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To accurately understand the temporal and spatial distributions of sound velocity fields and their relevant characteristics, 

numerically investigated the sound velocity auto-correlation index at the source and adjacent region of the Kuroshio Current 
using 1911-2001 observation data. Auto-correlation index was fitted using a Gaussian function for the temporal and spatial 
scales of the investigated regions. The correlation scales in time and spatial domain in spring, summer, fall, and winter were 
14.2/145.3, 14.2/135.9, 13.5/133.8, and 13.7/143.3 days/km, respectively. These scales are applied  to the reconstructed 
sound velocity model in terms of empirical orthogonal functions. The error of the sound velocity constructed was minimal (3 
m/s) compared with those constructed using other methods (up to 4.3 m/s). This method improves the precision of the sound 
velocity reconstruction compared with that based on monthly data. The use of temporal and spatial scales enhances the 
accuracy of sound velocity reconstruction.  
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Introduction  

Oceans have great temporal and spatial 
variation. Studies of oceans and other related 
fields involve a large amount of data with a 
varying distribution over time and space. 
Because some of the data are not continuous or 
sufficient, related studies often suffer from 
sizeable errors or even incorrect results. 
Therefore, effectively utilizing temporal and 
spatial data is of great concern in the fields of 
geography, astronomy, oceanography, and 
economics, among others1,2. Reasonable 
selection of temporal and spatial scales is 
particularly important in sound velocity 
reconstruction with measured data. 

Temporal and spatial autocorrelation 
analysis can be used for the analysis and 
calculation of temporal and spatial correlations 
between datasets, thereby better describing the 
temporal and spatial distribution of oceanic data. 
The concept of spatial autocorrelation was first 
proposed by Moran in 1950 to calculate the 
degree of resemblance between cell attribute 
values in spatially adjacent regions3. Cliff and 
Ord conducted pioneering work in spatial 
statistics4, establishing the preliminaries for the 
theoretical structure of this field. Anselin laid 
foundations for the development and perfection 
of temporal and spatial statistics and applied his 

approach to the field of economics5. Lee 
proposed a temporal and spatial auto-correlation 
index by combining the Pearson correlation 
coefficient and the Moran auto-correlation index, 
based on previous studies by others6. According 
to this study, the temporal and spatial 
auto-correlation index refers to the index that 
describes the interdependence among the 
observed data of certain variables within the 
same distribution area and within the same time 
period. Susan et al. applied extracted temporal 
and spatial auto-correlation scales to the OTIS 
data assimilation system, which improved the 
system’s effectiveness in offshore areas7. Starkar 
et al. performed a temporal auto-correlation 
analysis of sequential sea surface wind stress 
and wave height data and extracted temporal 
scale information, improving the data 
assimilation effectiveness of numerical 
models8,9. Cao et al. studied county-scale 
economics based on a spatial model using 
spatial auto-correlation coefficients10. Josey et al. 
demonstrated the impact of sea surface heat data 
on atmospheric models at different scale regions 
of the Mediterranean Sea11. Nikolaos et al. 
studied the decadal-scale variability of sea 
surface temperature in the Mediterranean Sea in 
relation to atmospheric variability12. Byung et al. 
used a seasonal ARIMA model in Mongolia to 
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evaluate temporal-spatial precipitation 
variability and predictions13.  

However, most current applications of sea 
sound velocity fields involve grid and monthly 
average data. In the time dimension, tradition 
methods use monthly means based on the 
monthly separation of data. Moreover, the 
spatial dimension is based on gridding. The data 
obtained based on traditional methods have two 
limitations: (1) Temporal dimension 
disadvantage: the monthly average data are still 
used when the analyzed point is at the beginning 
or end of the month. (2) Spatial dimension 
disadvantage: the average coordinate grid data 
are still applied when the analyzed point is 
within a coordinate grid but far from the center 
of the grid.  

To solve these problems, our research 
calculated the auto-correlation index of the 
Kuroshio Current source and adjacent region.  
Temporal and spatial correlation scales of the 
Kuroshio source and adjacent region were 
acquired through a Gaussian function. We 
reconstructed sound velocity sections in 
different temporal and spatial scopes for 
comparison to demonstrate the superiority of the 
proposed method.  
 
Materials and Methods  

Kuroshio is a strong Pacific western 
boundary current. It originates from the north 
branch of the North Equatorial Current in the 
Philippine Sea and goes from the east coast of 
Taiwan into the East China Sea. It then flows 
northeast along the Okinawa Trough14,15. The 
observation data used in this paper are from 
CTD data, Nansen data, ARGO data, and other 
data between 1911 and 2001 that were collected 
by the National Marine Data and Information 
Service of China 
(http://www.soa.gov.cn/zwgk/bjgk/jsdw/gjhyxx
zx/). These data include 14,827 observation 
sections in the Kuroshio source and adjacent 
region, and the measurement depths vary 
according to ocean regions. The positional 
distribution is shown in Fig. 1, and the time 
distribution is shown in Fig. 2 (observation 
frequencies varied in different years (with no 
observations in some years)).  Distribution of 
the observation positions given by Fig. 1 covers 
the Kuroshio source and adjacent region. Figs. 1 
and 2 indicate that the distribution of the 
observations is not even. Thus, the data must be 

temporally and spatially pretreated.  

 
Fig. 1--Distribution of the observation data in the Kuroshio 
source and adjacent region 

 

 
Fig. 2--Distribution of the observation data according to 
year 
 

To obtain the statistics of the sound 
velocity section in the source and adjacent 
region of Kuroshio over time and space, the 
time should first be divided based on the season. 
Second, the auto-correlation index should be 
investigated according to this division. We set 
April, May, and June as spring; July, August, 
and September as summer; October, November, 
and December as fall; and January, February, 
and March as winter16, and the observation data 
were separated into these different seasons. 
Table 1 lists the number of observations in each 
season.  
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Table 1--Number of observations for each of the four 
seasons 

Season Number of observations 
Spring 3,734 
Summer 4,111 
Fall  3,345 
Winter 3,637 

 
The calculation of the sound velocity 

auto-correlation index by the average monthly 
dataset will be discussed below. The grid 
resolution is 30’×30’. Therefore, the observation 
data can be interpolated horizontally and 
vertically using the minimum spline criteria to 
construct the monthly average sound velocity 
field.  
 
Auto-correlation index of the measured 
sound velocity data  
Auto-correlation index algorithm  
To calculate the observed sound velocity factor 

Ψ , we must find the grid data point   that is 
closest to Ψ  among the 30’×30 monthly 
average grid data. Next, the anomalies of every 
Ψ  in the observation dataset are calculated: 

  . The other anomaly is   . Any 

two anomalies    and    can compose a 

data pair   ,  when the space distance L 

and time interval T of two data points in the data 
pair satisfy the following conditions: 
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These conditions represent the data pair in one 

cell,  nmbin , , where 30,...,2,1,0m  is the 

spatial span and 30,...,2,1,0n  is the time 

span.  
After the observation factor is divided into 

scaled cells according to time and space, the 
auto-correlation index of the observation factor 
can be calculated from the following formula16:  
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The observed sound velocity is calculated 
from the following formula: 

STPPST ccccc  22.1449  

where 
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Here, T is temperature (°C), S is salinity (‰), 
and P is pressure (kg/cm2).   

The observation sound velocity profile has 
been standardized into divisions of 0, 5, 10, 15, 
20, 25, 30, 35, 50, 75, 100, 125, 150, 200, 250, 
300, 400, 500, 600, 700, 800, 900, 1,000, 1,500, 
2,000, 3,000, 4,000, 5,000, and 6,000 m 
according to the standard pressure levels that are 
generally accepted in the field of oceanography. 
The observed data were obtained via 
interpolation when they were not on the same 
level. Hence, we can obtain the auto-correlation 
index for each layer in terms of the layer depth. 
Finally, the averaged results will be used. 

 
Calculation of the auto-correlation index  

To calculate the auto-correlation index of 
each season, the data should first be matched. 
The data pairs of the four seasons are shown in 
Fig. 3 based on Eq. (1).  

 

 

Fig. 3--Number of data pairs in each season: (a) spring, (b) 
summer, (c) fall, and (d) winter 
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Fig. 3 illustrates that there are at least 500 
data pairs in each season. The sample size was 
much larger than those in literatures16,17. The 
auto-correlation index is an artificially 
constructed index that is used to reflect the 
correlative dependence between data at a certain 
position r and a certain time t with those at a 
different position r’ and time t’. The 
auto-correlation index is calculated by Eq. (2) 
using the data pairs above, and the 
auto-correlation indices of the four seasons are 
shown in Fig. 4. The spatial and temporal spans 
of the four seasons are 300 km and 30 days, 
respectively. The contour interval is set in 
proportion to each 0.1 units of the 
auto-correlation index.  

 

 
Fig. 4--Auto-correlation index changes along with the time 
and space spans (from top to bottom: spring, summer, fall, 
and winter) 

 
The auto-correlation index of the four 

seasons changes with the time and space spans, 
as shown in Fig. 4 (left), and decreases 
gradually as the time and space spans increase, 
from approximately 0.6 to zero. Values of the 
auto-correlation index with changing space span 
are given for constant time spans of 0, 15, and 
30 days to illustrate the variation of the 
auto-correlation index with the time and space 
spans (Fig. 4 (middle)). Furthermore, values of 
the auto-correlation index with changing time 
span is given for constant spatial spans of 0, 150, 
and 300 km (Fig. 4 (right)). Because the 
auto-correlation index possesses Gaussian 

characteristics16,17, we will use a Gaussian 
function fitting for the temporal and spatial 
scales. P. C. Chu calculated the temporal and 
spatial correlation scales for all four seasons in 
the Chinese Yellow Sea using the United States 
Navy MOODS datasets17. The summer and 
winter results presented in his study are 
consistent with ours, and all of the results 
follow Gaussian distributions. However, our 
spring and fall results do not correspond with 
his, which instead display a transition feature. 
We observe that the depths of the Kuroshio 
source and adjacent region are greater than 100 
m and are mainly affected by the Kuroshio 
Current18, unlike the shallow Yellow Sea waters 
that P. C. Chu considered. This difference might 
be the main cause of the different results. 

 
Significance test of the auto-correlation index 

The auto-correlation index calculated 
within a spatial span of 300 km and a temporal 
span of 30 days and used in sound velocity 
profile reconstruction is appropriate for use. 
According to Eq. (2), the result yields an 
estimate of each data pair’s auto-correlation 
index. We can use the t-distribution to validate 
the significance of the auto-correlation index 
with the following formula from Walpole and 
Myers (1989)19:  
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(3) 
P  is the number of data pairs in each cell, as 
shown in Fig. 3.  

The significant test criterion   can be 

obtained by transforming Eq. (3) into 
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(4)  
When the calculated auto-correlation index 

fits the condition  ),( nm , it indicates that 

the calculated auto-correlation index meets the 

significance criteria (here, 1.0 ). From Eq. 
(4), we can obtain the distribution of the 

criterion  , which changes with the temporal 

and spatial spans, as shown in Fig. 5.  



DA et al.: A NUMERICAL APPROACH FOR UNDERSTANDING THE TEMPORAL AND SPATIAL CORRELATION 
SCALES OF SOUND VELOCITY IN LOING TERM: A CASE STUDY FOR THE SOURCE AND SURROUNDING 

REGION OF THE KUROSHIO CURRENT  

 

 
 

265 

 
Fig. 5--Criterion (0.1 significance level) for the 
auto-correlation index significance test for (a) spring, (b) 
summer, (c) fall, and (d) winter 
 

Fig. 5 illustrates that the significant test 
criteria of the auto-correlation index change 
with the seasons. We can obtain significant 
results for the auto-correlation index according 
to Figs. 4 and 5 and the significant test criteria, 
as shown in Fig. 6.  

 
Fig. 6--Significance test of the auto-correlation index at a 
level of 0.1 for (a) spring, (b) summer, (c) fall, and (d) 
winter 
 

Fig. 6 illustrates that there are many 
discrete points in the results of the four seasons, 
mainly because of insufficient data. Thus, a 
maximum-distance clustering method is applied 
to divide the data into two categories to make 
the regional division of significance clear20,21&22.  
Thick lines in the figure divide the significance 
test results into two categories. The figure shows 
that the 16 day/170 km, 16 day/240 km, 13 
day/240km, and 13 day/170 km time-space 
scales exhibited satisfactory significance. These 
results can approximately explain the number of 
temporal and spatial correlation scales. 

 
Optimization algorithm of the temporal and 
spatial correlation scales  

The changes in the auto-correlation index 
exhibit Gaussian features, and thus, the 
auto-correlation index can be used for a 
Gaussian fitting function16,17& 19.  
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(5)  
Applying Eq. (5) as a fitting function, data 

fitting is performed using the least-squares 
method, and the temporal and spatial correlation 

scales 1A  and 
1C  of the different seasons 

can be derived from the fitted data. To validate 
the results, the hypothesis is tested based on the 
F  distribution:  

Hypothesis 0H : temporal and spatial 

correlation scales 1A  and 
1C  are invalid;  

Hypothesis 1H : temporal and spatial 

correlation scales 1A  and 
1C  are valid. 

The test formula based on the F  
distribution is 
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where 2k , 31l  are the number of 
temporal and spatial scale cells and 
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(7)  

When )1,(  klkff  , Hypothesis 0H  

does not hold but 1H  does hold, indicating that 
1A  and 

1C  are valid.  
 
Results and Discussion  
Temporal and spatial correlation scale 
extraction  

To obtain the temporal and spatial 
correlation scale of the Kuroshio source and 
adjacent region and obtain the results of each 
season in the area, the temporal and spatial 

correlation scales 1A  and 
1C  in Eq. (5) are 

calculated using Eq. (5) as the fitting function. 
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The values are shown in Table 2.  
 

Table 2--Temporal and spatial correlation scales of each 
season 

Season Temporal scale  
1C  ( day) 

Spatial scale 
1A (km) 

Spring 14.2 145.3 
Summer 14.2 135.9 
Fall 13.5 133.8 
Winter 13.7 143.3 
 

To validate the results, we test the temporal 
and spatial correlation scales based on the F  
distribution with a confidence level of 

01.0  and the testing value 45.5)28,2(01.0 f . 

If the result is larger than the testing value, the 
reliability of the result exceeds 99%. The 
detailed results are shown in Table 3.  

 

Table 3--Results of the significance test for the correlation 
scales 

Season Result of F test Conclusion 
Spring 19.1854 valid 
Summer 22.4261 valid 
Fall 20.1546 valid 
Winter 17.4278 valid 
 

The results indicates that using a Gaussian 
function to fit temporal and spatial correlation 
scales provides better results, and the F test 
result is considerably larger than the testing 
value, indicating that the temporal and spatial 
correlation scales are effective.  

 
Application of the temporal and spatial scales 
in sound velocity reconstruction  

The sound velocity profile changes 
significantly for different times and locations 
due to the influence of the Kuroshio current. To 
reconstruct the sound velocity profile more 
accurately, the temporal and spatial correlation 
scales are taken as the scope to extract the sound 
velocity profile according to the method of 
empirical orthogonal functions23,24&25.  

The data used here are from the East China 
Sea experiment that was performed on August 3, 
1987. Fig. 7 presents the observed position and 
seafloor topography.  Sections of the 
observation data are from 701 to 710 crossing 
the Okinawa Trough.  Figure illustrates that the 
Okinawa Trough’s terrain changes greatly and 
that the depth of the sea quickly changes from 
200 to 900 m. Years of research have indicated 
that a perennial ocean front exists in the 
region10.  

 
Fig. 7--Position and topography for 701-710 in the East 
China Sea 

 
Sound velocity profiles are extracted from 

different temporal and spatial scopes to 
reconstruct the overall sound velocity profile, 
and the reconstruction results differ considerably. 
Fig. 8 presents the maximal margin between the 
reconstruction and observation profiles for 
different temporal and spatial scales. We sample 
23 profiles to reconstruct the sound velocity in 
the 709 position from 36 profiles obtained every 
five days from 10 to 30 days and every 50 km 
from 100 to 300 km. Optimal space-time scope 
should use temporal and spatial correlation 
scales of 14.2 days/135.9 km in the summer, and 
the parameter should be rounded up, i.e., to 15 
days/136 km, to include the spatial and temporal 
scales for a total of 24 profiles. Fig. 8 illustrates 
that the error of the result is minimized when 
reconstructed with 15 day/136 km, indicating 
that the temporal and spatial correlation scales 
are the optimal scope for reconstruction.   

 
Fig. 8--Maximal error between the reconstructed and 
observed profiles for different temporal and spatial scales 
(1, 10 days/100 km; 2, 10 days/150 km; 3, 10 days/200 km; 
4, 10 days/250 km; 5, 10 days/300 km; 6, 15 days/100 km; 
7, 15 days/150 km; 8, 15 days/136 km; 9, 15 days/200 km; 
10, 15 days/250 km; 11, 15 days/300 km; 12, 20 days/100 
km; 13, 20 days/150 km; 14, 20 days/200 km; 15, 20 
days/250 km; 16, 20 days/300 km; 17, 25 days/100 km; 18, 
25 days/150 km; 19, 25 days/200 km; 20, 25 days/250 km; 
21, 30 days/100 km; 22, 30 days/150 km; 23, 30 days/200 
km) 
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From the above analysis of the sound 
velocity profile of 709 individual positions, the 
region easily forms an ocean front, and 10 
sections from 701 to 710 points are obtained, as 
shown in Fig. 9. The background in Fig. 9 (a) 
and (b) is the observed sound velocity profile.  
Thick lines in (a) represent the sound velocity 
profile calculated from the monthly average data, 
and the thick lines in (b) represent the sound 
velocity profile derived from the reconstructed 
data. According to the observed data, there are 
two clear sound velocity fronts in the cross 
section; these fronts are located in the 703-704 
and 706-707 regions and are represented by a 
black dotted line in the background in Figs. 9 (a) 
and (b). However, in Fig. 9 (a), the two sound 
velocity fronts are not distinct and the 703-704 
region is nearly non-existent. The presence of 
the front can be observed in the 706-707 region, 
but the frontal width is too large. The blank 
regions in the figures represent the sea-floor 
topography. Because the grid points of the 
monthly average grid data are fixed, the results 
may not be consistent with the measured water 
depth data, and the isolines of the monthly 
average data have large confluence areas with 
the measured topographic sites.   

 
Fig. 9--Sound velocity section (background is the 
observation data). (a) Monthly sound velocity section. (b) 
Reconstructed sound velocity section 
 

Sound velocity section obtained from the 
reconstruction data is presented in Fig. 9(b). In 
this section, the location and width of the sound 
velocity front are the same as the result given by 
Fig. 9(a), which is better than the result from the 
monthly average data and has a superior 
topographic match.  

 
This study has a limitation. It did not 

consider chronological changes in sea 
temperature, salinity, and pressure over the past 
90 years. These changes, particularly in 
temperature, have some influence on the 
calculation results in this study. Considering that 

this study focused on a different aspect, namely, 
the temporal and spatial correlation scales of the 
sound velocity, we will pay special attention to 
this issue in our future studies.  

 
Conclusion  

Considering the problem that the sound 
velocity reconstruction in the Kuroshio source 
and adjacent region is not sufficiently accurate 
and given the weakness of the monthly average 
grid data, we calculated the auto-correlation 
index using temporal and spatial correlation 
scales with Gaussian function fitting. The 
following two important conclusions can be 
made from the application of this method: 

Temporal and spatial correlation scales in 
the Kuroshio source and adjacent region are 
obtained using the observed oceanography data 
from 1911 to 2001. The correlation scales are as 
follows: spring, 14.2 days/145.3 km; summer, 
14.2 days/135.9 km; fall, 13.5 days/133.8 km; 
and winter, 13.7 days/143.3 km.  Scales are 
tested by t and F distributions. These results 
demonstrate that the temporal and spatial scales 
obtained by this method are effective.  The 
summer spatial and temporal scales are used as 
the data scope and are applied to the sound 
velocity reconstruction model based on an 
improved empirical orthogonal function. After 
selecting 24 different scopes to reconstruct the 
sound velocity, the results illustrate that 
compared with when the monthly average data 
are used, a reconstruction that uses spatial and 
temporal scales is superior to other methods. 
Thus, sound velocity profile reconstruction 
using the data within the temporal and spatial 
correlation scales contains more information, 
which represents an improvement compared to 
sound velocity profile reconstruction using 
one-day or average data.  
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