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Considering 1S0 pairing in infinite neutron matter and nuclear matter, and knowing the fact that in the lowest order 

approximation, the pairing interaction has been taken to be the bare nucleon-nucleon interaction in the 1S0 channel, the 

energy gap has been determined directly from the 1S0 phase shifts. The values of energy gaps have been found to increase 

rapidly for low values of phase shifts, up to around 16°, and it is roughly constant with a value approximately equal to  

1.08 MeV for phase shifts1 greater than 16°. 
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1 Introduction 

The energy gap is determined to a remarkable 

extent by the available 
1
S0 phase shifts. Thus, the 

quantitative features of 
1
S0 pairing in nuclear matter 

and neutron matter can be obtained directly from 

the
1
S0 phase shifts. This happens because the nucleon-

nucleon interaction is very nearly rank-one separable 

in this channel due to the presence of a bound state at 

zero energy, even for densities as high as kF = 1.4 fm
-1

. 

This explains why all bare nucleon-nucleon 

interactions give nearly identical results for the 
1
S0 

energy gap in lowest-order Bardeen Cooper and 

Schrieffer calculations. 

The 
1
S0 neutron matter super fluid is relevant for 

phenomena that can occur in the inner crust of 

neutron stars, like the formation of glitches, which 

may be related to vortex pinning of the superfluid 

phase in the solid crust. 

The results of different groups are in close 

agreement on the
1
S0 pairing gap values and on its 

density dependence, which shows a peak value of 

about 3 MeV at a Fermi momentum
2
 close to  

kF ≈ 0.8 fm
-1

. All these calculations adopt the bare 

nucleon-nucleon interaction as the pairing force, and 

it has been pointed out that the screening by the 

medium of the interaction could strongly reduce the 

pairing strength in this channel
3
. 

The calculation of the
1
S0 gap in symmetric nuclear 

matter is closely related to the one for neutron matter. 

Even with modern charge-dependent interactions, the 

resulting pairing gaps for this partial wave are fairly 

similar
2
. 

The size of the neutron-proton (np) 
3
S1-

3
D1 energy 

gap in symmetric or asymmetric nuclear matter has, 

however, been a much debated issue since the first 

calculations of this quantity appeared. While solutions 

of the Bardeen-Cooper and Schrieffer equations with 

bare nucleon-nucleon forces give a large energy  

gap of several MeVs at the saturation density
4,5,6

 

 kF = 1.36 fm
-1 

and there is little empirical evidence 

from finite nuclei for such strong np pairing 

correlations, except possibly for isospin  

T = 0 and N = Z. 

One possible resolution of this problem lies in the 

fact that all these calculations have negligible 

contributions from the induced interaction. 

Fluctuations in the isospin and the spin-isospin 

channel will probably make the pairing interaction 

more repulsive, leading to a substantially lower 

energy gap. One often-neglected aspect is that all non-

relativistic calculations of the nuclear matter equation 

of state (EoS) with two-body nucleon-nucleon forces 

fitted to scattering data fail to reproduce the empirical 

saturation point, seemingly regardless of the 

sophistication of the many-body scheme employed. 

For example, a Brueckner-Hartree-Fock (BHF) 

calculation of the EoS with recent parameterizations 

of the nucleon-nucleoninteraction would typically 

give saturation at kF = 1.6-1.8 fm
-1

. 
—————— 
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In fact, by the advent of Effective Field Theory 

(EFT) and applying it to the low-energy Quantum 

Chromodynamics (QCD), we are somehow coming 

back to the meson-exchange theories with the aid of 

Chiral Perturbation Theory (CHPT). Describing the 

atomic-nuclei properties in terms of the interactions 

between the nucleon pairs is indeed the main goal of 

nuclear physics.  

Apart from relatively weak electric forces, the 

nuclear interactions between two protons are very 

similar to those between two neutrons. This yields the 

idea of charge symmetry of the nuclear forces. 

Furthermore, the proton-neutron interaction is also 

very similar. 
 

2 Experimental Results for Phase Shifts and 

Energy Gap 
In determining phase shifts and energy gap 

experimentally using the CD-Bonn potential
7
, the 

Nijmegen I and Nijmegen II potentials
8
, the results 

are virtually identical, with the maximum value of the 

gap varying from 2.98 MeV for the Nijmegen I 

potential to 3.05 MeV for the Nijmegen II potential. 

The agreement between the direct calculation from 

the phase shifts and the CD-Bonn and Nijmegen 

calculation of ∆F is satisfying, even at densities as 

high as kF = 1.4 fm
-1

. It shows that the values of 

energy gap increase with increase in Fermi 

momentum then reach saturation where further 

increase in Fermi momentum the energy gap becomes 

constant. 

Maximal pairing correlations at the Fermi surface 

for the relativistic versions A, B, and C of the Bonn 

potential and for the Gogny force D1 are Bonn  

A ∆(kf) = 2.80 MeV for 0.76 fm
-1

, Bonn B ∆(kf) = 2.84 

MeV for 0.76 fm
-1

, Bonn C ∆(kf) = 2.83 MeV for 0.76 

fm
-1

 and Gogny D1 ∆(kf) = 2.78 MeV for 0.80 fm
-1

.  

It is found that the neutron pairing gap ∆Fn
 is 

strongly dependent on the Fermi momentum, or 

equivalently, the nuclear matter density. Energy gap, 

∆Fn
, increases as the Fermi momentum (or density) 

goes down, reaches a maximum at kFn
 ≈ 0.8 fm

-1
in 

symmetric nuclear matter or kFn
 ≈ 0.9 fm

-1
in pure 

neutron matter, and then rapidly drops to zero
9
.  

A systematical enhancement of about 0.3 MeV for ∆Fn
 

around kFn
 ≈ 0.8 fm

-1 
is revealed in pure neutron 

matter compared with those in symmetric nuclear 

matter for all of the adopted pairing interactions
10

. 

In comparison with the Bonn-B potential, it is seen 

that the Gogny interactions especially D1 have larger 

pairing gap when approaching to the saturation 

density. At kFn
 = 0.8 fm

-1
, among the adopted pairing 

interactions, D1 gives the maximum values of  ∆Fn
, 

namely, 3.13 MeV in symmetric nuclear matter and 

3.40 MeV in pure neutron matter. 

As the density decreases, the values of 
nF∆  from 

D1, D1S and D1N 
become first consistent with and then 

smaller than the one from Bonn-B potential gradually. 

As illustrated in a recent work, the pairing strength 

required for appearance of a dineutron Bose Einstein 

Condensation (BEC) state in the low-density limit 

must be stronger than 1.1 times of Bonn-B potential, 

and the corresponding pairing gap ∆Fn
 is 4.12 MeV 

around kFn
 = 0.8 fm

-1
. Therefore, it is expected here 

again with the Gogny pairing interactions that a true 

dineutron BEC state cannot occur at any density in 

nuclear matter. 

For the 
1
S0 channel in nuclear physics, depending 

upon the number of neutrons, when there is a 

nucleon-nucleon interaction such that their spins are 

aligned opposite, the angular momentum is zero. The 

channel for such neutron excess will be 
1
S0. There are 

two weak coupling limits. One is when the potential is 

weak and attractive for large inter-particle spacing 

and second when the potential becomes repulsive at  

r ≈ 0.6 fm. The potential has a value of some few 

MeV. In the strong coupling limit, the nucleon-

nucleon potential is large and attractive; its value 

reaches a maximum of around 100 MeV at r ≈ 1 fm. 
 

3 Theoretical Formulations 

At low energies, the effective interaction between 

two particles is determined by the S-wave scattering 

length, 0a . For proton-neutron in a singlet spin state, 

the scattering length is -23.7 fm implying a very 

strong attraction between two nucleons in the spin 

singlet state, which is large compared with the range 

of nuclear interactions of ≈ 1 fm. The two-body 

Hamiltonian equation for an assembly of nucleon 

particles in the ground state will be used as a basis for 

the study as given: 
 

1 2H H H a a V a a a aα α α αβγδ α β δ γα αβγδ
ε

∧ ∧ ∧
+ + += + = +∑ ∑

  
...(1) 

 

where,
∧

1H represents the kinetic energy of the system, 

∧

2H  represents the potential energy of the system, a +
 

is the fermion creation operator, a is the fermion 

annihilation operator, αβγδV  represents the coupled 
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matrix elements of the two-body interaction V(r). The 

sums run over all possible single-particle quantum 

numbers. The pairing gap is the attractive potential for 

k≤ 1.74 fm
-1

, or for inter-particle distances r ≥ 0.6 fm. 

The second term in Eq. (1) shows that in the 

nucleus there is interaction of the paired nucleons 

which are created and annilated which brings about 

the phase shift and energy gap in the system at a 

particular potential at the Fermi surface. 

The exponential potential is used in this research in 

derivation of phase shift and energy gap, since it has 

not been much explored by other researchers fully 

like the Gaussian well potential and Yukawa well 

potential
11

: 
 

( )
2

0

r

V r V e β
−

= −  ...(2) 
 

where, V0 is the potential well depth, V(r) is the 

interacting potential, β is the range of the nucleon-

nucleon force and r  is the inter-particle distance. This 

potential is the basis for this research since it is 

substituted inthe Born-approximation phase shifts, 

( )
fk

ℓ
δ , for scattering from a spherical potential, V(r), 

in 3-D to find the new values of phase shifts. 

The pairing gap
12,13,14

 for small values of 0ak f
is: 

 

( ) 2
0

8
exp

2f
f

k
k ae

πλ
 

−∆ =   
 

   
...(3) 

 

where a0 is the scattering length in the 
1
S0 channel  

(a0= -23.7 fm), λ is a constant λ ≈ 1 and e = 2.718.. 

Here a0 is related to the interaction potential between 

a pair of nucleons. However, at saturation density  

ρ0= 0.17 fm
-3

 and kf =1.36 fm
-1

.  

For low energy scattering, especially in nuclear 

physics, the phase shift, ( )
fk

ℓ
δ  , due to scattering is 

given by the relation
2,15

: 
 

( ) 2

0

0 2

11
cot fff kr

a
kk +−=

ℓ
δ

   
...(4) 

 

here r0 is the effective range of the nuclear force 

which roughly corresponds to the size of the potential 

and 
ℓ

δ ( )
fk  is the S-wave scattering phase-shift. 

Phase shift for nuclear with large neutron excess is 

given by: 
 

( )
ff kk 6899.10 =δ
  

...(5) 
 

For scattering length, a0 = -23.7 fm which is the 

scattering length in the 
1
S0 channel, epsilon, e = 2.718 

and λ ≈ 1substituting in Eq. (5) for energy gap ( )
fk∆

 
it becomes: 

 

( ) 0.0663
1.0827.expf

f

k
k

 −
∆ =   

 
 ...(6) 

 

To determine a formula correlating phase shift 

( )
fk

ℓ
δ and energy gap ( )

fk∆
 

with the nucleon-

nucleon interaction, we make fk the subject of the 

formula in Eq. (5) hence the equation becomes: 
 

( )0

1.6899

f

f

k
k

δ
=

  
...(7) 

 

Substituting Eq. (7) in Eq. (6) the new equation of 

energy gap ( )
fk∆  in correlation to phase shift 

( )
fk

ℓ
δ

 
becomes: 

 

( ) ( )0

0.11201.0827expf

f

k
kδ

 
−∆ =   
    

· ·  (8) 

 

This equation is useful in calculation of values of 

energy gap ( )
fk∆  for specific values of phase 

shift ( )
fk

ℓ
δ

 
in large nuclear systems. We consider 

1
S0 

pairing in infinite neutron matter and nuclear matter 

and show that in the lowest order approximation, 

where the pairing interaction is taken to be the bare 

nucleon-nucleon interaction in the 
1
S0 channel, the 

pairing interaction and the energy gap can be 

determined directly from the 
1
S0 phase shifts. This is 

due to the almost separable character of the nucleon-

nucleon interaction in this partial wave
1
. 

This means, in turn, that we can, through an 

inspection of experimental scattering data, understand 

which partial waves may yield a positive pairing gap 

and eventually lead to a superfluid phase transition in 

an infinite fermionic system. 
 

4 Results and Discussions 
Equation (8) is useful in calculation of energy gap 

( )
fk∆  for specific values of phase shift ( )

fk
ℓ

δ
 
in 

large nuclear systems. The variation of energy gap 

( )
fk∆

 
against phase shift ( )

fk
ℓ

δ is studied using 

mathCAD 2000 professional software and the data 

tabulated. A graph depicting the variation of energy 

gap versus phase shift is drawn as shown in Fig. 1. 

The energy gap, ( )
fk∆ , increases steadily and 

faster for low phase shift , ( )
fk

ℓ
δ , up to around 16° 
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and it is roughly constant with a value 08.1≅  MeV 

for phase shifts, ( ) 16>fk
ℓ

δ degrees. Considering 
1
S0 

pairing in infinite neutron matter and nuclear matter 

and showing that in the lowest order approximation, 

where the pairing interaction is taken to be the  

bare nucleon-nucleon interaction in the 
1
S0 channel, 

the pairing interaction and the energy gap, ( )
fk∆ , can 

be determined directly from the 
1
S0 phase 

shifts
1
, ( )

fk
ℓ

δ . 

 

5 Conclusions 
The bare nucleon-nucleon interaction in the 

1
S0 

channel, the pairing interaction and the energy 

gap, ( )
fk∆ , can be determined directly from the 

1
S0 

phase shifts, ( )
fk

ℓ
δ .  
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Fig. 1 – A graph of energy gap against phase shift 
 


