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Vertical polarization dependence of transient signals above a dielectric layer
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{'The duct model given by Kahan and Eckart [Ann Phys (France), 5 (1950) 641] has been used for
the vertical polarization treatment of the signals. A vertical electric dipole, above the surface layer, is
taken as the source of electromagnetic field. The polarization of the primary source, whose moment
varies arbitrarily in time, is chosen in such a way that it allows the exact determination of the elec
tric field strength at some fixed point above the,duct layer. Two integral transforms, a Laplace trans
form in time and a two-dimensional Fourier transform in the horizontal coordinates in space are ap
plied to the wave equation for the Hertz vector. This leads to an integral representation of the solu
tion of the wave equation in transform spacey""

(

y

VERTICAL ELECTRIC DIPOLE
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model4) is shown in Fig. 1. A dielectric layer of
relative permittivity, f2, is assumed to be overlaid
on the infinitely conducting earth, the borderline
being the plane z = 0 in the Cartesian coordinate
system (x, y, z). At a height, h, the permittivity ac
quires a lower value £]. The relative permeability,
Il, is assumed to be the same for all successive
media. We refer the layer (up to h) as medium 2
and the half space z> h as medium 1. The fields
which belong to the two media are marked by the
corresponding indices.

A vertical electric dipole, as a source of the
field, is placed in medium 1 at the point x= y= 0,
z= d> h. Its moment is given by P= {O, 0, F(t) ()
(x, y, z-d)}, where t is the time variable, () the
three dimensional Dirac-delta function and F(t)

the excitation function. Regarding F(t), we as
sume that F(t)=O for t~O and dF(t)ldt=O for
t= 0. The first assumption guarantees a unique
solution and the second describes the time varia-

1 Introduction

Modification of propagated electromagn~~~.§ and their distortion greatly' affects-ia 0
vigation, identification of targets by mean~

__Bar and generally other telecommunication s~
~em~."The evaporation duct existing overtne eatfiStOrts pulsed signals (of nanosecond durations)
most of the time] .

A number of experimental and theoretical mod
els of the duct refractive index profiles were in
troduced lately2,3. These profiles give a satisfacto
ry description of the mechanism of wave-guiding.

In this paper, the simple duct model by Kahan
and Eckart4 has been applied. The model as
sumesa discontinuous drop of the usually con
stant relative permittivity at the upper duct boun
dary. The earth is assumed to be quite plane and
ideal conductor, and thus corresponds to the sea
in the range of microwaves.

In a recent paper5, a similar problem had been
treated. A theoretical treatment of the electromag
netic pulse propagation, using Kahan and Eckart
model4 of the evaporation duct, was carried out
for a vertical magnetic dipole source. Hence, the
results for horizontal polarization were already
available. The present work extends the above
mentioned theoretical treatment to the case of a
vertical electrical dipole, i.e. vertical polarization.
The results for vertical polarization are compared
with those for horizontal polarization.

2 Formulation of the problem
The model used in this study (Kahan and Eckart
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Fig. 1 - Geometryof the model
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where, i = 1, 2 and el is a unit vector in z
direction.

v the phase velocity. The wave equations for me
dia 1 and 2 are thus givenby: ..~

... (2)

\
\
\

I d2F(t) I'1:t) a

f.A.o-d2 b(x,y,z-d)el- - grad -a b(x,y,z-d),_ r EoE1 Z
- for i= 1

0, for i=2

Applying Laplace transform with respect to
time a three-dimensional Helmholtz equation, in
the spatial coordinateS for the Laplace-trans
formed field strength Ei(X,y,z;s), is obtained. This
step uses the initial conditions that the electric
field strength and its time derivative. are zero for
t= O. The· Laplace transform of the electric field
strength and its time derivative are zero for t= O.
The Laplace transform of the electric field can
then be obtained as follows:

( 2 1 a2) i~ - V~al E (X,y,z;t)

... (1)

Where, P is the electric moment of the dipole and

3 Method of solution and its integral represen
tation

The method is explained with the flow-chart of
Fig. 2. We start with· the following wave equation
for the electric field strength

tion of the current (which flows·in an equivalent
short linear antenna) whose transient field is not
very different from the one radiated by ~ ideal
electric dipole6• Zimmer et aL7 have determined
the electric field strength at some fixed point
within the duct layer, and have chosen certain po
larization of the primary source whose moment is
allowed to vary arbitrarily with time. Bishay5 has
chosen a horizontal polarization of the primary
source which enables the determination of the
transient behaviour of the electric field strength at
any distance in the ionosphere. This could be ap
plied successfully in the case of radio stars and
satellites, as their locations are quite far from the
earth.

ORIGINAL

SPACE (x. y. zI

LAPLACE

TRANSFORM

WAVE Ea.

ELECTRIC FIELD STRENGfH

INITIAL

CONDo

3·0 HELMH. Ea.

x. y. z

INTEG. REPRES. ELECTRIC FIELD
STRENGTH FOURIER INVERSE INTEG.

LAPLACE

TRANSFORM

SPACE x.y,z,s

2-D

FOURIER

TRANSFORM

FINITE SOLUTION

BOUNDARY CONDITION

Fig. 2 - Flow-chart for the method of solution
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(,,' - ~) E ~x,y,Z;S)

I 2 ~~ a

/..l.osf(s)b(x,y,z-d)ez - - grad -a b(x,y,z-d),EoE1 Z

for i= 1

0, for i=2

... (3)

The function ~s) denotes the Laplace transformed
excitation function. Representation of this La
place-transformed field strength, Ei(X,y,z;s), on a
two-dimensional inverse Fourier integral in the
following form

formed initial conditions and is also used for the
determination of the above mentioned constants.

Thus, an integral representation of Laplace
transform of the electric field strength in terms of
two-dimentional inverse Fourier integral, i.e., for
the transformed z component is given by

3 ) ffOO
1 _ sf(s (a2+~2)

E z(x,y,z;s) - "3t2EOE1 _00

x [exP{ - SY1/Z- a1} + M]exPU.s{ax+ ~y)}dad~Y1 N

... (7)

where,

.. , (5)

where, j =R, ex and ey are unit vectors in the x
and y directions, respectively, and

leads to a one-dimensional Helmholtz equation in
the altitude coordinate z for the Fourier-trans
formed field, and is given by ... (8)

.... (9)

2 2
VI Y1 - V2 Y2

vf Y1 + V; Y2

N = Y1[1- rl2exp{ - 2SY1h}]; and rl2, the reflection
coefficient at the upper duct boundary, is given
by:

M = [exp{ - SY1(Z+ d)}][l + rl2exp{ - 2SY2(h- d)}]

The transformed x and y components of the
vertical electric dipole field are not given here, as
they are of a similar structure as that of Ei and
we concentrate on the vertical polarized compo
nent. The same applies for all field components
inside the duct layer.

In an earlier paper5, the components Ex and Ey
of the electric field strength were determined in
case of a magnetic dipole, i.e., horizontal polariza
tion. In the polar coordinate system E, can be
written as:

... (6)Y: = a2+~2+vi-2

2 00

Ei(x,y,z;s)= 4:2 If Ei(a,~;t.'~xPU.s\ax+ ~y)}dad~-00

... (4)

( a2 2 2) iat - Y is E (a,~;z;s)

{ f(sX -js(aex + ~eY~aab(z- d)+[/..l.oib(z- d)-

EoE Z

= 1 a2
- - -2b(Z- d)]ez}, for i= 1

J' • 2 EoEaz0, lor 1=

The field representation given by Eq. (7) thus dif
fers from the above horizontal polarization given
by Eq. (9). This is due to the differential structure
of the pertinent reflection coefficients, Cl2, for
horizontal polarization or, r12 for vertical polariza
tion, where

with real part ofYi~ O.

The solution of Eq. (5) could be written in
terms of unknown integration constants. These
constants are then determined as the solutions of
algebraic equations5 that result from the bounday
conditions for the electromagnetic field on the
earth's surface and the ionosphere. Further the
condition of finiteness of the field at infinity is
used. This corresponds to the Laplace-trans-

C12 = YI -Y2
Y1+Y2

... (10)
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Thus it is concluded that the exact solution of the
transient behavioUfof a dielecric layer, e.g. an at
mospheric duct layer over sea, generally depends
on polarization.
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