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A nonlinear finite element analysis, based on the first-order shear deformation theory and the von-Karman’s nonlinear 

kinematics, of Ti/TiB FGM plate with a central circular hole under in-plane compressive load has been presented. The volume 

fractions of FGM constituents (ceramic and metal) have been varied according to simple power law distribution in the thickness 

direction of FGM plate. The actual non-homogeneous FGM plate with continuously varying properties along thickness has been 

modeled as a laminate composed of multiple perfectly-bonded layers of isotropic material having layer-wise homogenous 

composition. The FGM material has been assumed to be graded as per TTO model (i.e., the modified rule of mixtures) to 

calculate the Young's modulus and the yield strength of FGM plate at a particular thickness coordinate. The failure of the FGM 

plate has been predicted by applying 3-D von-Mises criterion. After validating the results of present formulation with that 

reported in the literature, various numerical studies have been conducted to examine the effects of different parameters, viz, 

material in-homogeneity, slenderness ratio, boundary conditions, hole-size and loading conditions on the bucking and 

postbuckling behavior, and the failure response of FGM plate. It has been concluded that clamped FGM plate with large hole-

size possesses more buckling load than with a small hole-size because of the rigid boundary edge conditions, whereas failure 

load and associated maximum transverse deflection as well as the postbuckling stiffness of FGM plate monotonically decrease 

with the increase in hole-size. It has been envisioned that the present study would provide an enhanced insight into the stability 

and failure behavior of perforated FGM structures.  

Keywords: Nonlinear analysis, Postbuckling, Functionally graded material (FGM), Finite element method (FEM), FGM 

failure, FGM plate with hole 

1 Introduction 

In recent years, lots of research has been focused on 

the development of new and efficient materials and on 

the use of these new materials to optimize the design of 

structures for various engineering applications with 

enhanced performance. At present, thin laminated 

composite plates/shells are widely used in various 

diverse engineering applications, such as high-speed 

flights and aircrafts, spacecrafts, nuclear reactors, 

satellites, defense vehicles, as the main load carrying 

members because of their high specific strength and 

stiffness. But, now-a-days functionally graded 

materials (FGMs), an advanced inhomogeneous 

composite materials with continuously and smoothly 

varying material properties, along a particular and 

predefined direction(s), obtained by gradually altering 

the volume fraction of the constituents materials 

(usually ceramic and metal), are finding increasing 

applications in numerous engineering fields because of 

the absence of interface problems (cracking and 

debonding/delamination) prevailing in conventional 

composite structures at high thermo-mechanical 

loading conditions
1,2

. Moreover, FGMs also possess, 

besides the flexibility to tailor the internal composition 

to meet the design requirements, other unique and 

outstanding properties such as high fracture toughness, 

thermal resistance along with desired structural 

integrity and high heat-shielding properties, which 

make them suitable for different applications
3,4

.  
 

Thin walled members, such as plates and shells used 

extensively in various engineering applications, are 

more susceptible to buckling, large amplitude 

deflections, or excessive stresses under different  

in-plane mechanical and/or thermal loading conditions. 

It is well known that under in-plane loading 

(compression and/or shear) conditions, plate like 

structures are designed efficiently by utilizing the 

postbuckling reserve strength possessed beyond 

buckling
5,6

. Moreover, holes or cutouts are often made 

into plates for various practical needs such as ports to 

provide access to mechanical and electrical systems, 

holes for damage inspections, and cutouts/holes to 

serve as doors and windows, etc
7–10

. However, the 

presence of these cutouts/holes changes the buckling 
————— 
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characteristics and load carrying capacity of the plate 

drastically. Therefore, to make use of a new material 

like FGM in an efficient and economical manner, it is 

very essential to analyze and gain a thorough 

knowledge of responses, such as buckling and 

postbuckling behavior and failure, of various basic 

structural elements, such as thin plates with a hole, 

made of FGM under various in-plane loads. 
 

Numerous studies pertaining to structural analysis of 

FGM plate, involving thermal stress, vibration, 

buckling, static and dynamic analysis, have been 

carried out to date. Stability analysis of FGM plates is 

of great concern and in recent years, many studies have 

been performed in this area. Birman
11

 made the first 

attempt to solve the buckling problem of functionally 

graded hybrid composite plates. Feldman and Aboudi
12

 

studied the elastic bifurcational buckling of 

functionally graded SiC/Al plate under in-plane 

compressive loading. In addition, there are numerous 

works devoted only to buckling analysis of FGM plates 

under various mechanical and/or thermal loads
13–17

.  
 

Many researchers have also conducted various 

postbuckling analysis of FGM plates under thermal 

and/or mechanical loads. Liew et al
18

 examined the 

postbuckling behavior of functionally graded 

rectangular plates integrated with surface-bonded 

piezoelectric actuators using the Reddy's higher-order 

shear deformation plate theory. Yang and Shen
19

 

developed a semi-numerical approach using 

perturbation technique in conjunction with one-

dimensional differential quadrature approximation 

and Galerkin procedure to study the large deflection 

and postbuckling responses of FGM rectangular 

plates under transverse and in-plane mechanical loads. 

An analytical solution to study the postbuckling 

behavior of moderately thick FGM plates and shallow 

shells under edge compressive loads and a 

temperature field was developed by Woo et al
20

. 

Using 3-D finite element method, Na and Kim
21,22

 

conducted 3D thermal buckling and postbuckling 

analysis of FGM plates with temperature dependent 

material properties, subjected to uniform and non-

uniform temperature rise. Shen
23

 presented the 

thermal postbuckling analysis of a simply-supported, 

shear deformable FGM plates with temperature-

dependent properties. The stability of simply-

supported rectangular FGM plates with temperature 

dependent material properties, under in-plane 

thermomechanical loading was investigated by Duc 

and Tung
24

. The material properties are assumed to be 

temperature-dependent and graded in the thickness 

direction according to a simple power-law distribution 

in terms of volume fractions of constituents. Wu et 

al
25

 predicted the postbuckling response of the 

alumina/aluminium FGM plate, subjected to thermal 

and mechanical loadings, using fast converging finite 

double Chebyshev polynomials. Lee et al
26

 

investigated the postbuckling behavior of FGM 

ceramic-metal plates under edge compression and 

temperature field conditions using element free kp-

Ritz method.  
 

Besides simulating the FGMs with continuously 

varying material properties, researchers have also 

adopted the layer-wise approximation of graded 

material properties of FGMs for structural analysis of 

FGM plate and FGM shell
27–34

. For instance, the 

layer-wise finite element formulation for static and 

dynamic analysis of a FGM plate with surface-bonded 

piezoelectric layers was used by Shakeri and 

Mirzaeifar
27

. Cinefra and Soave
28

 used the layer-wise 

formulation to obtain closed form solutions of free 

vibration of simply-supported FGM plates. Shao
29

 

obtained the solutions of temperature, displacements, 

and thermal/mechanical stresses in a functionally 

graded circular hollow cylinder by using a multi-

layered approach based on the theory of laminated 

composites. Very recently, Yaghoobi et al
30

 

investigated the thermal buckling response of 

functionally graded materials (FGMs) with surface-

bonded piezoelectric actuators under uniform 

temperature rise and constant actuator voltage using 

layer wise model of FGMs. A multilayered model of 

FGMs is also utilized by Jin
31

 in order to obtain the 

transient heat conduction behavior of FGM strip. 
 

Relatively little efforts have been made in the past 

by the researchers and the investigators to study the 

buckling and postbuckling behavior of FGM plate 

with geometric irregularities. For instance, Zhao et 

al
35

 presented results on thermal and mechanical 

buckling analysis of FGM plate with circular and 

square cutouts using the element-free kp-Ritz method. 

Lal et al
36

 developed a FEM model for stochastic 

mechanical and thermal postbuckling response of 

FGM panels with circular and square holes having 

material randomness. Natarajan et al
37

 investigated 

the buckling behavior of FGM plate containing 

geometrical flaws in the form of crack and cutouts. 

Abolghasemi et al
38

 conducted FEM study on the 

effect of the elliptical cutout on thermo-mechanical 

buckling response of FGM plate by drawing stability 
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diagrams. Among very recent attempts, Shaterzadeh et 

al
39

 investigated the buckling behavior of FGM plate 

with multiple cutouts of various shapes under uniform 

temperature rise, whereas Yu et al
40

 utilized a numerical 

method based on extended isogeometric analysis to 

study the thermal buckling behavior of FGM plate with 

internal defects (e.g., crack or cutout).  

Although most of the FGMs applications involve 

high temperature environments combined with 

various mechanical loads, but practical scenario may 

involve pure mechanical loading as well. As evident 

from the above literature study, in contrast with 

thermal and thermo-mechanical loadings, very little 

work has been done to predict the response of FGM 

plates with a central hole subjected to pure 

mechanical loadings, especially using finite element 

approach. Further, most of the investigations on 

postbuckling behavior of FGM plates are concerned 

with the study of the load versus out-of-plane 

deflection relationship under various loading and 

boundary conditions; however, no concern has been 

shown in predicting the failure load of FGM plates. 

Hence in the present paper a layer-wise nonlinear 

FEM formulation for FGM plate, based on the first-

order shear deformation theory and the von-Karman’s 

nonlinear kinematics, is presented to examine the 

effects of various parameters, viz, material in-

homogeneity (power exponent n), slenderness ratio 

(b/h), boundary conditions (SSSS, SCSC and CCCC), 

hole size (d/b ratio) and loading conditions (uniaxial 

and biaxial in-plane compression), on the bucking and 

postbuckling behavior, and the failure response of 

FGM plate with a central circular hole under in-plane 

compressive load.  

 
2 Approach and Problem Definition 
 

2.1 Modeling approach for FGM plate 

Figure 1 shows a FGM plate, consisting of two 

constituent materials (ceramic and metal), measuring 

a, b and h as length, width and thickness, respectively. 

A coordinate system (x, y, z) is established on the 

middle plane of the plate. The volume fraction of the 

material constituents is assumed to follow a simple 

power law distribution in the thickness direction only.  

In the present study, the actual non-homogeneous 

(in thickness direction) FGM plate with continuously 

varying properties along thickness is modeled as a 

laminate composed of multiple perfectly-bonded 

layers of isotropic material having layer-wise constant 

composition, as used in earlier studies
27–33

.  

2.2 Effective material properties and failure criterion for FGM  
FGMs are inhomogeneous materials of smoothly 

varying ceramic/metallic mixture ratio through the 

thickness. The volume fractions of ceramic and 

metallic constituents are assumed to follow, the power 

law distribution as: 
 ��(�) = ��	 + ���

; ��(�) = 1 − ��(�) … (1) 
 

where V denotes the volume fraction of constituents. 

The subscripts c and m, respectively, correspond to 

the ceramic and the metallic constituents. n is a 

variable called power law exponent, which determines 

the material variation profile through the plate 

thickness-coordinate, z varying from −ℎ/2 �� ℎ/2.  

The continuously varying mechanical properties, 

such as elastic constants, and yield stress of FGM can 

be depicted by a homogenized mixture rule, so called 

TTO model (also called the modified rule of 

mixtures). The TTO model, initially proposed and 

used for metal alloys (Fe-Ni-C) by Tamura et al 
41

, 

has been modified for FGMs by introducing a proper 

stress transfer parameter
42,43

 and applied by many 

researchers in the study of FGM. For instance, Jin et 

al
44

 investigated the nucleation of plastic crack 

growth near the interface of metal/ceramic FGM 

using TTO model. Williamson et al.
45

 adopted TTO 

model to investigate residual stresses developed at the 

interfaces of Al2O3-Ni. Giannakopoulos et al
46

 

investigated the elastoplastic response of Al2O3-Ni 

FGM layer using the incremental theory of plasticity 

and the stress-strain curves for FGM were drawn by 

using TTO model. Very recently, few attempts
47–49

 

have also been made to investigate the elastoplastic 

buckling and/or postbuckling behavior of FGM plates 

and shells using TTO model.  

 
 

Fig. 1 ― Modeling of actual non-homogeneous FGM plate into a 

laminate composed of multiple perfectly-bonded homogeneous layers 
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In TTO model the effective Young’s modulus of 

two-phase materials, like FGM is given in terms of 

Young’s modulii (�� and ��) and volume fractions 

(�� and ��) of respective phases (ceramic and metallic 

phases), as follows  

 �(�) = ���(�)�� �������� + (1 − ��(�))���  ×
 ���(�) �������� + (1 − ��(�))�!�  … (2) 

 

where the subscripts c and m correspond to the 

material phases ceramic and metal, respectively; and, 

q represents the stress transfer parameter, also called 

stress-to-strain transfer ratio. The value of q, 

determined numerically or/and experimentally, 

depends upon the properties of constituent materials 

as well as on the microstructure interaction in FGM 

material. For Ni-Al2O3
46

 and TiB/Ti
44

 FGMs, the 

values for q are found to be 4.5 GPa, and for FGM 

containing Al and SiC
50,51

 phases it is determined to 

be 91.6 GPa. The Poisson’s ratio is assumed to be 

constant along the thickness of the FGM plate. 
 

It is to be noticed that the TTO model assumes that 

the overall failure behavior of two-phase composite 

containing both brittle and ductile phases is governed 

by the ductile constituent
44

. This assumption is also 

considered to be reasonable in the case of FGMs 

(containing ceramic: a brittle phase, and metal: a 

ductile phase) because the ductility and good shear 

strength induced in the FGM by the metal phase relax 

the stress concentration induced around the inherited 

cracks and flaws of ceramics through the plastic 

deformation and hence, eliminate the possibility of 

brittle failure of FGM
52,53

. Therefore, based on the 

assumption that the FGM composite yields once the 

metal constituent yields, the TTO model uses q to give 

overall yield strength of FGM composite in terms of 

yield strength of ductile metallic phase ("#�) as: 

 "#(�) = "#� $��(�) + ���������  ���� (1 − ��(�))%… (3) 

 

Using the volume fraction of constituents at a 

particular value of thickness coordinate (calculated 

from Eq. (1)), the Young modulus and the yield 

strength of FGM plate at that thickness coordinate are 

calculated using Eqs. (2) and (3). Under the assumption 

that FGM fails just before the elastoplastic stage, an 

attempt is also made to predict the failure load of FGM 

plate based on 3-D von-Mises criterion. 

2.3 Mathematical formulation 
 

2.3.1 Kinematic relations  

In the Mindlin plate theory, the displacement & = '&, ), *+Tat (x, y, z) are expressed as functions of 

the mid-plane (z = 0) translations &-,)-, *- and 

independent normal rotations ./ and .# in the xz- and 

yz-planes, respectively: 
 &(0, 1, �) = &-(0, 1) + �./(0, 1) )(0, 1, �) = )-(0, 1) + �.#(0, 1) *(0, 1, �) = *-(0, 1) … (4) 
 

Incorporating the von-Karman’s assumptions to 

write the Green's strain components for moderately 

large deformations into following form
54

: 
 

2/ = 3&-30 + � 43./30 5 + 12 43*-30 5�
 

2# = 3)-31 + � 63.#31 7 + 12 43*-31 5�
 

8/#
= 3&-31 + 3)-30 + � 63./31 + 3.#30 7 + 43*-30 3*-31 5 

8/� = 3*-30 + ./ 

8#� = 3*-31 + .# 

 

 

 

 

 

 

 

 

 

 

 

... (5)
 

Rewriting the Eq. (1) into matrix form: 
 9:; = 9:-; + �9<; ... (6)
 

where 

 9:; = ':/ , :#, 8/#, 8/�, 8#�+= … (7)
  9:-; = >:/-, :#-, 8/#- , 8/�- , 8#�- ?=

 … (8)

  9:-; = @:A-B + @:�A- B … (9)

 

in which,  
 

@:A-B  = C∂u-∂x , ∂v-∂y , ∂u-∂y + ∂v-∂x , ∂w-∂x + θK, ∂w-∂y
+ θLMT @:�A- B   = N12 4∂w-∂x 5� , 12 4∂w-∂y 5� , 4∂w-∂x ∂w-∂y 5

… (10)

and,  9<; = ></ , <#, </#, 0, 0?=
 

= N∂θK∂x , ∂θL∂y , ∂θK∂y + ∂θL∂x , 0, 0PT
 

 

 

 

… (11)
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where the suffix ‘l’ and ‘nl’ stand for the linear and 

nonlinear parts, respectively, of the mid plane strain 

components. 
 

2.3.2 Constitutive relations 

Based on the assumptions that "� is negligible, the 

stress-strain relations are given by: 
 

QR
RR
S "/"#T/#T#�T/� UV

VV
W =

QR
RR
RS

X�� X�� 0 0 0X�� 0 0 0XYY 0 0Z1[[\�]^_ `��Xaa 0`��XbbUV
VV
VW

cde
df :/:#8/#8/�8#�gdh

di
, 

 

                                   … (12) 

where, k1 and k2 are shear correction factors and Xjk 

are the reduced stiffness for plane stress case and are 

function of material properties as follows: 

X�� = �(�)1 − l� , X�� = lX��, X�� = X��,  
 Xaa = Xbb = �(�)(��m) ,  

 

 

… (13)

 

where �(�) is the Young's modulus that varies across 

the thickness of FGM plate according to Eq. (2), and ν 

is the Poisson's ratio that is assumed to be constant 

through the thickness of FGM plate. 
 

2.3.3 FEM approach 

FGM plate is meshed with nine-noded Lagrangian 

elements having five degrees of freedom per node, as 

used by many researchers for the study of laminated 

composite plates
9-10

. From the principle of virtual 

work and the total Lagrangian approach, the element 

level nonlinear equilibrium equation is derived as
54

: 
 

n9o; = p C'q-+=9r; + 'qs+=9t; + 'qu+ = 9X;M vwx −
 y = 0,  … (14) 
 

where, n9o; is the residual force which is a 

function of nodal displacement vector {o}; q-, qs, 

and qs are the strain-displacement matrices 

corresponding to in-plane axial, bending and shear 

strains, respectively; {N} is the stress resultants per 

unit length; {M} is the moment resultants per unit 

length; {Q} represents the transverse shear stress 

resultants per unit length; and, R is the in-plane 

external applied loads.  

As a result of FEM formulation, the developed 

nonlinear algebraic equations are solved using 

Newton-Raphson method, wherein the numerical 

stability and convergence of the solution are obtained 

by applying the load in small increments. A selective 

integration scheme (i.e., 3 × 3 integration rule to 

integrate the functions related to the membrane and 

the bending behavior, and 2 × 2 integration rule for 

the transverse shear terms) is used to avoid the shear 

locking problem. The value of five stress components 

(three in-plane stresses and two transverse shear 

stresses) to be supplied in 3-D von-Mises criterion, 

are calculated at mid thickness of each layer of 

individual element using the constitutive equations
5-6

.  
 

2.4 Problem definition 
 

2.4.1 Material properties and geometric model 

In the present study, nonlinear finite element 

analysis of a rectangular FGM plate of dimension (a × 

b × h) with centrally located circular hole of different 

d/b ratios (where d refers to the diameter of circular 

hole and b the width of FGM plate) is carried out to 

study its buckling and postbuckling responses, and 

failure load. The FGM plate is assumed to be made of 

two constituents: TiB (ceramic phase) and Ti 

(metallic phase). Following material properties are 

taken for the ceramic and metallic phases of FGM
39

: �{ = 375GPa, �� = 107 GPa, l = 0.24 (for ceramic 

and metal both) and "L~ = 400 MPa. The value of q, 

the stress transfer parameter
39

, is taken as 4.5 GPa. 
 

2.4.2 Boundary and loading conditions 

The current study is carried out for the FGM plate 

with flexural boundary conditions (BCs) to be 

clamped on all edges (CCCC), except for the case 

where effects of BCs are studied; wherein, in addition 

to CCCC (clamped at all edges), following three sets 

of flexural BCs are considered:  

SCSC: simply-supported at y = 0 & b edges and 

clamped at other two edges (i.e., at x = 0 and x = a); 

SSSS: simply-supported at all edges. 

It is to be noted that in all the above cases of BCs, 

the in-plane boundary conditions on edges x = 0, x = 

a, y = 0 and y = b (as depicted in Fig. 2) related to in-

plane displacements in x- and y-directions (u and v, 

respectively) are taken to be same.  

Two types of in-plane and uniformly distributed 

loading conditions are considered: uniaxial (only in x-

direction) compression load applied on edge x = a, 

with constraining the in-plane movement in  

x-direction at edge x = 0, whereas the in-plane 

movements in x- and y-directions at edges x = 0 and  

y = 0 are constrained while applying the biaxial  

(in x- and y-directions) compression loads on edges  

x = a and y = b. Results for buckling and failure loads 

and the transverse deflection are presented in the 

following non-dimensional forms: 
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In-plane buckling and failure load: 
�� (�� �) s�

��	�  

Maximum transverse deflection: 
����	  

 

where �� represents the Young’s modulus of ceramic; ℎ 

the thickness of FGM plate; � the width of plate; r/ (�� #) the in-plane compressive load in x-direction (or 

y-direction)  

 

3 Convergence Study 

To fix the number of elements in the finite element 

mesh and the number of layers to model the FGM plate, 

a convergence study was conducted for a clamped 

(CCCC), square Ti/TiB FGM (for n = 1) plate with 

centrally located circular hole of size d/b = 0.1 

The convergence of buckling and failure loads was 

checked under uniaxial compressive load and the 

results are given in Table 1. It can be observed from 

Table 1 that a reasonably good convergence of 

buckling loads and failure loads is obtained for the 

mesh of 120 elements having 30 layers. Schematic of 

finite element mesh along with element-and node-

numbering schemes for a typical FGM plate with 

circular hole is shown in Fig. 2. 

Table 1 – Results of convergence study for critical buckling load �� = ����
���� and failure load ��∗ = �������

����  

Number of 

elements 

Number of layers 

10 20 30 40 � �∗  � �∗  � �∗  � �∗ �� 4.5495 5.6965 4.5113 5.6583 4.5113 5.6200 4.5016 5.5698 �� 4.4540 5.8876 4.2054 5.5818 4.0525 5.5053 4.1201 5.3409 �� 4.2054 5.7347 4.1672 5.4671 4.1672 5.4671 4.1290 5.3409 

120 4.1672 5.6583 4.1290 5.3906 4.1290 5.2759 4.1290 5.2646 

144 4.1672 5.5818 4.1290 5.3142 4.1290 5.2377 4.1290 5.2646 
 

 
 

Fig. 2 ― Meshing of a typical FGM plate with a circular hole along with in-plane boundary conditions 
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4 Verification of Results 
The accuracy of the developed program is checked 

by comparing the results obtained using the present 

formulation with the results available in the existing 

literature. A thin square plate (b/h=100) containing a 

central circular hole (of various sizes) under in-plane 

(uniaxial and biaxial) compressive loading conditions 

is considered to make the comparison of results with 

those published by Sabir and Chow
7
. The plate is 

considered to be made of an isotropic and 

homogenous material with Young’s modulus, E = 207 

GPa and Poisson’s ratio, v = 0.3, (same as used in Ref.
7
). 

Buckling load (normalized as:
����!m� ¡� ���s�

�	� ) are 

compared for simply-supported and clamped edge 

boundary conditions. The results of comparison are 

shown in Table 2. It can be observed that the results 

obtained from the present work are in good agreement 

with the results as reported by Sabir and Chow 
7
. 

 

5 Numerical Studies  
Various numerical studies are conducted in this 

paper to examine the effects of different parameters, 

viz. material in-homogeneity (power exponent n), 

slenderness ratio (b/h), boundary conditions (SSSS, 

SCSC and CCCC), hole size (d/b ratio) and loading 

conditions (uniaxial and biaxial in-plane compression) 

on the bucking and postbuckling behavior, and the 

failure response of FGM plate. A Ti/TiB FGM square 

plate (of side 279 mm) with a central circular hole is 

considered. It is to mention here that material is 

graded as per TTO model as specified in Section 2.3, 

i.e., using the volume fraction of the constituents at a 

particular value of thickness coordinate (calculated 

using Eq. (1)), the Young's modulus and the yield 

strength of FGM plate at that thickness coordinate are 

calculated using Eqs. (2) and (3), respectively. 
 

6 Results and Discussion 
 

6.1 Effect of material in-homogeneity  

FGM with different material in-homogeneity is 

obtained by varying volume fraction through the 

thickness using Eq. (1) for different values of exponent 

n (0, 1, 2, 3, and 10). A CCCC FGM plate with a 

circular hole is studied under uniaxial compression. 

The width-to- thickness ratio (slenderness ratio, b/h) 

was taken to be 200. The ratio of diameter of circular 

hole to width of the plate (d/b) is taken as 0.1. The 

corresponding results are given in Table 3 and plotted 

in Fig. 3. Figure 3 and Table 3 depict higher value of 

critical buckling and failure loads corresponding to 

FGM plate (for n > 0) as compared to that of pure 

metal plate (for n = 0). At this point, it is necessary to 

mention that the proportions of constituent materials 

through the thickness of FGM plate are controlled by 

Table 2 ― Verification of results 

Boundary  

condition 

Loading 

condition 

d/b ratio Normalized buckling load �����!ν� 
π� N¤¥¦�

E¨�  

Present study Ref7 

SSSS 

uniaxial 

0.1 3.81 3.80 

0.3 3.19 3.20 

0.5 2.91 2.90 

biaxial 

0.1 1.91 1.88 

0.3 1.77 1.75 

0.5 1.66 1.65 

CCCC 

uniaxial 

0.1 9.40 9.45 

0.3 8.93 9.04 

0.5 10.90 9.40 

biaxial 

0.1 5.07 4.88 

0.3 5.27 5.10 

0.5 7.86 7.60 

Table 3 ― Critical buckling load�� = ����
����, failure load    

��∗ = �������
����  and maximum transverse deflection (©ª��� ) of the 

square CCCC Ti/TiB FGM plate with circular hole of size 

d/b=0.1 under uniaxial compression 

n � �∗ *�«/ℎ  

0 2.39 4.11 1.89 

1 4.13 5.27 1.14 

2 4.74 6.11 1.15 

3 5.16 6.61 1.12 

10 6.46 7.99 1.04 

 
 

Fig.3 ― Effect of power law exponent (n) on postbuckling 

response of square Ti/TiB FGM plate with a circular hole (of d/b

= 0.1) under uniaxial compression. 
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the value of power law exponent n in Eq. (1). Higher 

value of n means high proportion of TiB which possess 

higher buckling and failure strengths as compared to 

that of metal constituent and hence, the buckling and 

failure strength of the resulting FGM plate are 

increased. It is further to note from Fig. 3 that the FGM 

plate also possesses reserved postbuckling strength, 

whereas the FGM has same postbuckling stiffness 

(given by the slope of the load-deflection curve at a 

particular value of deflection) as that of metal 

constituent. Moreover, it is also to report that for FGM 

(n > 0) the failure takes place at the hole edges, 

whereas it occurs at the outer edges of the plate for n = 

0 (in the case of pure metal). 
 

6.2 Effect of slenderness ratio 

Results of effect of slenderness ratio (b/h) on 

buckling and postbuckling behavior and the failure of 

clamped FGM (for n = 1) plate with a circular hole (of 

d/b=0.1) under uniaxial compression are shown in Table 

4 and Fig. 4. The various values of slenderness ratio 

taken are 50, 100, 150, 200 and 300. It is necessary to 

mention here that while carrying out the study on the 

effects of slenderness ratios; the number of layers was 

increased proportionally based on the convergence study 

conducted in Section 3.0 to get the converged results. 

For example, for b/h = 100, the numbers of layers were 

taken as 60, as against 30 for b/h = 200 calculated in the 

convergence study carried out in Section 3. As observed 

from Fig. 4 and Table 4 that although the effect of b/h is 

not evident in the non-dimensional load-deflection plots 

(because of the presence of b/h term in non-dimensional 

form), but the effect of b/h ratio is very significant on 

dimensional values of critical buckling and failure loads, 

as observed in Table 4. 

It can also be observed from Fig. 4 and Table 4 that 

the in FGM plate with slenderness ratios equal to 50 

and 100, failure occurs before the buckling starts; for 

all other cases (b/h = 150, 200 and 300) the FGM fails 

in postbuckling region after critical buckling. 

The current findings explain that thin FGM plate is 

expected to buckle before the stresses reach to a 

critical level as defined by the criterion, whereas thick 

FGM plate would fail before buckling because of 

large stresses developed inside the FGM. 

Furthermore, Table 4 shows that the dimensional 

values of buckling (for b/h > 100) and failure loads 

are decreased considerably with the decrease in the 

thickness of FGM plate (with the increase in b/h). It is 

to mention here that the observed location of failure in 

FGM plate for all slenderness ratios remains same at 

hole edge, except for b/h = 300 wherein the failure 

occurs at the outer edge of FGM plate.  
 
6.3 Effect of hole size  

The effect of circular hole size (d/b = 0.1, 0.2, 0.3, 

0.4 and 0.5) on the responses of clamped FGM (for n 

= 1) plate (with b/h = 200) under uniaxial 

compression load are also investigated and the 

corresponding results are shown in Table 5 and Fig. 5. 

It can be observed from Fig. 5 and Table 5 that the 

buckling load decreases slightly with an increase in 

d/b ratio up to 0.3, but subsequently the buckling load 

start increasing with the increase in d/b ratio. As 

against the conventional wisdom, this peculiar 

phenomenon of increase in buckling load of FGM 

plate with large hole as compared to small hole size 

can be explained as follows. When the hole size 

becomes greater than d/b = 0.3, it affects the load 

carrying pattern of the plate with most of the 

Table 4 ― Effect of slenderness ratio (b/h) on critical buckling 

load and failure load of the square CCCC TiB/Ti FGM plate  

(n = 1) under uniaxial compression with a circular hole. 

b/h 

Buckling load Failure load 

Dimensional 

(kN) 

Non-

dimensional 
 

Dimensional 

(kN) 

Non-

dimensional 

50* 854.57 1.02 449.97 0.53 

100* 359.99 3.44 219.99 2.10 

150 127.49 4.11 128.49 4.14 

200 54.00 4.13 68.99 5.27 

300 16.50 4.25 33.99 8.77 

*In the cases of b/h =50 and 100 failure would take place before 

buckling. 

 
 

Fig. 4 ― Effect of slenderness ratio on postbuckling and failure 

behavior of FGM plate under uniaxial compression. 
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compressive load carried by the narrow side strips of 

material along the clamped boundaries of the plate. 

It is worth mentioning that similar anomalous 

findings of increase in buckling load with increase in 

the hole size have been reported by many other 

investigators/researchers for the cases of both 

composite and isotropic plates for a right combination 

of boundary conditions and plate’s aspect ratio
5,55–59

. 

For instance, Ritchie and Rhoades
58

 found that 

presence of perforation in isotropic plate does not 

reduce the buckling load always, and in some 

instances may increase the buckling load of plate. In 

addition, this peculiar notion has been verified both 

numerically and experimentally for orthotropic 

laminated plates by Nemeth
55

. Very lately, Prajapat et 

al
59

 examined the buckling behavior of isotropic 

perforated plate and concluded that the unrestrained 

edges of cutout make the plate free to move laterally 

and causes tensile stresses or comparatively low 

compressive stresses in the middle region of the plate 

which results in a buckling load that is even higher 

than the buckling load of the plate with no cutout. 

Further, this peculiar notion has been verified for 

perforated FGM plate by Abolghasemi et al
38

. A 

monotonic decrement in the failure load, associated 

transverse deflection and postbuckling stiffness with 

an increase in hole size, can also be noticed from  

Fig. 5 and Table 5.  
 

6.4 Effect of boundary conditions 

Figure 6 contains the plots corresponding to the 

effects of boundary conditions (SSSS, SCSC and 

CCCC) on the bucking and postbuckling behavior, 

and the failure response of FGM (for n = 1) plate (b/h 

= 200) with a circular hole of size d/b = 0.1 under 

uniaxial compression. It can be observed from Fig. 6 

that CCCC plate depicts highest buckling and 

postbuckling strength (for a particular value of 

deflection) and failure load whereas for SSSS plate 

the values are the lowest. The maximum transverse 

deflection at the time of failure is minimum for CCCC 

plate condition, and it is maximum for SSSS 

boundary condition. These findings can also be 

attributed to the fact that increase in the rigidity of 

supports on the edges of FGM plate results in the 

increase of buckling and postbuckling strengths and 

failure load, and the decrease in transverse deflection.  
 

6.5 Effect of loading conditions  

The effects of loading conditions (in-plane uniaxial 

and biaxial compression) on the buckling and 

postbuckling responses, and failure of clamped FGM 

(for n = 1) plate (of b/h = 200) with a circular hole of 

size d/b = 0.1 are investigated, and the corresponding 

 
 

Fig. 5 ― Effect of hole size on buckling and postbuckling 

responses and failure load of square Ti/TiB FGM (n=1) plate with 

a circular hole under uniaxial compression. 
 

Table 5 ― Effect of hole size on buckling and failure 

characteristics of square Ti/TiB FGM 

(n = 1) plate with a circular hole under uniaxial compression. 

d/b � �∗ 
*�«/ℎ  

0.0 4.43 6.72 1.58 

0.1 4.12 5.27 1.14 

0.2 3.93 4.89 1.10 

0.3 3.97 4.62 1.01 

0.4 4.20 4.47 0.77 

0.5 4.32 4.48 0.60 

 
 

Fig. 6 ― Load-deflection response and failure of FGM plate with 

different boundary conditions. 
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results are plotted in Fig. 7. The results show that 

maximum buckling load is obtained for plate under 

uniaxial compression (for Ny/Nx = 0) and the 

postbuckling load-deflection curves become 

significantly lower as the value of Ny is increased.  

 
7 Conclusions  

Based on the present formulation and the various 

numerical studies conducted on Ti/TiB FGM square 

plate with a central circular hole to examine the 

effects of various parameters, viz, material in-

homogeneity (power exponent n), slenderness ratio 

(b/h), boundary conditions (SSSS, SCSC and CCCC), 

hole size (d/b ratio) and loading conditions (uni-axial 

and bi-axial in-plane compression) on the bucking and 

postbuckling behavior, and the failure response of 

FGM plate, the following important conclusions can 

be drawn: 
 

(i) Buckling load and reserved postbuckling 

strength of perforated FGM plate increase 

monotonically with an increase in power law 

exponent n, whereas the postbuckling stiffness of 

FGM plate at all values of transverse deflection 

is same as that of metal plate (n = 0). 

(ii) Thin FGM plate is found to be vulnerable 

towards buckling failure, whereas the thick FGM 

plate fails because of large stresses developed 

before buckling.  

(iii) In the case of FGM plate with larger hole size, 

the rigid clamped conditions at the boundary 

edges of the FGM plate are found to provide the 

required rigidity to increase its buckling load as 

compared to smaller hole size.  

(iv) Increase in the hole size results in a monotonic 

decrement in the failure load, maximum 

transverse deflection and postbuckling stiffness 

of FGM plate.  
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