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ABSTRACT: In this paper, we have given the applications of homogeneous 
differential polynomials to the Nevanlinna’s theory of meromorphic functions in the 
finite complex plane and given some generalizations by these polynomials.
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ÖZET: Bu çalışmada, homojen diferansiyel polinomlar Nevanlinna kuramına 
uygulandı ve bu homojen polinomlarla bazı genelleştirmeler verildi.

Anahtar kelimeler: Meromorfik fonksiyon, homojen diferansiyel polinom ve sonlu 
karmaşık düzlem.
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1. INTRODUCTION

In this work, we are going to use the usual notations of the Nevanlinna theory of 
meromorphic functions as explained in (Hayman,1968,1-2_0), (Nevanlinna,1974,10- 
25) and (Wittich, 1968, 5-30) such as m(r,f), N(r,f), m(r,a), Nr,a), T(r,f), S(a, f) = 5(a) , 
5(a) and A(a). By a meromorphic function we shall always mean that a 
function is meromorphic in the finite complex plane.

If f is a non-constant meromorphic function we shall denote by S(r,f) any quantity 
satisfying S(r,f)=o[ T(r,f)] as r - f  oo through all values if f is of finite order and 
r -> oo possibly outside a set of finite linear measure if f is of infinite order. Also, 
we shall always denote a(z), a0(z), a^z), a2(z), etc. meromorphic functions satisfying

We shall be concerned with meromorphic functions P which are polynomials in the 
meromorphic function f and the derivatives of f with coefficients of the form a(z).

where f;i), f 2)..., f m) are the successive derivatives of f and t0, tlv.., tm are non-negative 
integers.

Definition 1. If t0 + t 1, + ..., + tm for a fixed positive integer in every term of P, 
then Pis called a homogeneous differential polynomial in f of degree n.

2. LEMMAS

Lemma 1. If P is a homogeneous differential polynomial in f of degree n > 1, then 
we have

(Gopalakrishna, 1973, 330).

Lemma 2. Let P be a homogeneous differential polynomial in f of degree n and 
suppose that P does not involve f. That is, P is a homogenous polynomial of degree 
n in f 1 , f2,..., f m)with coefficients of the form a(z) satisfying T[r,a(z)] = S(r,f).

T[r, a(z)] = S(r, f) and T[r, a j (z)] = S(r, f).

Let

and
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If P is not a constant and a1; a2,...,aq are distinct elements of C where q is any 
positive integer, then we have

n | j m ^ r >j i - j ^ T ( r , P ) - N ^ r i j  + S(r,f) (1)

or

nqT(r, f) < T(r,P) + + S(r,f) (2)

(Gopalakrishna, 1973, 329-335).

3. THEOREMS

Theorem 1. Let P b ea  homogeneous differential polynomial in f of degree n and a ^  b. 
If f is a non-constant meromorphic function in the finite complex plane, then we 
have the following inequality

T(r,f) < N(r,P) + - N (r,f)-N ^ r i j  + S(r,f).

Proof. Since a ^  b we can write

1 f  P P V f - a ^ l  1
f - b  v f - b  f - a J v  P y b - a

If we take absolute values, positive logarithms and mean values of the both sides of 
this equality we have

■ f i b ) s  mi r,7 jy +m ( r' 7 T i ) + 1” ( r'i F L] + 0 ( ,)

-  m | r,— 1 + mi r , — 1 + mi r , — I + n Î i-,- P
f - b y  \ f-aj K f - a J  K f - a

- N ^ r , ^ - j  + 0 ( l )

< N(r,P) + N| - N Î r ^ l - N(r,f) + S(r,f) (3)

where



If we add the term N | r,------- | on both sides of the inequality (3), we get
f - b ,

T(r,f) < N(r,P) + N|  r , ^ - l  + n Î  -  N (r,f)- N ^  ] + S(r,f). (4)

If we restrict P = H z), the inequality (4) becomes

T(r,f) < Ñ(r,í) + + S(r,f)

which is one of the Nevanlinna’s results.

Theorem 2. Let P b ea  homogeneous differential polynomial in f of degree n and b ^  0. 
If f is a non-constant meromorphic function in the finite complex plane, we have the 
following inequality

T(r,f) < N(r,f) + N| r, + N Í r , ^  ] -  N0 + S(r,f). (5)

Proof. Since b ^  0 we can write

1 (  P

f  -  a

P' P - b V

The mean values of this equality give
f - a  f - a  P ' y b

m r.
1 P'

' f - a j -  m r ’f ^ J + m r ’f r r J + m l r’̂  l+ 0 (1 )
P - b

< N r,
P' >1 ( P-b>|

J+s(r’S
< N(r,P') + -  N(r,P) + S(r,f)

< Ñ(r,P') + N Í r , ^ l  -  n ( 4 )  + S(r,f)

<N (r,f) + N Í r , ^ | - N 0f 1 1 
r’p\ A /

+ S(r,f)

or

T(r,f) < N(r,f) + -  N0 (r ,^  | + S(r,f). (6)

If we restrict P = f(k) (z), the inequality (6) becomes

T(r,f) < N(r,f) + N[ r> ^ ~ l  + NÍr, 1 + S(r,f)

which is the one of Milloux’s results (Dönmez, 1979, 203-207).
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Theorem 3. Let P be a homogeneous differential polynomial in f of degree n. If f is 
a non-constant meromorphic function in the finite complex plane, we have

T(r,f)< N[ r , ^ - j  + N Î r ,^ - r )  + N İ r , - ^ -  | - N,(r,P) + S(r,f) (7)

where

Nj (r,P) = 2N(r,P) -  N(r,P') + N( r ,^

and non-negative.

Proof. It is easy to write

1 1 P

f - a  P f  -  a
The mean values of this equality give

ml r>"~—1 ^ m fr,-^| + m ir,- P
f - a j  { V)  V f - a  

“ m( r’? )  + S(r,Î)

< T (r ,P )-N ^ r ,ij  + S(r,f). (8)

We know that Nevanlinna’s second fundamental theorem is the following in terms 
of P

T(r,P) < + N ^ r , ^ j  + N ( r’^ )  " Ni (r>p) + S(r,P).

If we use the second fundamental theorem in the inequality (8), we can write

, 0  S N ^ )  + N ( r , I )  + N (r ,? i î ) + N ( r>7i j ) -  n ( 4 ) -  N, (r,P)

+ S(r,f)
or

T(r,f) < N ^ )  + N ( r> ^ )  + N ( r’? T ^ )  " Ni (r’P>+ S(r^ '

If we restrict P = f(k) (z), the inequality (7) becomes

T(', f) < N [r>7i - j  + + -  N, (r,f» )  + S(,,f)

which is the one of Hiong’s results (Dönmez, 1979, 203-207).

Theorem 4. If P is a homogeneous differential polynomial in f of degree n, then we 
have
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nqT(r,f) < N(r , f )  + + N0| r ,—  | + S(r,f). (9)

Proof. The Nevanlinna’s second fundamental theorem can be written in terms of the 
homogenous differential polynomial P as the following,

T(r,P) < N(r,P) + + N ^ r . ^ j  -  N0 (r,^ ) + S(r,P).

On the other hand, it is easy to write ^  ̂  p) < ^  f) + § (r> f) _ If we use the inequal
ity (2), we can write

nqT(r,f) < N(r,P) + N[ r i j  + N fr  1
P - b

q  (  ^

■N0( r i )  + S(r,f) + n j ; N ^ —

- N | r , - |  + S(r,f)

or

nqT(r,f) < N(r,f) + N ( r’̂ )  + nE N [ r’7 “ | ” N°(r’̂ ) + S<r'9-

If n = 1 and q = 1 the inequality (9) gives the inequality (5). That is, the inequality 
(9) is the generalization of the inequality (5).

Theorem 5. If P is a homogeneous differential polynomial in f of degree n and 
s = 2,3,4,... then

—  q f  1 s 
(s - l)nqT(r,f) < N(r,f) + (s -  l ) n ^ N  r,— —  +

'  1 N 

vr’p " bJy (10)

If s = 3,4,5,... then we have

1q —(  i >
(s -  2)nqT(r,f) < (s -  2 ) n ^ N  r, j — - + 2 ^ N

i=l V i )  j=l
Proof. The Nevanlinna’s second fundamental theorem can be written in termVof the 
homogeneous differential polynomial P as the following

'  1 '  

r , p - b jy

(s-l)T (r ,P )< N (r ,f) + ^ N

and j=i
" N 0 r,— ] + S(r,f) (12)

( s - 2 ) T ( r , P ) < ^ N r , ^
j=i V v °U

-N ^ r.P H S fc P ) (13)
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where N , (r, P) = 2N (r, P) -  N (r, P ') + N -P  p^J and non-negative. If we use the ine

qualities (12) and (13) in the equality (10), we obtain the inequality (11).
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