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This paper deals with the study of an unsteady magnetohydrodynamic natural convective flow of a viscous 

incompressible electrically conducting fluid past an impulsively moving infinite vertical plate with ramped temperature and 

mass concentration taken into account the Hall effects. A uniform magnetic field is applied transversely to the direction of 

the flow. The flow consideration is subjected to small magnetic Reynolds number. Induced magnetic field is absent. The 

Rosseland approximation is used to describe the radiative heat flux in the energy equation. Analytical solution of the 

governing equations has been obtained by employing the Laplace transform technique. The influences of the pertinent 

parameters on the velocity field, temperature distribution, mass concentration in fluid, shear stress and rate of heat and mass 

transfer are discussed with the help of graphs. Hall current is found to elevate the fluid velocity components. It is observed 

that significant difference can be observed between the velocity profiles due to ramped and isothermal boundary conditions. 
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1 Introduction 
In many engineering applications, especially in 

heat exchangers, heat transfer improvement is an 

important issue. The plate heat exchangers are the 

most important in most of the industries such as food 

processing, drug and chemical industries. Boundary 

layer theory is an important aspect in the study of a 

continuously stretching surface into aquiescent fluid, 

a flows cenario that has garnered much attention over 

several decades. Some of applications that involve 

this scenario include hot rolling, paper production, 

metal spinning, drawing plastic films, glass blowing, 

continuous casting of metals, and spinning of fibers. 

Natural or free convection is a physical process of 

heat and mass transfer involving fluids which 

originates when the temperature as well as species 

concentration change cause density variations 

inducing buoyancy forces to act on the fluid. Such 

flows exist abundantly in nature and due to its 

applications in engineering and geophysical 

environments, these have been studied extensively in 

practice. Welty et al.
1
 defines mass transfer as the 

transport of one constituent from a region of higher 

concentration to that of a lower concentration. Mass 

transfer is the basis for many biological and chemical 

processes. Biological processes include the 

oxygenation of blood and the transport of ions across 

membranes within the kidney. Mass transfer also 

occurs in many other processes such as absorption, 

drying, precipitation, membrane filtration and 

distillation. Another process of heat transfer is 

radiation through electromagnetic waves. Many 

engineering processes such as fossil fuel combustion 

energy processes, solar power technology, 

astrophysical flows and space vehicle re-entry occur 

at high temperature, so radiative heat transfer plays 

very important role. Also thermal radiation on flow 

and heat transfer processes is of major interest in the 

design of many advanced energy conversion systems 

operating at high temperature. Thermal radiation 

effects become important when the difference 

between the surface and the ambient temperature is 

large. Radiative convective flows are encountered in 

several industrial and environmental processes. The 

study of radiation interaction with convection for heat 

and mass transfer in fluids is quite significant. The 

heating of rooms inside buildings using radiators is an 

example of application of heat transfer by free 

convection. Sometimes along with the free convection 

currents caused by difference in temperature of the 
—————— 
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flow is also affected by the differences in 

concentration or material constitution. There are many 

situations where convection heat transfer phenomena 

are accompanied by mass transfer also. When mass 

transfer takes place in a fluid at rest, the mass is 

transferred purely by molecular diffusion resulting 

from concentration gradients. For low concentration 

of the mass in the fluid and low mass transfer rates, 

the convective heat and mass transfer processes are 

similar in nature. A number of investigations have 

already been carried out with combined heat and mass 

transfer under the assumption of different physical 

situations. The illustrative examples of mass transfer 

can be found in the book of Cussler
2
. Combined heat 

and mass transfer flow past a surface analyzed by 

Chaudhary et al.
3
, Muthucumaraswamy et al.

4-6
 and 

Rajput et al.
7
 with different physical conditions. 

Juncu
8
 pioneered unsteady heat and mass transfer 

flow past a surface by numerical method. Das et al.
9
 

considered the effects of first order chemical reaction 

on the flow past an impulsively started infinite 

vertical plate with constant heat flux and mass 

transfer. 

In the above mentioned studies the effects of 

radiation on the flow has not been considered. 

Actually, many processes in new engineering areas 

occur at high temperature and knowledge of radiation 

heat transfer becomes imperative for the design of the 

pertinent equipment. Nuclear power plants, gas 

turbines and the various propulsion devices for 

aircraft, missiles, satellites, and space vehicles are 

examples of such engineering areas. The unsteady 

free convection flow past a vertical plate with 

chemical reaction under different temperature 

condition on the plate is elucidated by Neog et al.
10

 

and Rajesh et al.
11

 Thermal radiation effect on the 

flow past a vertical plate with mass transfer is 

examined by Muralidharan et al.
12

 and Rajput et al.
13

. 

Natural convective flow past an oscillating plate with 

constant mass flux in the presence of radiation has 

been studied by Chaudhary et al.
14

. The effects of 

radiation on free convection on the accelerated flow 

of a viscous incompressible fluid past an infinite 

vertical plate has many important technological 

applications in the astrophysical, geophysical and 

engineering problem. However, it seems that less 

attention was paid on hydromagnetic free convection 

flows near a vertical plate subjected to a constant heat 

flux boundary condition even though this situation 

involves in many engineering applications. Ogulu et al.
15

 

and Narahari et al.
16

 have examined the flow past a 

surface with constant heat flux. The free convection 

effects on flow past an infinite vertical accelerated 

plate with constant heat flux is pioneered by 

Chaudhary et al.
17

. Ahmed and Dutta
18

 have presented 

the transient mass transfer flow past an impulsively 

started infinite vertical plate with ramped plate 

velocity and ramped temperature. 

The flow of fluid in the presence of natural 

convection is altered due to temperature and 

concentration gradient sultimately affecting the 

momentum boundary layer thickness.Wall suction 

and wall motion is an efficient way to control the 

thickness of momentum boundary layer. Besides this, 

electrically conducting fluid flow can be controlled by 

electromagnetic forces. Whereas, The motion of 

fluids with high electrical conductivity can be 

controlled by classical MHD flow control. In weakly 

conducting fluids however, the currents induced by an 

external magnetic field alone are too small, and an 

external electric field must be applied to achieve an 

efficient flow control. The study of effects of 

magnetic field on free convection flow is important in 

liquid metals, electrolytes and ionized gases. 

Geophysics encounters MHD phenomena in 

interaction on conducting fluids and magnetic fields. 

MHD in the present form is due to pioneer 

contribution of several notable authors like Alfven
19

, 

Cowling
20

. With the advent of very high-speed 

(hypersonic) flight, the subject of 

magnetohydrodynamics (MHD) has assumed great 

significance. This is due to the fact that ahead of a 

high-speed body entering the atmosphere a shock 

wave, as mentioned earlier is formed between the 

wave and body surface and there will be a layer of gas 

at extremely high temperature due to shock 

compression as well as frictional heating in the 

boundary layer. At such high temperatures, the gas 

becomes ionized and hence becomes electrically 

conducting. Hence it can be expected that by the 

application of a suitably oriented magnetic field to the 

flow in the shock layer, the flow pattern can be 

modified and this in turn causes a change in the rate 

of heat transfer to the surface. When the ionized gas is 

sufficiently dense, the electron-atom collision 

frequency is large enough so that the tendency for the 

electrons to spiral around the magnetic field lines is 

suppressed. 

It was emphasized by Cowling that when the 

strength of the applied magnetic field is sufficiently 
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large, Ohm's law needs to be modified to include Hall 

currents. The Hall effect is due merely to the 

sideways magnetic force on the drafting free charges. 

The electric field has to have a component transverse 

to the direction of the current density to balance this 

force. In many works of plasma physics, it is not paid 

much attention to the effect caused due to Hall 

current. However, the Hall effects can not be 

completely ignored if the strength of the magnetic 

field is strong and number of density of electrons is 

small as it is responsible for the change of the flow 

pattern of an ionized gas. Hall effect results in a 

development of an additional potential difference 

between opposite surfaces of a conductor for which a 

current is induced perpendicular to both the electric 

and magnetic field. This current is termed as Hall 

current. It was discovered in 1979 by Edwin Herbert 

Hall while working on his doctoral degree. Pop
21

, Dutta 

et al.
22

 and Malique and Sattar
23

 have presented some 

model studies on the effect of Hall current on MHD 

convection flow because of its possible application in 

the problem of MHD generators and Hall current. Hall 

currents are of great importance in many astrophysical 

problems, Hall accelerator and flight MHD as well as 

flows of plasma in a MHD power generator (Alperin 

and Sutton
24

). Takhar et al.
25

 have studied the unsteady 

free convection flow over an infinite vertical porous 

plate due to the combined effects of thermal and mass 

diffusion. The unsteady MHD free convective flow 

past a vertical porous plate immersed in a porous 

medium with Hall current, thermal diffusion and heat 

transfer has been studied by Ahmed et al.
26

. 

In all the above investigations, the analytical or 

numerical solution is obtained assuming that the 

temperature at the interface was continuous and well 

defined. However, there exist several problems of 

physical interest which may require non-uniform or 

arbitrary wall conditions. Seth et al.
27

 have discussed 

the effect of rotation on unsteady hydromagnetic 

natural convection flow past an impulsively moving 

vertical plate with ramped temperature in a porous 

medium with thermal diffusion and heat absorption. 

Jana et al.
28, 29

 have investigated the effects of rotation 

and radiation on the hydrodynamic flow past an 

impulsively started vertical plate with ramped plate 

temperature. The effects of radiation on MHD natural 

convection near a vertical plate with oscillatory 

ramped plate temperature have been presented by 

Jana et al.
30

. Sarkar et al.
31

 have analyzed the effects 

of Hall currents and radiation on MHD free 

convective flow past an oscillating vertical plate with 

oscillatory plate temperature in a porous medium. The 

effect of radiation on MHD free convection flow past 

an impulsively moving vertical plate with ramped 

wall temperature have been studied by Ghara et al.
32

. 

Manna et al.
33

 have examined the effects of radiation 

on unsteady MHD free convective flow past an 

oscillating vertical porous plate embedded in a porous 

medium with oscillatory heat flux. Narahari
34

 has 

studied the transient free convection flow between 

long vertical parallel plates with ramped wall 

temperature at one boundary in the presence of 

thermal radiation and constant mass diffusion. Ahmed 

and Das
35

 have examined the Hall effects on transient 

MHD flow past an impulsively started vertical plate 

in a porous medium with ramped temperature, 

rotation and heat absorption. Nandkeolyar et al.
36

 

have examined the unsteady hydromagnetic heat and 

mass transfer flow of a heat radiating and chemically 

reactive fluid past a flat porous plate with ramped 

wall temperature. The effects of thermal radiation and 

rotation on unsteady hydromagnetic free convection 

flow past an impulsively moving vertical plate with 

ramped temperature in a porous medium have been 

studied by Seth et al.
37

. Ahmed et al.
38

 have presented 

the effects of Chemical reaction and radiation on an 

unsteady MHD flow past an accelerated infinite 

vertical plate with variable temperature and mass 

transfer. Seth et al.
39

 have examined the effects of 

Hall current, radiation and rotation on natural 

convection heat and mass transfer flow past a moving 

vertical plate. An MHD natural convection heat and 

mass transfer flow past a time dependent moving 

vertical plate with ramped temperature in a rotating 

medium with Hall currents, radiation and chemical 

reaction has been described by Seth and Sarkar
40

. Seth 

et al.
41

 have investigated the Soret and Hall effects on 

an unsteady MHD free convection flow of radiating 

and chemically reactive fluid past a moving vertical 

plate with ramped temperature in rotating system. 

Hayat et al.
42

 have examined the influences of Hall 

current and chemical reaction in mixed convective 

peristaltic flow of Prandtl fluid. Hayat et al.
43

 have 

analyzed the Hall and ion slip effects on peristaltic 

flow of Jeffrey nanofluid with Joule heating. 

The main purpose of the present investigation is to 

study the combined effect of Hall currents, thermal 

radiation and ramped wall temperature and mass 

concentration on an MHD free convective flow past a 

moving plate when a strong magnetic field is 



INDIAN J PURE & APPL PHYS, VOL 54, AUGUST 2016 

 

 

520 

imposed. The magnetic Reynolds number have 

assumed to be so small that the induced magnetic 

field can be neglected. Rosseland model of radiation 

has been chosen in the investigation. The non-

dimensional equations governing the flow are solved 

by the Laplace transform technique. Solutions are in 

terms of exponential and complementary error 

function. The results obtained in this work are 

consistent with the physical situation of the problem. 

 
2 Formulation of the Problem 

Consider the unsteady hydromagnetic flow of a 

viscous incompressible electrically conducting and 

heat radiating fluid past an impulsively moving 

infinite vertical plate with ramped plate temperature 

and mass transfer where a uniform magnetic field 

B
r

of strength 
0

B  is applied in the direction 

perpendicular to the fluid flow. Choose a Cartesian 

co-ordinate system with the x - axis along the plate in 

the vertically upward direction, the y - axis 

perpendicular to the plate and z - axis is the normal of 

the xy -plane. The physical model of the problem is 

presented in Fig. 1. Initially, at time 0t ≤ , the plate 

and the fluid are at rest at a uniform temperature T∞  

and species concentration C∞ . At time > 0t , the plate 

at 0y =  starts to move in its own plane with a 

uniform velocity 0u  and the temperature of the plate 

at 0y =  is raised or lowered to 
0

( ) ,w w w

t
T T T T T

t
∞ ∞+ − ≠  

and also the mass concentration at the plate 0y =  

raised or lowered to 
0

( ) ,
w w w

t
C C C C C

t
∞ ∞+ − ≠  when 

0
0 < t t≤  and the uniform temperature 

w
T  and uniform 

mass concentration 
w

C  are maintained when 
0

>t t . It is 

assumed that the flow is laminar and is such that the 

effects of the convective and pressure gradient terms in 

the momentum and energy equations can be neglected. 

It is also assumed that the radiative heat flux in the x - 

direction is negligible as compared to that in the y - 

direction. As the plate is of infinite extent and 

electrically nonconducting, all physical quantities, 

except the pressure, are functions of y  and t  only. 

Generalized Ohm's law on taking Hall current into 

account is (Cowling
20

):  
 

( ) ( )
0

,e eJ J B E q B
B

ω τ
σ+ × = + ×

r r r r rr
  … (1) 

 

where q
r

, B
r

, E
r

, J
r

, σ , 
e

ω  and 
e

τ  are respectively 

the velocity vector, the magnetic field vector, the 

electric field vector, the current density vector, 

electric conductivity, cyclotron frequency and 

electron collision time. In writing the Eq. (1), the ion-

slip and the thermoelectric effects as well as the 

electron pressure gradient are neglected. The right 

hand side is the electric field in the moving frame. 

The first term on the left hand side comes from the 

electron drag on the ions. The second term is the Hall 

term and has to do with the idea that electrons and 

ions can decouple and move separately. 

The equation of continuity 0q∇ ⋅ =
r

 with no-slip 

condition at the plate gives 0v =  everywhere in the 

flow where ( , , )q u v w≡
r

, u , v  and w  are respectively 

velocity components along the coordinate axes. The 

fluid is a metallic liquid whose magnetic Reynolds 

number is small and hence the induced magnetic field 

produced by the fluid motion is negligible in 

comparison to the applied one
44

 so that the magnetic 

field (0, ,0)
y

B B≡
r

. The solenoidal relation 0B∇ ⋅ =
r

 

gives 
0

constant
y

B B= =  everywhere in the flow. The 

conservation of electric current 0J∇ ⋅ =
r

 yields =yj  

constant where ( ), ,x y zJ j j j≡
r

. This constant is zero 

since 0
y

j =  at the plate which is electrically non-

conducting. Hence, 0=yj  everywhere in the flow. 

In view of the above assumption, Eq. (1) yields:  
 

0
( ),

x z x
j mj E wBσ− = −  ·… (2) 

 
 

Fig. 1—Geometry of the problem 
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0
( ),

z x z
j mj E u Bσ+ = +  ·… (3) 

 

where 
e e

m ω τ=  is the Hall parameter which represets 

the ratio of electron-cyclotron frequency and the 

electron-atom collision frequency. In general, Hall 

currents influence the mechanics of a flow system 

when applied magnetic field is strong or when the 

collision frequency is low .The effect of Hall currents 

gives rise to a force in the y -direction, which induces 

a cross flow in that direction. To simplify the problem, 

we assume that there is no variation of flow quantities 

in y -direction. This assumption is considered to be 

valid if the surface be of infinite extent in the y -

direction. Here m → ∞  gives the result of the 

hydrodynamic fluid case and 0m =  corresponds to a 

MHD fluid in the absence of Hall currents. 

Since the induced magnetic field is neglected, 

Maxwell's equation H
E

t

∂
∇ × = −

∂

r
r

 becomes 0E∇× =
r

 

which gives 0=
y

Ex

∂

∂  and 0z
E

y

∂
=

∂
. This implies that 

x
E =  constant and 

z
E =  constant everywhere in the 

flow. We choose this constants equal to zero, i.e. 

0
x z

E E= = . 

Solving for xj  and zj  from (2) and (3), on taking 

0
x z

E E= = , we have:  
 

( )0

2
,

1
x

B
j mu w

m

σ
= −

+
 ·… (4) 

 

( )0

2
.

1
z

B
j mw u

m

σ
= +

+
 ·… (5) 

 

Taking into consideration the assumptions made 

above, the governing equations for laminar natural 

convection flow of a viscous incompressible and 

electrically conducting fluid with radiative heat 

transfer, under Boussinesq approximation, i.e. the 

density changes with temperature, which gives rise to 

the buoyancy force, and using (4) and (5), are given by:  
 

22

0

2 2
( ) ( ) ( ),

(1 )

Bu u
u mw g T T g C C

t y m

σ
ν β β

ρ
∗

∞ ∞

∂ ∂
= − + + − + −

∂ ∂ +

 ·… (6) 
 

22

0

2 2
( ),

(1 )

Bw w
mu w

t y m

σ
ν

ρ

∂ ∂
= + −

∂ ∂ +
 ·… (7) 

 

2

2
,r

p

qT T
c k

t yy
ρ

∂∂ ∂
= −

∂ ∂∂
 ·… (8) 

2

2
,

C C
D

t y

∂ ∂
=

∂ ∂
 ·… (9) 

 

Where u  is the velocity in the x -direction, T  the 

temperature of the fluid, g  the acceleration due to 

gravity, ν  the kinematic viscosity, ρ  the fluid 

density, k  the thermal conductivity, C  is 

concentration in the fluid, D  is mass diffusivity, β  

the thermal expansion coefficient, β ∗  the 

concentration expansion coefficient, 
p

c  the specific 

heat at constant pressure and 
r

q  the radiative heat 

flux. The heating due to viscous dissipation is 

neglected for small velocities in the energy Eq. (9). 

Assuming that there is no-slip between the plate 

and the fluid, the initial and boundary conditions for 

the fluid flow problem are:  
 

0 : 0, 0, , for 0,t u w T T C C y∞ ∞≤ = = = = ≥  

0

00

0

( ) for 0 <
> 0 : , 0,

for >

w w

w

t
T T T t t

tt u u w T

T t t

∞


+ − ≤

= = = 



 ·… (10) 
 

0

0

0

( ) for 0 <
at 0,

for >

w w

w

t
C C C t t

tC y

C t t

∞


+ − ≤

= =



 ·… (11) 

 

> 0 : 0, 0, , at .t u w T T C C y∞ ∞→ → → → → ∞  

In order to simplify the physical problem, the 

optically thick radiation limit is considered in the 

present analysis. For an optically thick fluid, in 

addition to emission there is also self-absorption and 

usually the absorption coefficient is wavelength 

dependent and large so that we can adopt the 

Rosseland approximation for radiative flux rq . The 

radiative flux vector rq  under the Rosseland 

approximation is:  

 
* 4

4
,

3
r

T
q

yk

σ
∗

∂
= −

∂
 ·… (12) 

 

where *σ  is the Stefan-Boltzman constant and k
∗  the 

spectral mean absorption coefficient of the medium. 

Assuming a small temperature difference between the 

fluid temperature T  and the free stream temperature 
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T∞ , 4T  is expanded in a Taylor series about the free 

stream temperature T∞ . Neglecting second and higher 

order terms in (T T∞− ), we obtain:  

 
4 3 4= 4 3 .T T T T∞ ∞−  ·… (13) 

 

It is emphasized here that Eq. (13) is widely used 

in computational fluid dynamics involving radiation 

absorption problems in expressing the term 4T  as a 

linear function. 

In view of (12) and (13), Eq. (8) reduces:  
 

* 32 2

2 2

16
= .

3
p

TT T T
c k

t y k y

σ
ρ ∞

∗

∂ ∂ ∂
+

∂ ∂ ∂
 ·… (14) 

 

Introducing non-dimensionless variables:  
2

0 0

1 1

0

( , )
= , = , ( , ) = , = , = ,

w w

u y t u T T C Cu w
u w

u T T C C
η τ θ φ

ν ν
∞ ∞

∞ ∞

− −

− −
  

 ·… (15) 
 

Eqs. (6), (7), (9) and (14) become:  
 

2 2

1 1
1 12 2

= ( ) ,
1

u u M
u mw Gr Gc

m
θ φ

τ η

∂ ∂
− + + +

∂ ∂ +
 ·… (16) 

 

2 2

1 1

1 12 2
= ( ),

1

w w M
mu w

mτ η

∂ ∂
+ −

∂ ∂ +
 ·… (17) 

 

( )
2

2
3 Pr 3 4 ,R R

θ θ

τ η

∂ ∂
= +

∂ ∂
 ·… (18) 

 
2

2
Sc ,

φ φ

τ η

∂ ∂
=

∂ ∂
 ·… (19) 

 

where 
2

2 0

2

0

B
M

u

σ ν

ρ
=  is the magnetic parameter which is 

the ratio of Lorentz force to viscous force, 

3

0

( )
Gr wg T T

u

β ν∞−
=  the thermal Grashof number 

characterrizes the relative effect of the thermal 

buoyancy force to the viscous hydrodynamic force, 

3

0

( )
Gc w

g C C

u

β ν∞−
=  the mass Grashof number 

determines the relative effect of the species buoyancy 

force to the viscous hydrodynamic force, 
* 34

k k
R

Tσ

∗

∞

=  is 

the radiation parameter, Pr
pc

k

ρν
=  the Prandtl number 

that measurses ratio of momentum diffusivity to the 

thermal diffusivity, Sc
D

ν
=  the Schmidt number which 

embodies the ratio of thermal diffusivity to mass 

diffusivity. 

Combining (16) and (17), we have:  
 

2 2

2 2

(1 )
,

1

F F M im
F Gr Gc

m
θ φ

τ η

∂ ∂ −
= − + +

∂ ∂ +
 ·… (20) 

 

where  

1 1 and 1.F u iw i= + = −  ·… (21) 
 

The corresponding initial and boundary conditions are:  
 

0, 0, 0 for all and 0,F φ θ η τ= = = ≤  

for 0 < 1 for 0 < 1
1, ,

1 for > 1 1 for > 1
F

τ τ τ τ
φ θ

τ τ

≤ ≤ 
= = = 

 
 at 0η =  ·… (22) 

 

0, 0, 0 at for > 0.F φ θ η τ→ → → → ∞  

On the use of the Laplace transformation, Eqs. 

(20), (18) -(19) become:  
 

2 2

2 2

(1 )
Gr Gc ,

1

d F M im
sF F

d m
θ φ

η

−
= − + +

+
 ·… (23) 

 

( )
2

2
3 Pr 3 4 ,

d
R s R

d

θ
θ

η
= +  ·… (24) 

 
2

2
Sc ,

d
s

d

φ
φ

η
=  ·… (25) 

 

where  
 

0 0

( , ) ( , ) , ( , ) ( , ) ,s s
F s F e d s e d

τ τη η τ τ θ η θ η τ τ
∞ ∞

− −= =∫ ∫

0

( , ) ( , ) s
s e d

τφ η φ η τ τ
∞

−= ∫  ·… (26) 

 

and 0s >  ( s  being Laplace transform parameter). 

The corresponding boundary conditions for 1u , θ  

and ϕ  are:  

 

2 2

1 1 1
, (1 ), (1 ) at 0,

s s
F e e

s s s
θ φ η− −= = − = − =  

0, 0, 0 at .F θ φ η→ → → → ∞  ·… (27) 

The solution of Eqs. (23)-(25) subject to the boundary 

conditions (27) are easily obtained and are given by:  
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Sc

2

1
( , ) (1 ) ,

ss
s e e

s

ηφ η −−= −  ·… (28) 

 

2

1
( , ) (1 ) ,

ss
s e e

s

α ηθ η −−= −  ·… (29) 

 

{ }

{ }

{ }

{ }

2

2

2

0

2

2

2

2

0

2

2 2

1 Gr

( 1)( )

Gc
for 1, Sc 1,

(Sc 1)( )

( , ) =

1 Gr

( 1)( )

Gc
for 1, Sc = 1,

s a

s
ss a

Sc ss a

s a

s
ss a

s a s

e

s

e
e e

ss

e e
s

F s

e

s

e
e e

ss

e e
a s

η

α ηη

ηη

η

α ηη

η η

α β

α
γ

η

α β

α

− +

−
−− +
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 ·… (30) 
 

where 
3

3 4
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+
, 
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=
Sc 1
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γ

−
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The inverse transforms of (28)-(30) give the 

solution for the mass concentration, temperature 

distribution and velocity field as:  
 

1 1
( , ) = ( Sc, ) ( 1) ( Sc, 1),f H fϕ η τ η τ τ η τ− − −  ·… (31) 

 

1 1
( , ) = ( , ) ( 1) ( , 1),f H fθ η τ η α τ τ η α τ− − −  ·… (32) 

 

2 3 0 4 0

3 0 4 0

3 4

3 4

2 3 0 4 0

Gr
( , ) ( , , ) ( , , )

1

( 1){ ( , , 1) ( , , 1)}

Gc
( , , ) ( , , )

Sc 1

( 1){ ( , , 1) ( , , 1)} for 1, Sc 1,

( , ) =
Gr

( , ) ( , , ) ( , , )
1

(

f f f

H f f

f f Sc

H f f Sc

F

f f f

H

η τ η β τ η α β τ
α

τ η β τ η α β τ

η γ τ η γ τ

τ η γ τ η γ τ α

η τ

η τ η β τ η α β τ
α

τ

+ −−

− − − − − 

+ −−

− − − − − ≠ ≠

+ −−

−

[

]

3 0 4 0

5 12

5 1

1){ ( , , 1) ( , , 1)}

( , , ) ( , )

( 1){ ( , , 1) ( , 1)}   for 1, Sc = 1,

f f

Gc
f a f

a

H f a f

η β τ η α β τ

η τ η τ

τ η τ η τ α

















 − − − − 


− −


− − − − − ≠



 ·… (33) 

where 
1

f , 
2

f , 
3

f , 
4

f  and 
5

f  are dummy functions 

which are given in Appendix A, erfc ( )ξ  being 

complementary error function and and ( )H ξ  is the 

unit step function. 
 

2.1 Solution when Prandtl number is unity 

In the absence of thermal radiation (i.e. when R → ∞ ), 

i.e. if pure convection prevails, it is observed that 

Prα = and the solution for the temperature given by Eq. 

(31) is valid for all values of Pr , but the solution for the 

velocity field given by Eq. (33) is not valid for Pr 1= . 

Since the Prandtl number is a measure of the relative 

importance of the viscosity and thermal conductivity of 

the fluid, the case Pr 1= corresponds to those fluids 

whose momentum and thermal boundary layer 

thicknesses are of the same order of magnitude. 

Therefore, the solution for the velocity field in the 

absence of thermal radiation effects when Pr 1= has to be 

obtained subject to the initial and boundary conditions 

(22). It can be expressed in the following form: 
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 ·… (34) 
 

where
1

f , 
2

f , 
3

f , 
4

f  and 
5

f  are dummy functions 

which are given in Appendix A. 
 

2.2 Solution for isothermal plate or constant plate 

temperature 

In order to highlight the effect of the ramped 

boundary conditions on the flow, it may be 

worthwhile to compare such a flow past a moving 

plate with constant temperature. In this case, the 

initial and boundary conditions (22) are the same 

excepting the condition ( )0, 1θ τ =  and ( )0, 1φ τ = for 

0τ ≥ . Under the assumptions, it can be easily shown 

that the concentration, temperature and velocity fields 

for the flow past a moving plate with constant 

temperature can be expressed as: 

 

( , ) = erfc ,
2

η α
ϕ η τ

τ

 
  
 

 ·… (35) 
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Sc
( , ) = erfc ,

2

η
θ η τ

τ

 
  
 

 ·… (36) 

 

2 6 0 7

6 7

Gr
( , ) = ( , ) ( , , ) ( , )

1

Gc
( , , ) ( Sc, ) for 1, 1,

Sc 1

F f f f

f f Sc

η τ η τ η β τ η α τ
α

η γ τ η τ α

 + − −

 + − ≠ ≠ −

 ·… (37) 
 

where 
2

f , 
6

f  and 
7

f  are dummy functions which are 

given in Appendix A. 
 

3 Results and Discussion 
In this section, the obtained exact solutions are 

studied in order to determine the effects of embedded 

parameters. Numerical values of the non-dimensional 

fluid velocity components 
1

u  and 
1

w , fluid temperature 

θ , concentration φ  for several values of magnetic 

parameter 2M , Hall parameter m , radiation parameter 

R , thermal Grashof number Gr , mass Grashof number 

Gc , Prandtl number Pr , Schmidt number Sc  and time 

τ are presented in Figs. 2-14. The ghraphical results are 

presented using Mathematica. 
 

3.1 Velocity profiles 

Figure 2 shows the time evolution of the primary 

and  secondary  velocity profiles  for a  fixed  set of 

parameter values. As shown in Fig. 2, to generate the 

plot, the values of η  and τ  are varied from 0 to 8 and 

0 to 4, respectively. The surface plot helps to 

understand the variation in velocity components with 

η and τ . The value of the primary and secondary 

velocities is zero when η  is close to 8 in both ramped 

temperature and isothermal cases. Also, the primary 

velocity enhances uniformly with time to its steady 

state value in both ramped temperature and isothermal 

cases, with the exception of the oscillatory behavior in 

the neighborhood of 1τ = . The secondary velocity 

enhances gradually and assume parabolic shape with 

time to its steady state value in both ramped 

temperature and isothermal cases, with the exception 

of the oscillatory behavior in the neighborhood of 

1τ = . It is revealed from Fig. 3 the both primary and 

secondary velocities subpress as magnetic parameter 
2M increases in both ramped and isothermal cases. 

That is the primary or secondary fluid motion is 

retarded due to application of transverse magnetic 

field. This phenomenon clearly agrees to the fact that 

if an external magnetic force is applied perpendicular 

to the flow direction of an electrically conductive 

fluid, it experiences an electric field and produces 

current perpendicular to both magnetic field and  

flow  direction.  The  product  of  electric  current  and 

 
 

Fig. 2—Surface plot of primary and secondary velocities when 
2 = 10M , = 0.5m , = 2Pr , = 0.5R , = 5Gr , = 5Gc  and = 0.23Sc  
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magnetic field creates a force which is known as 

Lorentz force. The direction of the Lorentz force is 

always opposite to the direction of fluid flow in the 

absence of an applied electric field. That is, the 

imposition of the transverse magnetic field is helpful in 

stabilizing the flow. Effects of Hall currents on velocity 

components are presented in Fig. 4. Both the primary 

and secondary velocities enhance when Hall parameter 

m  increases in both ramped  temperature and isothermal 

cases. It is attributed that larger values of Hall parameter 

m  decrease the effective conductivity and thus decrease 

the magnetic damping force hence velocity components 

increase. In fact, the Hall effect balances the resistive 

influence of applied magnetic field to some extent. It is 

revealed form Fig. 5 that the both primary and secondary 

velocities decrease for incraing values of radiation 

parameter in both ramped and isothermal cases. This is 

consistent  with the  definition  of R . An increase in  the 

 
 

Fig. 3—Primary and secondary velocities for varying 
2M  when = 2Pr , = 0.5m , = 5Gr , = 5Gr , = 0.23Sc  and = 0.5τ  

 

 
 

Fig. 4—Primary and secondary velocities for varying m  when 
2 = 10M , = 2Pr , = 0.5R , = 5Gr , = 5Gc , = 0.23Sc  and = 0.5τ  

 

 
 

Fig. 5—Primary and secondary velocities for varying R  when 
2 = 10M , = 2Pr , = 0.5m , = 5Gr , = 5Gc , = 0.23Sc  and = 0.5τ  
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value of R implies decreasing radiation effects. The 

case R → ∞  represents the absence of thermal 

radiation i.e. the pure convection. 

In Fig. 6, an increase in thermal Grashof number Gr  

leads to rise in fluid velocity components in both 

ramped and isothermal cases. Increasing thermal 

Grashoff number Gr  decreases drag forces and hence 

velocity profiles increase. It is also noticed that fluid 

velocity components boost up very near the plate and 

after this fluid velocity components asymptotically 

decrease to its zero value as η → ∞ . This phenomenon 

is clearly supported by the physical reality, since the 

buoyancy effectcs are significant near the plate, which 

results in a sudden rise of the fluid velocity 

components adjacent to the plate. Fig. 7 elucidates the 

effects of mass Grashof number Gc  on velocity 

components. The velocity components increase when 

mass Grashof number Gc  increases in both ramped 

and isothermal cases. The mass Grashof number is 

defined as the ratio of the species buoyancy force to the 

viscous hydrodynamic force. As mass Grashof number 

increases, the viscous hydrodynamic force decreases. 

As a result, the momentum of the fluid is higher. 

Figure 8 shows that an increase in Schmidt number Sc  

leads to decrease in the fluid velocity components in 

both ramped and isothermal cases. We have chosen the 

Sc values as Sc = 0.22, 0.64, 1.20 and 2.23 which 

correspond to hydrogen, water vapor, sulfur dioxide 

and naphthalene respectively. Schmidt number shows 

the relative influence of momentum diffusion to 

species diffusion. Momentum diffusion is faster than 

species when Sc > 1 and opposite is true when Sc < 1. 

When Sc =  1 both momentum and species diffuse at 

the same rate in the boundary layer. In this case both 

momentum and species boundary layers are of the 

same order of magnitude. As Sc increases velocity 

components are as expected reduced since increasingly 

momentum is diffused at a lesser rate than species. 

As time progresses, the both primary and 

secondary velocities are getting accelerated shown in 

Fig. 9. This is due to increasing buoyancy effects as 

time progresses. From the above figures, it is noted 

that there is a significant difference can be observed 

between the velocity profiles due to ramped 

temperature and isothermal boundary conditions. 
 

3.2 Temperature profiles 

Figure 10 demonstrates the effects of of radiation 

parameter R , Prandtl number Pr  and time on the 

 
 

Fig. 6—Primary and secondary velocities for varying Gr  when 
2 = 10M , = 0.5R , = 0.5m , = 5Gc , = 0.23Sc  and = 0.5τ  

 

 
 

Fig. 7—Primary and secondary velocities for varying Gc  when 
2 = 10M , = 2Pr , = 0.5R , = 5Gr , = 0.23Sc  and = 0.5τ  
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fluid temperature distribution. Figure 10(a) 

elucidates that the fluid temperature θ  decreases 

with an increase in radiation parameter R  in both 

the ramped temperature and isothermal cases. In the 

presence of radiation, the thermal boundary layer 

always found to thicken which implies that  

the radiation provides an additional means  

to diffuse energy. This means that the thermal 

boundary layer decreases and more uniform 

temperature distribution across the boundary  

layer. Figure 10(b) shows the impact of  

Prandtl number on the temperature field θ . Prandtl 

number is the ratio of momentum to thermal 

diffusivities. Prandtl number has inverse 

relationship with thermal diffusivity. Increase in 

Prandtl number corresponds to stronger momentum 

diffusivity and weaker ther- mal diffusivity. Here 

weaker thermal diffusivity dominant over the 

stronger momentum diffusivity due to which lower 

temperature is noticed. Therefore, the temperature 

and thermal boundary layer thickness are decreased 

significantly when the values of Prandtl number  

are  larged  in  both  the   ramped  temperature   and 

isothermal cases. The temperature θ  increases in 

progess of time τ  shown in Fig. 10(c). It is clear 

that the temperature profiles reach to unifrom 

temperature distribution due to increasing time in 

the case of isothermal boundary condition, but for 

the temperature profiles due to ramped boundary 

condition required more time to reach the unifrom 

temperature distribution. 
 

3.3 Concentration profiles 

This subsection deals with the variation in 

concentration profile φ  for different values of 

embedded parameters. To be more realistic, the 

values of Schmidt number are chosen to represent 

the diffusing chemical species of most common 

interest like hydrogen ( Sc = 0.22), water vapor 

( Sc =  0.64), sulfur dioxide ( Sc =  1.20) and 

naphthalene ( Sc =  2.23). The variations of Schmidt 

number Sc  on species concentration are dreawn in 

Fig. 11(a). It is observed that the species 

concentration and the associated boundary layer 

decrease for an increase in Schmidt number Sc  

R in both  the ramped concentration and  isothermal 

 
 

Fig. 8—Primary and secondary velocities for varying Sc  when 
2 = 10M , = 2Pr , = 0.5R , = 5Gr , = 5Gc , = 0.5m  and = 0.5τ  

 

 
 

Fig. 9—Primary and secondary velocities for varying time τ  when 
2 = 10M , = 2Pr , = 0.5R , = 5Gr , = 5Gc , = 0.23Sc  and = 0.5m  
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cases. As larger values of Sc  minimize the thermal 

diffusion and less diffused species prevents  

the fluid to become dense enough to enhance  

the concentration distribution and thus it drops  

with an increase in Schmidt number Sc . We recall 

that an increase in Schmidt number means a fall  

in mass diffusivity. This observation is in 

agreement with the outcome of Fig. 11(a). It is 

revealed from Fig. 11(b) that the concentration φ  

increases with an increase in time τ  in both ramped 

concentration and isothermal cases. As time 

progresses, primary and secondary velocities are 

getting accelerated. 
 

3.4 Rate of heat and mass transfer 

In non-dimensional form, the rate of mass and heat 

transfers at the plate 0η =  are obtained as: 
 

1/2 1/ 2

=0

Sc
(0, ) = = ( 1) ,η

η

φ
φ τ τ τ

η π

 ∂
 − − −   ∂ 

 ·… (38) 

 

1/ 2 1/2

=0

(0, ) = = ( 1) .η

η

θ α
θ τ τ τ

η π

 ∂
 − − −   ∂ 

 ·… (39) 

 

For isothermal plate, the rate of mass and heat 

transfers at the plate 0η =  are given by: 
 

=0

Sc
(0, ) = = ,η

η

φ
φ τ

η π τ

 ∂
− 

∂ 
 ·… (40) 

 

=0

(0, ) = =η

η

θ α
θ τ

η π τ

 ∂
− 

∂ 
 ·… (41) 

Numerical results of the rate of heat transfer 

(0, )ηθ τ−  at the plate ( = 0)η  are presented in Fig. 12 

for  several values of radiation  parameter R , Prandtl 
 

 
 

Fig. 10—Temperature profiles for varying (a) R  when = 2Pr  

and = 0.5τ  (b) Pr  when = 0.5R  and = 0.5τ  (c) time 

τ  when = 2Pr  and = 0.5R  

 

 
 

Fig. 11—Concentration profiles for varying (a) Sc  when = 0.5τ  (b) time τ  when = 0.23Sc  
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number Pr  and time τ . It is seen from Fig. 12(a) 

that the rate of heat transfer (0, )ηθ τ−  enhances when 

Prandtl number Pr  increases. in both the ramped 

temperature and isothermal cases. Prandtl number is 

the ratio of momentum diffusivity to thermal 

diffusivity. It is a thermophysical property of a fluid. 

For the case Pr 1< , thermal diffusivity exceeds 

momentum diffusivity. In other words, in this case 

heat will diffuse at a quicker rate than momentum. 

For the case Pr 1= , the viscous and energy diffusion 

rates are the same i.e. the thermal and momentum 

boundary layers are of the same order of magnitude. 

For the case Pr 1> , momentum diffusivity is greater 

than thermal diffusivity. In other words, momentum 

will diffuse at a quicker rate than heat.This is 

consistent with the fact that smaller values of Pr  are 

equivalent to increasing thermal conductivities and 

therefore heat is able to diffuse away from the plate 

more rapidly than higher values of Pr , hence the rate 

of heat transfer at the plate is reduced. Fig. 12(b) 

reveals that the rate of heat transfer (0, )ηθ τ−  

increases with an increase in radiation parameter 

R in both the ramped temperature and isothermal 

cases. Thus, the thermal radiation tends to accelerate 

heat transfer at the plate while thermal diffusion has 

the reverse effect. The rate of heat transfer (0, )ηθ τ−  

is decreasing function of time for isothermal 

boundary condition, but it has increasing behavior 

for 1τ < , an opposite behavior is observed for  

1τ >  in the case of ramped boundary condition. 

Moreover, there is a sharp rise in the rate of  

heat transfer (0, )ηθ τ−  in the neighborhood of 

1τ = only in the case of ramped wall temperature. 

This is due to the transition of the temperature from 

ramped to isothermal at 1τ = . This is an excellent 

agreement with Narahari
34

. Negative value of 

(0, )ηθ τ means  that the  heat  flows from  the  moving 

plate to fluid. This is expected since the plate is 

hotter than the fluid.  

The numerical results of the rate of mass transfer 

(0, )ηφ τ−  at the plate ( = 0)η  are presented in Fig. 13 

for several values of Schmidt number Sc  and time τ . 

It can be seen from Fig. 13 that larger values of 

Sc enhanc the rate of mass transfer (0, )ηφ τ−  in both 

the ramped concentration and isothermal cases. Infact 

Schmidt number is the ratio of viscous diffusion rate 

to molecular diffusion rate. Therefore higher values of 

Schmidt number enhance the viscous diffusion rate 

which in turn increases the rate of mass transfer 

(0, )ηφ τ− . From Figs. 12 and 13, it is seen that the rate 

of heat and mass transfer is not presented at 0τ =  in 

the isothermal case because 0τ =  is a singular point, 

but the rate of heat and mass transfer is presented for 

all values of time in the case of ramped boundary 

condition because it is well defined at all τ . 
 

3.5 Shear stresses 

In non-dimensional form, the shear stresses at the 

plate 0η =  due to the fluid flows are given by:  
 

=0

=
x y

F
i

η

τ τ
η

 ∂
+  

∂ 
                                                           

 
 

Fig. 12—Rate of heat transfer for varying (a) Pr  when = 0.5τ  (b) time τ  when = 7.1Pr  

 
 

Fig. 13—Rate of mass transfer for varying Sc  
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 ·… (42) 

 
where 

6
f , 

7
f , 

8
f  and 

9
f  are dummy functions which 

are given in Appendix A. 

For isothermal plate, the shear stresses at the plate 

0η =  due to the fluid flows: 
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 ·… (43) 
 

where 
8

f , 
12

f  and 
13

f  are dummy functions which are 

given in Appendix A. 

Numerical values of the non-dimensional shear 

stresses 
x

τ  and 
y

τ  due to the primary and secondary 

flows at the plate 0η =  are presented in Figs. 14-20 

for several values of magnetic parameter 2M , Hall 

parameter m , Grashof number Gr , mass Grashof 

number Gc , Schmidt number Sc and Prandtl number 

Pr . In Fig. 14, the magnetic parameter 2M  is found to 

elevate the shear stresses 
x

τ  and 
y

τ  in both ramped 

and isothermal cases, because the velocity gradient 

increases  near  the  plate.  Figure  15  shows  that  the 

 
 

Fig. 14—Shear stresses xτ  and yτ  for varying 
2M  when 0.5R = , = 7.1Pr , = 0.5m , = 5Gr , = 5Gc  and = 0.23Sc  

 

 
 

Fig. 15—Shear stresses xτ  and yτ  for varying m  when 0.5R = , = 7.1Pr , 
2 10M = , = 5Gr , = 5Gc  and = 0.23Sc  
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shear stresses 
x

τ  and 
y

τ  enhance when Hall 

parameter m  is largered in both ramped temperature 

and isothermal cases. As radiation parameter 

R increases,  the shear stresses  
x

τ  and 
y

τ are  reduced 

in both ramped and isothermal cases . This is due to 

the fact that an increase in R  causes a decrease in the 

velocity components and hence the shear stresses at 

the plate reduce in both ramped and isothermal cases. 

It is seen from Fig. 16 that the shear stresses 
x

τ  and 

y
τ  enhance when thermal Grashof number Gr  

enlarges in both ramped temperature and isothermal 

cases. Figure 17 reveals that the shear stresses 
x

τ  and 

y
τ  enhance for increasing values of mass Grashof 

number Gc  in both ramped and isothermal cases. 

Figure 18 reveal that the shear stresses 
x

τ  and 
y

τ  

decrease with an increase in Prandtl number Pr  in 

 
 

Fig. 16—Shear stresses xτ  and yτ  for varying R  when 
2 10M = , 0.5m = , = 5Gr , = 5Gc , = 7.1Pr  and = 0.23Sc  

 

 
 

Fig. 17—Shear stresses xτ  and yτ  for varying G r  when 0.5R = , = 7.1Pr , 
2 10M = , 0.5m = , = 5Gc  and = 0.23Sc  

 

 
 

Fig. 18—Shear stresses xτ  and yτ  for varying Gc  when 0.5R = , = 7.1Pr , 
2 10M = , 0.5m = , = 5Gr  and = 0.23Sc  
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both ramped and isothermal cases. This is consistent 

with the fact that an increase in the Prandtl number 

means an increase of fluid viscosity, which causes a 

decrease in shear stresses at the plate. From Fig. 19, it 

can be seen that the shear stresses 
x

τ  and 
y

τ  decrease 

when Schmidt number Sc  increases in both ramped 

temperature and isothermal cases. The reason is due 

to the fact that the increase in Schmidt number causes 

a decrease in flow velocity and hence shear stresses 

reduce at the plate. It is interesting to note that the 

shear stresses 
x

τ  and 
y

τ  are increasing functions of 

time for isothermal boundary condition, but it has 

increasing behavior for 1τ < , an opposite behavior is 

observed for 1τ >  in the case of ramped boundary 

condition. There is a sharp rise in the shear stresses 
x

τ  

and 
y

τ  in the neighborhood of 1τ = only in the case of 

ramped wall temperature. This is due to the transition 

of the temperature from ramped to isothermal at 1τ = . 

Physically, negative value of the shear stress 
x

τ  

signifies the moving plate exerts a drag force on the 

fluid along x -axis, and positive value means the 

opposite. This is expected since in the present 

problem, we consider the case of a moving plate 

which induces the flow. 
 

4 Conclusions 
In this paper, the impacts of Hall effect, radiation 

and ramped wall temerature and mass concentration on 

the unsteady hydromagnetic free convective flow of a 

viscous incompressible electrically conducting and heat 

radiating fluid past an infinite vertical plate hasve been 

examined. The main findings obtained from the present 

study may be summarized as follows: 

(i)  The primary and secondary velocities are 

retarded under the effects of transverse magnetic 

field whereas these are accelerated due to Hall 

effects in both ramped temperature and 

isothermal cases.  

(ii)  An increase in either radiation parameter or 

thermal Grashof number or mass Grashof 

number leads to rise in the velocity components. 

(iii)  The fluid temperature decreases with an increase 

in radiation parameter. The fluid temperature 

increases when time progresses.  

 
 

Fig. 19—Shear stresses xτ  and yτ  for varying Pr  when 0.5R = , = 0.23Sc , 
2 10M = , 0.5m = , = 5Gr  and = 5Gc  

 

 
 

Fig. 20—Shear stresses xτ  and yτ  for varying Sc  when 0.5R = , = 5Gc , 
2 10M = , 0.5m = , = 5Gr  and = 7.1Pr  
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(iv)  The shear stress at the plate enhances for 

increasing values of radiation parameter. 

(v)  The rate of heat transfer increases when 

radiation parameter enlarges.  

(vi)  Such a fluid flow finds many engineering 

applications such as those in MHD devices and 

in several natural phenomena occurring subject 

to thermal radiation in the presence of mass 

transfer. 
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Appendix A 
The following constant expressions are utilized in the results: 
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