxic 
biomarkers are widely considered as molecular  
toxic endpoints of major environmental pollutants16. 
Various genotoxic biomarkers including MN test17,18 
and comet assay12,17 are employed in ecotoxicology 
for biomonitoring of aquatic ecosystems for 
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pollutants. MN test was employed in the present study 
as it is fast, sensitive and able to detect the genomic 
damage. In molluscs, MN assay is mostly performed 
on haemocytes or gill cells. Several studies report 
dose-dependent increase in MN frequency in response 
to contaminants19,20. 

Aquatic organisms, being an important source of 
food for humans, can be a major health risk if exposed 
to environmental toxicants like genotoxic and 
carcinogenic substances21,22. Mussels are ecologically 
important fauna because they are used as sensitive 
biomarkers of aquatic pollution23,24 on account of their 
wide geographical distribution, ease in collection, 
sessile habitat and filter-feeding mechanism which 
may be exposed to large amount of chemical 
pollutants. Further, mussels are capable of 
accumulating and tolerating high concentrations of 
organic and inorganic pollutants in their tissues25-27.  

Lamellidens marginalis, the most common bivalve 
found in the reservoirs around Pune, is consumed as a 
major food item by majority of local population.  The 
present study was undertaken to: (i) investigate the 
genotoxic potential of MCP in gill cells using Comet 
assay;(ii) oxidative potential of MCP in gill, foot, 
mantle and muscles of Lamellidens marginalis;  
and (iii) explore the possible use of MN test on  
gill cells as a parameter for detection of 
genetic/chromosomal damage. 
 

Materials and Methods 

Phoskill 36% [Dimethyl (E) 1-methyl-2-
(methylcarbamoyl) vinyl phosphate] was procured 
from Sudarshan chemicals, Pune for experimental 
purpose.  

Lamellidens marginalis (length: 7-9 cm, weight: 
22-28 g, bisexual) were collected from the Mula River 
(N 18° 33' and E 073° 42') transported to the 
laboratory in aerated water within 30 min. Water from 
collection site was checked for pesticide residue 
contamination with the help of GC-MS. Water quality 
parameters such as pH, temperature, chlorophyll 
content, DO, BOD, COD and nitrate were determined 
following the standard procedure28.  

On the day of collection, 10 specimens were used 
to determine Condition Index (CI) to assess their 
physiological status29. Bivalves were dissected and 
whole soft tissues and shells were kept in oven at 
60C and then weighed after 96 h. The ratio of dry 
flesh weight to dry shell weight (FW/SW × 100) was 
used to determine CI for each individual. In the 

laboratory, prior to the experiment, 36 bivalves were 
maintained in dechlorinated tap water (1.5 L per 
individual) for 15 days for acclimatization. During this 
period bivalves were fed ad libitum with spirulina 
powder30. Animal experiments were performed after 
approval of Institutional Animal Ethics Committee 
(IAEC) with the ethical standards provided by CPCSEA. 

Eighteen bivalves (6 specimens in 9L of water per 
aquarium) were exposed to 5.25 ppm of (1/10th of 
LC50, determined from earlier studies31) formulated 
MCP for seven days. The specimens were not fed 
during the experimental period4. After 7 days of 
exposure, half of the (n=9) specimens were 
transferred to toxicant free water and maintained for  
4 days for assessment of recovery. Control specimens 
(n=18) were maintained in MCP free water in two 
parallel sets.  

At the end of MCP exposure period, 9 specimens 
were dissected separately to collect the gill, foot, 
mantle and muscle tissues. The tissues were then 
homogenized separately over ice in respective 
phosphate buffer. Homogenates were centrifuged at 
4C, 8000 rpm for 20 min. Supernatants were 
separated and stored at −80°C. Biochemical 
estimations were carried out using standard methods 
within 7 days. After 4 days of recovery period 
remaining 9 specimens were dissected separately and 
same procedure was carried out for tissue preparation 
in all the four groups. 

The protein content of the samples was measured 
by the method of Lowry et al.

32. The thiobarbituric 
acid reactive substances (TBARS) assay was used to 
evaluate the peroxidation of lipids33. Super oxide 
dismutase (SOD) activity was assessed by the method 
of Beauchamp34. Catalase (CAT) activity was 
determined by the method of Aebi35. Glutathione  
S-transferase (GST) activity was measured by Habig 
et al.

36 method. Glutathione reductase (GR) activity 
was quantified by Goldberg et al.

37 method. 
For MN test, single cell suspension of gill tissue was 

used for preparation of smears (PBS pH 7). Smears were 
prepared on glass slides and dried in the dark for 24 h. 
Slides were stained using May- Grunwald Giemsa 
staining technique38. Slides were observed at 1000X 
magnification using Carl Zeiss Axiovision microscope. 
Normal and micro nucleated intact gill cells were scored. 
Micronuclei were identified according to criteria 
followed by Klobucar et al.

39 
For standardization of the comet assay protocol, 

fresh single cell suspension of gill was treated with 
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H2O2 (1, 10, 25 and 50 mM) in PBS for 5 min. The 
control cells were incubated in PBS without H2O2. 
Three replicates per condition were performed40. 

The alkaline comet assay was performed as 
described by Singh et al.

41 with minor modifications. 
Microscopic slides were pre-coated with 1% NMP 
agarose on pre-cleaned and methanol treated dry 
slides. Then 30 µL of gill cell suspension was gently 
mixed with 70 µL of 0.1% LMP agarose and covered 
with a coverslip and kept for 5 min at 4ºC and then 
slides were processed. The slides were examined with 
a fluorescence microscope (Carl Zeiss Axiovision, 
400X, excitation filter 510-560 nm, barrier filter  
590 nm). Fifty nuclei were analyzed per slide. All 
experiments were carried out in triplicates. 
 

Statistical analysis 

The statistical data analysis was carried out using 
one-way ANOVA; Tukey pair wise-multiple 
comparison test was used for biochemical estimations 
and micronuclei assay. Data was presented as the 
mean ± Standard Deviation (SD). Microscopic images 
of comets were scored using Comet IV Computer 
software. This data was presented as the mean ± 
Standard Error (SE). 
 
Results 

According to the results of GC-MS analysis, the 
concentrations of pesticides in reservoir water from 
collection site were below the limit of quantification 
(0.01-1.01 ppb). The water quality parameters of 
collection site were analyzed for pH, temperature, 
chlorophyll content, DO, BOD, COD and nitrate 

(Table 1). Bivalves that were collected from site 
showed CI ranging from 7.2 to 12.4. Evidently, 
physiological condition of the mussels was healthy at 
the time of collection.  

Seven days of MCP exposure significantly  
(P <0.05) induced lipid peroxidation (Table 2) in gill 
(1197) > foot (1042) > mantle (867) > muscle 
(830%), as compared to control. While after four days 
of recovery period, foot (74), muscle (68.1), mantle 
(67.9) and gill (54%) recovered significantly  
(P <0.05).  

Significant (P <0.05) elevation of SOD activity 
after MCP exposure (Table 2) was observed in gill 
(1982%) followed by foot (1169%) and mantle 
(741%) but four days recovery period was found to be 
sufficient for mantle (86) > foot (80) >gill (74%)  
to recover significantly (P <0.05). Gill showed 
maximum elevation and comparatively lower 
recovery as compared to other tissues.  

CAT activity (Table 2) increased significantly  
(P <0.05) in muscle (977), gill (646), foot (282) and 
mantle (206%) tissues after MCP exposure. The trend 
of significant (P <0.05) recovery observed after  
four days of recovery period was as follows: muscle 
(36%) > gill (31%), >mantle (29%) >foot (13%). It is 
observed that the muscle tissue which showed 

Table 2—Changes in the TBARS, CAT, SOD, GST and GR activity in L. marginalis when exposed to MCP (5.25 mg/lit).  

Tissue exposed  Gill Foot Muscle Mantle 
TBARS activity (thiobarbituric 
acid reactive substances) 
(nmol/mg protein) 

Control 3.37±0.12 3.68±0.21 3.13±0.30 6.52±0.25 
7 DE 40.37±8.32a 38.36±7.32a 26±2.92a 27.15±6.28a 
4 DR 18.40±2.4b 9.89±2.84b 8.16±2.9b 8.73±1.95b 

CAT ( catalase) activity  
(unit/mg protein) 

Control 12.28±5.27 16.65±4.7 3.43±0.46 17.57±1.48 
7 DE 79.36±5.16a 47.09±1.6a 33.50±4.62a 36.13±7.62a 
4 DR 54.97±2.32b 41.15±3.2 21.32±6.03b 25.49±4.71b 

SOD ( Super oxide dismutase) 
activity (unit/mg protein) 

Control 2.57±0.69 2.04±0.18 1.02±0.02 3.62±0.75 
7 DE 50.94±2.03a 23.86±10.96a 0.61±0.24 26.84±4.64a 
4 DR 13.44±0.62b 4.66±1.69b 4.14±0.90 3.85±0.19b 

GST ( Glutathione S-transferase) 
activity (unit/mg protein) 

Control 2.33±0.14 4.14±0.69 1.98±0.14 3.65±1.55 
7 DE 14.36±3.86a 11.64±3.17a 8.73±2.38a 8.90±1.04a 
4 DR 9.39±4.66 9.14±3.19 6.41±1.01 6.27±1.93b 

GR ( Glutathione reductase) 
activity (unit/mg protein)  

Control 0.14±0.06 0.18±0.06 0.19±0.13 0.38±0.02 
7 DE 0.24±0.01a 0.15±0.001 0.12±0.01a 0.12±0.01a 
4 DR 0.20±0.01 0.16±0.001b 0.13±0.01 0.14±0.01 

[7DE, 7 days exposure; 4DR, 4 days recovery. Values are  mean ± SD from 9 bivalves in each group. P values (P <0.05). a, between 
control and exposed groups; and b, between exposed and 4 day recovery] 

Table 1—Physicochemical parameters of water at collection site, 
Mula River (N 18° 33' and E 073° 42'), Pune, Maharashtra, India. 

pH Temperature Chlorophyll 
content 
µg L-1 

DO 
mg L-1 

BOD 
mg L-1 

COD 
mg L-1 

Nitrate 
mg L-1 

9.29 30°C 0.94 7 122.7 39.5 8.0 
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maximum elevation of CAT activity also showed 
maximum recovery. 

Significant (P <0.05) induction of GST activity 
(Table 2) was observed in gill (616%), muscle 
(441%), foot (281%) and mantle (244%) tissues after 
MCP exposure. However, after recovery period, 
maximum recovery was observed in gill (35%) 
followed by mantle (30), muscle (27) and foot (21%). 
Though maximum elevation of GST was experienced 
by gill, it could recover better than other tissues. 

Induction of GR activity (Table 2) was observed only 
in gill (171%) while trend of inhibition at the end of 
exposure period observed was as follows mantle (68%) 
> muscle (37%) > foot (17%). GR activity changed 
significantly (P <0.05) in MCP exposed bivalves. 
Significant (P <0.05) recovery was observed in foot 
tissue. It is observed that the foot tissue experienced 
minimum stress and showed significant recovery. 

H2O2 (5, 10, 25, 50 mM) treated gill cells of  
L. marginalis showed a significant (P <0.05) dose-

dependent increase in the percentage tail DNA  
(Fig. 1A), tail length (TL) (Fig. 1B) and olive tail 
moment (OTM) (Fig. 1C).  

After 7 days of MCP exposure, tail DNA 
percentage (Fig. 1D), TL (Fig. 1E) and OTM (Fig. 1F) 
increased significantly (P <0.05) in gill cells, as 
compared to control. After four days of recovery, 
significant (P <0.05) repair was observed in TL,  
tail DNA percentage and OTM in gill cells of 
Lamellidens. marginalis (Fig. 2). MCP induced 
significant (P <0.05) MN formation in exposed 
bivalves, in comparison with control ones (Fig. 3). 
 

Discussion 

After 7 days of exposure to MCP, significant  
(P <0.05) increase in lipid peroxidation (LPO) 
showed oxidative stress. Enhancement of LPO in all 
the tissues of mussel suggested the participation of 
free radical-induced oxidative cell injury triggered 
due to the toxicity of MCP. The most affected tissue 

 
 

Fig.1— DNA strand breaks in gill cells of L. marginalis exposed to H2O2 (A-C); and MCP (5.25 mg/L) (D-F) for 7 day exposed (7DE) 
and 4 days recovery (4DR). [*Comet parameters were reported as mean ± standard division. a: significant differences (P <0.05) between 
the control and exposed groups, b: significant differences (P <0.05) between the exposed and 4 day recovery] 
 

 
 

Fig. 2—DNA damage in (A) control; (B) exposed; and (C) recovered gill cells [400X], after MCP exposure (5.25 mg/L). 
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was gill and the least affected were mantle and 
muscle. Increased LPO content in gills and digestive 
glands of the freshwater mussels exposed to the 
pesticide was reported by Kopriicu et al.

42 Results 
suggested that as compared to the other tissues,  
gill was more susceptible to oxidative stress,  
owing to its filter feeding mechanism43. Although 
foot was the second highest sensitive tissue in case 
of lipid peroxidation, it showed maximum 
significant (P <0.05) recovery followed by muscle, 
mantle and gill.  

The observed trend of increased SOD activity in 
the exposed bivalves was (Gill>Foot>Mantle). The 
trend of significant recovery observed was in reverse 
manner (Mantle>Foot>Gill). It was observed that 
tissues which were under lower stress recovered better 
and mantle recovered the most44. CAT activity was 
significantly (P <0.05) increased in all the tissues 
after seven days of exposure. Muscle showed  
the highest CAT activity, but also showed the  
most efficient recovery. Increased SOD and CAT 
activities indicated generation of superoxide  
radical and hydrogen peroxide during MCP exposure 
in L. marginalis. SOD catalyzed the dismutation 
reaction of the superoxide anion radical-O2

- to form 
the less-reactive molecular oxygen and then CAT 
converted H2O2 to H2O and O2 in order to prevent 
oxidative damage and maintain cell homeostasis45. 
Overall, the percentage of increase in SOD activity 
was higher as compared to that of the CAT activity in 
MCP exposed bivalves. The positive relationship 
between SOD and CAT activities was observed in the 
exposed and recovery groups.  

Significant (P <0.05) increase in activity of GST 
was observed in all the tissues of exposed bivalves. 
Significant (P <0.05) recovery was observed only 
in the mantle tissue while other tissues recovered to 
a certain extent. The marked increase in GST 
activity suggested active involvement of this 
enzyme in the detoxification of MCP as a part  
of the phase II biotransformation46. Increased  
GST activity which served as a detoxification 
enzyme47 might be considered as an indicator of 
chemical stress48. Our results were in confirmation 
with Kaaya et al.

49  
In the present study GR activity was tissue 

specific, the induction of GR activity in gill and its 
inhibition in other tissues suggested an organ specific 
response of mussel to MCP. The induction might be 
due to the increased production of oxidized 
glutathione (GSSG) as suggested by Zhang et al.

50 
Inhibition of GR activity reflected its utilization in 
reduction of the effect of free radicals generated by 
TRZ. Similar trend of inhibition of antioxidant 
enzymes was observed in different tissues of marine 
bivalve upon exposure to chlorpyrifos51. 

It was observed by Banu et al.
13 that Phosphorus 

group of MCP acted as a good substrate for 
nucleophilic attack, it might cause phosphorylation 
of DNA, which is an evidence of DNA damage. 
MCP might have a potential for methylation of 
DNA which could cause mutation. Both acute  
and chronic exposure of MCP could induce  
DNA damage in rats. The results of present study 
showed significantly (P <0.05) increased levels  
of percentage of tail DNA, OTM and TL in exposed 
animals, which demonstrated the genotoxicity  
of MCP in L. marginalis. Our results are in 
accordance with Sarkar et al.

40. Significant recovery 
of comet parameters revealed the great capacity  
of bivalve to repair DNA damage within 4 days.  
Our results are in accordance with observations of 
Fedato et al.

18 
MN and abnormal nuclei formation was observed 

in gill cells after 7 days of exposure. MCP induced 
significant (P <0.05) MN formation in exposed 
bivalves, in comparison with control ones. Results 
from comet assay supported the MN assay 
observations in exposed gill cells indicating high 
intensity of DNA damage. These biomarkers have 
opened a broad perspective in aquatic toxicology. It 
was established that gill is the most sensitive tissue52 
because of its constant exposure to environmental 

 
 
Fig. 3—Frequency of micronuclei in control, 7 day exposed 
(7DE) and 4 day recovery (4DR) in gill cells, after MCP exposure 
(5.25 mg/L). [*a indicates significant differences (P <0.05) 
between the control and exposed groups; and b indicates significant 
differences (P <0.05) between the exposed and 4 day recovery] 
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pollutants due to its filter feeding mechanism. The 
results of this study might help in protecting the 
environment through judicious and careful use of 
MCP in agriculture. 
 

Conclusion 

Administration of MCP promoted induction of 
lipid peroxidation causing fluctuations in the anti-
oxidative systems in various tissues and induction of 
micronuclei as well as increase in comet parameters 
(percentage of tail DNA, tail length and olive tail 
moment) in gill cells. Oxidative and DNA damage 
were experienced by mussels; however anti-oxidant 
enzymes recovered well, the levels of micronuclei 
decreased (P <0.05) and also repair in terms of comet 
parameters was observed after four days. We suggest 
that DNA strand breakage and micronucleus 
formation in mussel gill cells can potentially be  
used as convenient biomarkers of exposure to 
genotoxicants in the aquatic environment. Thus, fresh 
water mussels can be considered as suitable bio-
indicators for assessment of quality of freshwater 
environment by using appropriate markers. 
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