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Abstract: Formal methods of software development rely on the validation of the 
specification of the software. Such specification is normally expressed in a formal 
language such as Z. However, in order to be validated the Z specification must be 
tested, and to achieve this it has to be transformed into a form that can be executed 
or animated. Prolog was one of the languages used for animation of Z specifications. 
This paper explains the techniques used for translating Z schemas into Prolog 
predicates. It also examines some of this translation shortcomings and unreliable 
features.
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Özet: Yazılım geliştirebilmenin formal metodları o yazılım tanımlamasının geçerli
liğine bağlıdır. Böyle bir tanımlama genelde 'Z' gibi bir formal dilde ifade edilir. An
cak, geçerli olması için, 'Z' tanımlaması test edilmeli, bunu yapabilmek için de ani
masyon yapılabilecek ve icra edilebilecek bir forma transfer edilebilmelidir. 'Z' ta
nımlamalarının animasyonları için kullanılan dillerden birisi Prolog'dur. Bu makale
de 'Z' şemalarını Prolog'a çeviren teknikler açıklanmaktadır.Aym zamanda bu tür bir 
çevirmenin eksikleri ve belirsizlikleri üzerinde durulacaktır.

Anahtar kelimeler: form al metodlar, Z ' tanımlama dili, animasyon, Z ' şeması

(§) This work was done in co-operation with Doğuş University, Istanbul, Turkey.
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1. INTRODUCTION

The starting point of a software project is the customer statement of requirements. 
This document is an informal description of the properties of a new software or the 
changes to an existing one. The next step in the software life-cycle is to process and 
analyse the statement of requirements to produce another document called the 
software specification. The software specification then becomes the major reference 
document for the development of the software and is used as a basis for validation 
and verification of the software product. This means that it must be expressed in a 
clear, consistent and unambiguous manner.

analysis

next stage 

software

Much current software engineering research centres on the use of mathematics for 
specifying and developing software systems. Since the middle of the 1970's many 
formal specification languages, both algebraic (Futatsugi 85, Guttag 78) and model 
based (such as Z) (Jones 86, Spivy 89), have been proposed, and the term formal 
methods in software engineering embraces the utilisation of such language. Basic 
aims of formal methods applied to software engineering are the precise and complete 
specification of what is required of a software system and the exclusion of errors 
from a developing software system through rigorous verification of each step of the 
development life-cycle. Thus, faithfulness to the stated software requirements and 
software reliability are assured, and the costs of removing errors later in the life-cycle 
are avoided. The well-defined semantics and syntax of formal specification 
languages make them appropriate for expressing a precise description of the 
requirements of the system being built. Moreover, it make it possible to formally 
reason about that specification, and to prove that the subsequent design and 
implementation of the system conforms to meet those requirements. Indeed the use 
of mathematics has introduced a new methodology in software development called 
the formal software development methodology. In this methodology, the stages for 
the development of a software product can be described as (Berg 82, Wordsworth 
96):

(a) The specification of the software product is described by using formal 
specification techniques.

(b) The specification is then validated to ensure that it is well-formed and reflects 
the user requirements.

(c) The formal specification is then refined until it can be transformed into a 
program in a high-level language.

(d) The complete program is then verified to ensure its quality.

As we can see having a valid formal specification (step (b)) is very important because
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the formal specification is taken as the basis for the next steps in software 
development (steps (c) and (d)).

The necessity of formal methods for the design and implementation of software 
systems, particularly large-scale safety-critical ones, is established by study and 
experimentation made by several researchers. For example, Boehm (Boehm 79) has 
reported that over 60% of errors uncovered in several operational software systems 
were due to shortcomings in the specifications. Gladden (Gladdden 82) reports that 
35% of delivered software is not used because of the gap between it and the user's 
concept of the system. Bloomfield (Bloomfield 86) also addressed this problem and 
concluded that where formal methods have not been used, retrospective formal proof 
of developed software is not feasible. This is because of the reliance of formal 
methods on software structuring which is amenable to easy correctness argument.

Even when specification is formal, the correspondence between the formal 
specifications and the requirements expressed by the customer cannot be proved. 
Tools which help towards validating the latter correspondence, are therefore of 
potential value to both the software designer/developer and the recipient of delivered 
software product.

Animation has been proposed as one of the methods for partly solving this key 
problem of ascertaining that a formal specification corresponds to the expressed 
requirements of the customer.

2. VALIDATION OF THE FORMAL SPECIFICATION

There are several approaches to demonstrate the validity of the formal specification. 
The two most important ones are: form al reasoning and testing or animation .A  fully 
formal proof gives a much higher level of confidence in the specification, but is also 
much more expensive. The effort needed to prove a specification formally is far 
greater than that for writing it. Experimentation using formal reasoning in software 
development conducted by Fields et al (Fields 92) indicates that formally verifying 
specifications and development is extremely tedious and time consuming due to the 
level of detail at which one is forced to work when doing fully "formal 
development". On the other hand the testing technique is easier to use and well 
understood by many people. Testing to validate a formal specification means 
executing the specification against test data. This idea has been proposed by many 
people, for example by Kemmerer (Kemmerer 85) and Jalote (Jalote 89). Thus for 
the testing to be done, the formal specification must be executable. However, most 
formal specification notations are non-procedural and thus cannot be executed 
directly (Hayes 91). So before this type of formal specification can be tested, it must 
be transformed into a procedural form that can be executed or animated.

2.1. Animation

Animation is valuable for the following reasons (Barden 94)

«t Mistakes in the specification, either owing to errors in the mathematics, or to 
errors in the requirements capture process, may be made apparent by animation.
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«fc For many systems the client might not really know what is required until the 
system is working. By showing him (or her) the specification in a working 
executable form, he (or she) can try out the system to examine its behaviour. 
Unforeseen emergent properties of the specification that correctly captures the 
stated requirements may be exposed. If these properties are not desirable, then 
the stated requirements fail to capture what is really wanted and have to be 
modified. Alternatively, if these properties are desirable, they may be 
formulated as 'theorems' about the global behaviour of the system.

<1 Animation can provide more confidence that the specification does correctly 
capture the requirements, both for the specifiers and for clients who experiment 
with the animation.

The disadvantage of animation as a testing process can be found in Dijkstra's 
(Dijkstra 79) well-known aphorism, program testing can be used to show the 
presence o f bugs, but never their absence, which applies equally to specification 
validation. Nevertheless, the increased confidence and understanding animation 
provides makes it a worthwhile validation exercise. Indeed, animation is now 
mandated as a validation technique in the UK Ministry of Defence's Interim Standard 
(MoD UK 91) concerned with safety-critical software.

There are two approaches which have been proposed for animating a formal 
specification. These are direct execution and rapid prototyping. Direct execution 
means that the formal specification statements are executed directly, normally by 
interpretation. Whereas rapid prototyping is a technique in which a formal 
specification is translated into a program in a high-level language (Kemmerer 85). 
Direct execution is the most convenient method for animating formal specification 
statements. But as stated above, in order to do it, the formal specification language 
must be executable. Examples of this type of languages are "me too" (Henderson 85), 
EPROL (Hekmatpor 88) and OBJ (Goguen 84). However, since Z is a nonprocedural 
language, we have to employ the rapid prototyping technique.

Many implementations of the rapid prototyping technique have used high level 
procedural languages, for example Pascal, C or Ada as the object languages. But the 
approach taken for Z is to use either a rule-based language, for example CRYSTAL, 
(Andrew 90), a functional language like Miranda (Turner 86, Diller 90), or Prolog 
(West 88). Most researchers, however, preferred Prolog as the object language for a 
number of reasons. Firstly, Prolog is more widely available on many computers both 
as compilers and interpreters. Secondly, Prolog offers a very flexible and simple 
method of asking queries. Finally, since both Z and Prolog are based on the first order 
predicate logic, it is possible for automatic translation to be done from Z schemas 
into Prolog clauses. Statements in Prolog are written in terms of Horn clauses. A 
Horn clause is a clause with at most one unnegated literal. So Horn clauses are either 
single predicates or single negated predicates or implies-statements in which the 
conclusion is a single predicate rather than a disjunction of them (Ross 89). It has 
been shown that a normal first order predicate logic statement can be translated into 
Horn clauses (Clocksin 94), i.e. Prolog.
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3. Z TO PROLOG TRANSLATION

Generally, there are two Z/Prolog translation strategies (West 92), form al program 
synthesis and structure simulation.

3.1. Formal program synthesis

This is the most obvious strategy, arising from the fact that Z and Prolog are related 
in a mathematical way, and this relationship can be realised by a formal synthesis of 
the Prolog program code via a direct translation of the Z schema. The method of 
formal program synthesis is detailed by Hogger (Hogger 84), who identifies as the 
most important advantage the fact that, when a program is derived logically from a 
specification, its correctness with regard to the specification is assured. This method 
relies on devising an algorithmic procedure for converting Z into clausal form, and 
hence into Prolog. The method breaks down into the following steps (West 92):

• step 1: re-express the higher order theory of Z, as first-order predicate logic
• step 2: turn the resulting first-order formulae into Prolog.

In principle, step 1 could be accomplished formally by a method discussed by 
Hatcher (Hatcher 82), and step 2 by a method presented by Kowalski (Kowalski 79). 
The latter is a method whereby programs are deduced from specifications using rules 
of inference such as resolution, combined with clausal form transformation. An 
attempt of formal program synthesis was initially tried by West and Eaglestone (West 
92) but then abandoned. The problem is, program synthesis relies on human 
intelligence to determine which clauses are most suitable for a resolution step, and 
for this there is no algorithmic method available yet.

3.2. Structure simulation.

In this approach, instead of a formal transformation, characteristics of the Z schema 
were identified and adapted so that the logical structure of the specification would be 
preserved as far as possible in the resulting model.

Several researchers have developed Z to Prolog translation systems using this 
method. We describe here the most important work in that direction.

3.2.1. Manual translation system

An early account of animating a Z specification using translation to Prolog was given 
by Stepney et al (Stepney 87) in 1987. There, a medium-sized Z specification was 
hand-translated into Prolog, and a simple user interface was also written. The 
hand-translation involved writing predicates to handle Z constructs such as sets, 
including relations and functions, and toolkit operations, then performing an almost 
line-for-line translation of the Z schemas into their Prolog counterparts. More effort 
was spent on writing the user interface than in translating the Z specification itself. 
This was partly because the user interface was not formally specified, and so was 
slower to write and debug, and partly because the mismatch between the language 
and the 'graphical' interface. (Prolog being used to generate VT100 control codes for 
block graphics characters). Although the graphics were crude they were sufficient to
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make understandable what was happening. More importantly, users could interact 
directly with the animation, watch the consequences of their requests appearing on 
the screen.

The advantages of this animation were quite substantial (Barden 94). The specifiers 
became happier that they had captured the requirements correctly in Z, and the 
clients were satisfied that requirements that had been captured really were those 
wanted. Also, the clients found that they could subsequently understand the Z itself 
much better. However, the obvious disadvantage of this system is that the translation 
was done manually.

3.2.2. Early automatic system

Other work that looked at automatic translation of Z specifications into Prolog was 
done by Dick et al 1989 (Dick 90). Automation is valuable, since it reduces possible 
transcription errors. Effort has been spent on performing valid optimisations of the 
resulting Prolog, since naive automatic translations can often result in highly 
inefficient generate-and-test algorithms. But sequencing operations and building a 
sensible user interface still has to be done by hand. (The system described by Dick 
et al requires the user to type Prolog queries, and hence to know the translation from 
Z.)The Z schema was mapped to a form from which the set-theory operations could 
be called; the latter were contained in a separate collection or library of Prolog rules, 
based on the one developed by Knott et al 1988 (Knott 8 8 ), which had been created 
for the purpose. This library consists of Prolog recursive predicates that model 
set-theory operations and, by implication, type constructors such as partial function. 
Sets are represented by lists, where the order of elements in the list is irrelevant to set 
equality. In addition some control features such as 'cut' were utilised. These Prolog 
control features have no axiomatic representation (Lloy 84), but they increase the 
efficiency of the code for the set operations.

3.2.3. West's Z/Prolog translator

West 1988 (West 8 8 ), and West and Eaglestone 1992 (West 92) described a Z to 
Prolog translation using the structured method. By examining the characteristics of 
the Z notation they established eight rules on which the general translation method is 
based. These were stated in details in their work. The first five rules relate to 
translation within a schema and the last three to schema calculus which allows the 
construction of a new schema from one or more others. For example rule 9 states that 
the operation of schema piping

C ± A >> B

is captured in Prolog by conjunction of schema predicates as follows
schema_type(L3 ,c):-
schema_type(L1 ,a), schema_type(L2 ,b).

The signature variables of C contained in L3 are obtained from those of A and B, with 
the exception of the common identifier which is both the output of A and the input to 
B, and the rest of L 1 , L 2  are merged.
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Zin (Zin 93) described a Z to Prolog translator as a part of a formal development 
support system called ZFDSS. His work in principle is similar to the work done by 
Dick et al (Dick 90) and West and Eaglestone (West 92). He noted, however, that 
although Z and Prolog are mainly based on predicate logic, both representations are 
not purely first order predicate logic. This means that there are issues to be resolved 
first in order for the translation process to be done correctly. These were

- A simple schema can be viewed as a collection of predicates. But the Z schema 
allows many more complex schema statements, e.g. nested and quantified 
schema.

- The technique used in Prolog programming considers any query to be false if it 
cannot be derived from the program. This is known as "negation as failure" or 
the "closed-world assumption" (Moore 82, Burke 96). This type of reasoning 
causes Prolog to give up two of the main features of the first order logic: 
reasoning with incomplete knowledge, and being able to distinguish between 
that a statement is false and not knowing that it is true.

- The third problem is to ensure that the semantics of Z statements are properly 
preserved by the equivalent Prolog statements. Z is based on declarative 
semantics, whereas Prolog supports both types of operational semantics: 
declarative and procedural semantics. Although in theory, both types of 
semantics are similar, in practice, they are not (Deville 90).

He then examined in detail the three main aspects addressed by his translation model

• Data representation: which covers the translation of simple and power sets, 
tuples, functions, relations, and sequences

• Operations representation: which covers the translation of functions and 
relational statements, comprehensive sets, quantifiers and expression quantifiers, 
and arithmetic and logical operations

• Z Prolog library: this consists of predicates to define the behaviour of each Z 
function, relation or statement. The predicates in the library were divided into 
four categories; managing the data base, handling set elements and basic set 
operations, defining Z functions and operations, and meta-predicates to handle if 
^ ,  for all V, exists 3, and the other quantifiers.

The translation of simple Z schema was straightforward. Since a schema is a 
collection of Z statements which can be represented as predicates in Prolog, so a Z 
schema can also be represented as a predicate. However, for more complicated Z 
schema that can include other schemas it was not straightforward. In order for the 
translation to Prolog to be correct schemas were expanded first to remove all 
included schemas, if any, and this expanded schema is then translated to Prolog.

3.2.4. zp translator
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3.2.5. PiZA, a Prolog Z animator

PiZA (Hewitt 97) is a program which is able to typeset Z specifications using the 
Latex typesetter. It accepts input in an ASCII format which is able to convert into 
many flavours of LaTeX. PiZA also converts restricted forms of the Z specification 
language into Prolog and execute them. Currently this aspect of PiZAis very poorly 
documented. The current release (beta release) suffers from two main problems. 
Firstly, It requires more documentation. Specifically nothing has been written 
explaining how to convert a declarative Z specification to an executable Z 
specification. This lack of documentation greatly limits the current tool for use as a 
Z animator. Also it does not have an integrated type checker. Type checking at 
present is done by interfacing with external type checkers.

4. CASE STUDY

A demonstration of the application of the translation process from Z to Prolog is 
shown in the appendix. The translator used was zp. The example is a Z specification 
of a simple directory that records room numbers and staff names who occupy these 
rooms in a particular institution.

As the output for this simple Z example is many lines of Prolog, only the predicates 
for the schemas 'NewStaffrm' and 'FullNewStaffrm' are shown. It is worth 
mentioning that the translator manipulates data by using a list and store it by using 
structure. The two predicates 'update(A,L)' and 'memberof(A,L)' are used for 
manipulating the data base. The predicate 'update(A,L)' updates the "after" variables 
into "before" variables and transforms them from the structure representation into its 
list representation. Whereas the predicate 'memberof(A,L)' will assign the list Lto A.

The translation of the schema expression 'FullNewStaffrm', on the other hand, has an 
error. The goals V712, V317, V716 and V732 are not known at the time of the 
output. This is not correct Prolog syntax as it cannot be replaced by the correct built- 
in predicate 'call(_)'.

5. CONCLUSION

Animating Z specification is still in its infancy. Although it is developing, only few 
tools are commercially available to support it. A technique for animating Z requires 
translation of Z to Prolog. Some success was achieved by using the structured 
method and several translators were designed. Though the translation approach was 
simple and the Prolog implementation was fairly general, two limitations can be 
noticed. The first is that because a general relationship between Z and Prolog was not 
found, the simulation depends on the characteristics of a specification being within 
the bounds of the translation rules used. The second lies in the nature of the Prolog 
logic. A Z specification gives a logical relationship, whereas Prolog, although in 
theory a declarative language, in practice does rely on the textual sequence of the 
code. The lack of data types also means that Prolog sets have to be implemented by 
lists. These factors could limit the subset of Z that is capable of translation by this 
method. Moreover animation is still lacking full automation, which can be costly. 
The effort needed to animate a specification may be more than that of writing it. 
Hence more work is needed to fully automate the animation process.
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APPENDIX

An example of translating a Z specification to Prolog using a Z/Prolog translator (zp) 

[NAME, ROOM S]
REPORT::= ok j already_known j not_known
—  R oom B ook ---------------------------------------------------------------------------------------------

known : P N A M E
staffrmno :N A M E ->| ROOMS
known=dom staffrmno

__ N ew Sta ffrm ____________________________________
ARoomBook 
name? :N A M E

______roomno? :ROOM S_____________
name? known
staffrmno<t =staffrmno U{name?\^> roomno?}

—  FindRoomno-----------------------
aRoomBook  
name? : N A M E  
room no!:ROOM S  
name? [ known  
roomno!=staffrmno name?

— W hoinRoom no----------------------------------------------
aRoomBook 
roomno? :ROOMS  
nam es!: P N A M E
names!={n : known | staffrmno n=roomno?}

__ S u ccess___________
result! :REPORT  
result!=ok

—  AlreadyKnown----------------
SRoomBook  
name? : N A M E  
result!=REPORT 
name? [ known 
result!=already_known

—  N otK now n ---------------
aRoom Book  
name? : N A M E  
result!=REPORT 
name? \ known 
result!=not known
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FullNewStaffrm ± (NewStaffrm a  Success) v  AlreadyKnown 
FullFindRoomno ± (FindRoomno a  Success) v  NotKnown 
FullWhoinRoomno ± WhoinRoomno a  Success

pNewStaffrm(V310,V311):-
update(vknown,V307),
update(vstaffrmno,V308),!,
dom(V308,V700),
equalset(V307,V700,true),
!,
notelement(V307,V310,true),
map(V310,V311,V704),
makeset(V704,V705),
union(V308,V705,V706),
equalset(V308P,V706,true),
dom(V308P,V708),
equalset(V307P,V708,true),
!,
memberof(vknown,V307),
memberof(vstaffrmno,V308),
memberof(vknownP,V307P),
memberof(vstaffrmnoP,V308P).

pFullNewStaffrm(V310,V311,V317):-
update(vknown,V307),
update(vstaffrmno,V308),!,
dom(V308,V700),
equalset(V307,V700,V701),
!,
notelement(V307,V310,V703),
and(V701,V703,V704),
map(V310,V311,V705),
makeset(V705,V706),
union(V308,V706,V707),
equalset(V308P,V707,V708),
and(V704,V708,V709),
dom(V308P,V710),
equalset(V307P,V710,V711),
and(V709,V711,V712),
!,
V712,
V317,
and(V714,V715,V716),
V716,
dom(V308,V718),
equalset(V307,V718,V719),
!,
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element(V307,V310,V721),
and(V719,V721,V722),
equalset(V317,valready_known,V723),
and(V722,V723,V724),
equalset(V307,V307P,V725),
and(V724,V725,V726),
equalset(V308,V308P,V727),
and(V726,V727,V728),
!,
dom(V308P,V730),
equalset(V307P,V730,V731),
and(V728,V731,V732),
!,
V732,
or(V717,V734,true),
memberof(vknown,V307),
memberof(vstaffrmno,V308),
memberof(vknownP,V307P),
memberof(vstaffrmnoP,V308P).

REFERENCES

1. ANDREW, S. and Norcliffe, A. (1990), "A CASE Tool for Demonstrating Z 
specifications", Proc. IEE Colloquium on Application o f CASE Tools IEE, 
London.

2. BARDEN, R.; Stepney, S. and Cooper, D. (1994), Z  in Practice, Prentice-Hall.

3. BERG, H. K.; Boebert W. E.; Franta, W. R. and Moher, T. G. (1982), Formal 
methods o f program Verification and specification, Prentice-Hall Inc.

4. BLOOMFIELD, R. E. and Froome, P. K. D. (1986), "The Application of Formal 
Methods to the Assessment of High Integrity Software", IEEE Trans., SE-12(9), 
988-993.

5. BOEHM, B. K. (1979), "Software engineering: R & D trends and defence 
needs", Research Directions in software Technology, M.I.T Press, 44-86

6. BURKE, E. and Foxley ,E. (1996), Logic and its Applications, Prentice Hall 
International Series in Computer Science.

7. CLOCKSIN, W. F. and Mellish, C. S. (1994), Programming in Prolog , Springer
Verlag.

8. DEVILLE, Y. (1990), Logic Programming - Systematic Program Development, 
Addison-Wesley Pub. Co.

9. DICK, A. J.; Kraus, P. J. and Cozens, J. (1990), "Computer Aided

165



Transformation of Z into Prolog", Proc. Fourth Annual Z  Users Meetings 1989 , 
Workshops in Computing: Springer-Verlag, Oxford, 71-85.

10. DIJKSTRA, E. G. (1979), "Structured Programming", Classics in Software 
Engineering, Yourdon Press.

11. DILLER, A. (1990), Z: A n  Introduction to Formal M ethods, John Wiley, UK.

12. FIELDS, B. and Elovang-Goransson, M. (1992), "AVDM Case Study in mural", 
IEEE Trans. Software Eng., 18(4), 279-295.

13. Futatsugi, K.; Goguen, J. A.; Jouannaud, J. P. and Meseguer, J. (1985), 
"Principles of OBJ2", Proc. 12th A C M  Sym posium  on Principles o f  
Programming Languages, New Orleans, 52-66.

14. Gladden, G. R. (1982), "Stop the Life-cycle, I Want to Get Off", A C M  SIGSOFT  
Soft. Eng. Notes, 7(2), 35-39.

15. Goguen, J. A. (1984), "Parameterized Programming", IEEE Trans. Software 
E n g , 10(5), 528-543.

16. Guttag, J. V. and Horning, J. J. (1978), "The Algebraic Specification of Abstract 
Data Types", Acta Inform , 10, 27-52.

17. Hatcher, W. S. (1982), The logical Foundations o f M athematics, Pergamon 
Press, Canada.

18. Hayes, I. J. and Jones, C. B. (1991), "Specifications are not (Necessarily) 
Executable", IEE Software Engineering J . , 330-338.

19. Hekmatpor, S. and Ince, D. (1988), Software Prototyping, Formal Methods and 
VDM, Addison-Wesley.

20. Henderson, P. and Minkowitz, C. (1985), "The 'me too' method of software 
design", Technical Report FPN-10 , University of Stirling, Dept. of Computer 
Science.

21. Hewitt, M. A.; O'Halloran, C. M. and Sennett, C. T. ( 1997),"Experiences with 
PiZA, an Animator for Z", Proc. 11th Annual Z  Users Meetings, Workshops in 
Computing: Springer-Verlag, LNCS 1212.

22. Hogger, C. (1984), Introduction to logic programming, Academic Press, 
London,

23. Jalote, P. (1989), "Testing the completeness of Specifications", IEEE  
Transaction on software engineering , 15(5), 526-531.

24. Jones, C. B. (1986), Systematic Software Development Using VDM, Prentice- 
Hall, London.

25. Kemmerer, R. A. (1985), "Testing Formal Specifications to Detect Design 
Errors", IEEE Trans. Software Eng., 11(1), 32-43.

26. Knott, R. D. and Kraus, P. J. (1988), "An Approach to Animating Z Using 
Prolog", Report A1.1, Alvey Project SE/065, University of Surrey.

166



27. Kowalski, R. A. (1979), Logic fo r  problem solving, North-Holland, New York.

28. Lloyd, J. W. (1984), Foundations o f Logic Programming, Springer-Verlag, New 
York.

29. MoD UK (1991), "The Procurement of Safety Critical Software in Defence 
Equipment", Defence Standard 00-55/Issue1, UK Ministry of Defence.

30. Moore, R. C. (1982), The Role o f Logic in Intelligent Systems SRI International.

31. Ross, P. (1989), Advanced Prolog, Addison-Wesley Pub. Co.

32. Spivey, J. M. (1989), The Z  Notation: a Reference Manual, Prentice-Hall.

33. Stepney, S. and Lord, S. P. (1987), "Formal Specification of an Access Control 
System", Software-Practice and Experience , 17(9), 575-593.

34. Turner, D. (1986), "An Overview of Miranda", A C M  SIG PLAN Notices21(12), 
158-166.

35. West, M. M. and Eaglestone, B. M. (1992), "Software development: two 
approaches to animation of Z specification using Prolog", Software Engineering, 
7(4), 264-276.

36. West, M. M. (1988), Z/PROLOG Translator, M.Sc. Dissertation, University of 
Bradford.

37. Wordsworth, J. B. (1996), Software Engineering with B, Addison-Wesley.

38. Zin, A. M. (1993), ZFDSS: A Formal Development Support System Based on the 
Liberal Approach, Ph.D. Thesis, Dept. of Comp. Science, University of 
Nottingham, UK.

167


