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ABSTRAK 

 
Indeks vegetasi  yang diperoleh dari   data NOAA-AVHRR sudah umum digunakan sebagai indikator 

kehijauan dan kekeringan vegetasi.  Kondisi iklim global dan regional diatas Sumatera mempengaruhi  indeks 
vegetasi di Sumatera.  Penelitian ini bertujuan mempelajari keragaman indeks vegetasi terutama di Sumatra  
dan hubungannya dengan El Nino - Southern Oscillation (ENSO) dan Indian Ocean Dipole Mode Event 
(DME).  LAC NDVI periode 1996-2002 digunakan untuk menganalisa koefisien keragaman dan analisis 
korelasi kanonik.  Keragaman NDVI yang tinggi ditemukan di pantai timur, bagian selatan dan bagian utara 
Sumatera, sedangkan di bagian barat dan tengah keragamannya rendah.  Secara keseluruhan, keragaman NDVI 
selama monsun barat lebih tinggi daripada periode monsun timur. ENSO dan DME mempangaruhi indeks 
vegetasi di Sumatera pada lag 0,4,dan 5 bulan (nyata pada taraf 5%).  Kontribusi terbesar diberikan oleh 
variable kanonik lag 1 (R2=70.1%), sisa 29,9 % disebabkan oleh keragaman factor-faktor lainnya.  Kerana 
korelasi dan signifikansi dari parameter iklim secara statistik tinggi, maka dapat digunakan sebagai prediktor 
NDVI di Sumatera.  Diantara 6 time lag , parameter dengan lag 6 bulan mempunyai keragaman yang tertinggi. 
Namun, uji beda nyata menunjukkan bahwz korelasi kanonik pada lag 0,4,dan 5 yang mempunyai beda nyta 
tertinggi (pada taraf 95%).  Struktur korelasi kanonik untuk parameter iklim pada lag 0 dan 1 didominasi oleh 
SOI dan anomaly SST.  Sedangkan korelasi pada lag 2,5, dan 6 didominasi oleh SOI, anomaly SST, dan DMI.  
Berdasarkan hasil analisis tersebut, kami menyimpulkan bahwa analisis korelasi kanonik merupakan metode 
yang optimum untuk memprediksi NDVI di Sumatera pada lag 5 bulan menggunakan  SOI, SSTA, dan DMI 
sebagai prediktor.  Hasil ini menunjukkan bahwa parameter iklim dapat digunakan untuk memprediksi NDVI 5 
bulan ke depan  dengan baik di Sumatera.   
 
Kata kunci:   NDVI, Anomali suhu muka laut Nino 3,4. Dipole Mode Index, koefisien keragaman, 

dan korelasi kanonik. 

 
 

INTRODUCTION 
 

Vegetation is one of fuel types which affect the vulnerability of land to fires.  Vegetation 

greenness may reflect its moisture content, so that it might be considered as important factor of fire 

risks particularly in prone areas. Imagery from satellite has the ability to provide spatially 

comprehensive information for remote and inaccessible areas, making this valuable tool for research 

on regional scale analysis. Since the spectral variation of vegetation canopy is a function of 

photosynthetic activity and leaf area index, the use of visible and near infrared reflectance satellite 

data is possible for assessing the greenness and moisture content of vegetation. Several spectral 

vegetation indices have been developed over the last few decades from remotely sensed data.  One 

of them that is commonly and widely used is Normalized Difference Vegetation Index (NDVI), 
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which is calculated from the difference between near infrared channel reflectance and red channel 

reflectance and normalized by their sum (Rouse et al., 1973).   

Time series of NOAA-AVHRR NDVI data are of importance for analysis of vegetation 

parameters on regional scale.  NDVI derived from NOAA AVHRR data is thus essential to land fire 

risk research.  Current findings on the use of NDVI as fire risk related parameter are the threshold 

of NDVI to determine fire risk in Kalimantan (Borneo) and the correlation between NDVI and leaf 

moisture in Jambi – Sumatra. Several papers also describe the capabilities of AVHRR-derived data 

for forest studies (Defries et al., 1998; Kharuk et al., 2003). A research on forest fire in Kalimantan 

has suggested that NDVI < 0.3 is the upper limit of area vulnerability to land fires (Hidayat, 1997).  

Other work found the correlation between NDVI and leaf moisture content over unburned area in 

Jambi - Sumatra is relatively high (Junaidi, 2002, unpublished).  NDVI has also been widely used to 
monitor vegetation fires in Sumatra (Anderson et al., 1999). 

NDVI has proven to be a robust indicator of terrestrial vegetation productivity.  Among 

climatic factors, precipitation and temperature strongly influence both temporal and spatial patterns 

of NDVI.  On the other hand, climatic factors are also greatly  influenced by global anomalies such 

as El Nino and Southern Oscillation.  Previous studies have suggested prominent effects of such 

anomalies on climate over Indonesia (harger 1995a, 1995b; Puspito et al., 2002).  More over, 

western part of Indonesia, including Sumatra, is also considered to be affected by and Indian Ocean 

Oscillation (Saji et al., 1999).  Since NDVI has been suggested to be a reliable indicator of 

vegetation dryness, and thus risks to land fire, it has importance in any efforts attempting to develop 

land fire prevention activities particularly in Sumatra.  

The objective of this research is to study the variability of vegetation indices of Sumatra and 
analyze the relation between ENSO, Dipole Mode Event and the predictability of vegetation indices 

of Sumatra.   Hypothesis proposed in this research includes (1) NDVI variability varies between 

seasons and it is higher in the east coast and southern part of Sumatra than in the western and 

northern part of the island; and (2) vegetation indices in Sumatra are highly correlated with SST 

anomaly in Nino 3.4 area, SOI, and DMI, while the correlations vary between time lags. 

 

 

VEGETATION INDICES AND ITS VARIABILITY 
 

Vegetation index is a satellite-derived parameter correlated with photosynthetic activities of 

vegetation and provides an indication of the greenness of vegetation (Sellers, 1985). Many formulas 

could be used to derive vegetation indices from remote sensing data.  Diaz and Blackburn (2003) 

suggested ten formulas of vegetation indices.  They are ratio vegetation index (RVI), normalized 

difference vegetation index (NDVI), perpendicular vegetation index (PVI), difference vegetation 

index (DVI), soil adjusted vegetation index (SAVI), transformed soil adjusted vegetation index 

(TSAVI), soil adjusted ratio vegetation index (SAVI2), first-order derivative green vegetation index 

derived using local baseline (IDL_DGVI), first-order derivative green vegetation index derived 

using zero baseline (IDZ_DGVI), second-order derivative green vegetation index derived using zero 

baseline (2DZ_DGVI). Diaz and Blackburn (2003) also found that based on the correlation 

coefficients for both LAI and percent canopy cover, the effects of background variations were most 
pronounced for NDVI, SAVI, and TSAVI, whereas SAVI2 and RVI were moderately affected. 
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Normalized Difference Vegetation Index (NDVI) is one of vegetation indices commonly 

used and also the most widely employed vegetation index and has proven to be useful in large scale 

vegetation monitoring.  NDVI is broadly correlated in turn with several biophysical parameters such 

as the level of photosynthetic activity, transpiration rates (Sellers, 1985), the fraction of absorbed 

photosynthetically active radiation (FPAR), evapotranspiration (Running and Nemani, 1988), leaf 

area index (LAI), net primary production (NPP), (Tucker and Sellers, 1986; Prince, 1991; Diaz and 

Blackburn, 2003), and climate anomalies such as El Nino phenomenon (Verdin et al., 1999; 

Mennis, 2001).  

Time series of NOAA-AVHRR NDVI data are important for the analysis of vegetation 

parameters on regional scale.  Due to practical problems in collecting, pre-processing and archiving 

the data, full resolution LAC (Local Area Coverage) images are usually available only for short 
periods or for relatively small areas (Teillet et al., 2000).  A more recent work used an approach to 

merge the temporally stable, high spatial resolution land cover variation derived from LAC images 

with the temporally variable NDVI information brought by GAC data.  The approach provided good 

quality images in terms of both radiometric and geometric features (Maselli and Rembold, 2002). 

Pan et al. (2003) has explored a new method of vegetation classification at large scales using 

multi-temporal 1-km NOAA AVHRR NDVI images.  They found that NDVI could be used as 

parameter in vegetation classification system, thus indicated vegetation condition.  Since vegetation 

condition is influenced by water availability, the inclusion of climate information, particularly 

rainfall, improved the classification from 63.3 % by using NDVI images alone to 71.4 %.  

Kharuk et al. (2003) has used Global Vegetation Index (GVI) from NOAA-AVHRR to map 

forest landscapes in Siberia using a landscape-ecological approach.  They used AVHRR data for 
classification of mountainous regions and the result showed that AVHRR derived maps were more 

detailed than existing landscape maps.  AVHRR derived classification also compared favourably to 

larger scale forest management maps of softwood and hardwood forests.  

NDVI has proven to be a robust indicator of terrestrial vegetation productivity.  Among 

climatic factors, precipitation and temperature strongly influence both temporal and spatial patterns 

of NDVI.  Wang et al. (2001) examined spatial responses of NDVI to precipitation and temperature 

during a 9-year period (1989-1997) in Kansas.  Biweekly climate maps (precipitation and 

temperature) were constructed by interpolation of weather station measurements.  Maps of biweekly 

growing season (March to October) NDVI were constructed for Kansas using NOAA-AVHRR 

NDVI images.  Average precipitation is a strong predictor of the major east-west NDVI gradient.  

Deviation from average average precipitation explained most of the year-to-year variation in spatial 
patterns.  NDVI and precipitation covaried in the same direction (both positive or negative) for 60-

95% of the total land area.  Minimum and average temperatures were positively correlated with 

NDVI, but temperature deviation from average was generally not correlated with NDVI deviation 

from average.  Their results demonstrate that precipitation is a strong predictor of regional patterns 

of NDVI and, by inference, pattern of productivity. 

Mennis (2001) explores the relationship between ENSO, captured by equatorial Pacific SST, 

and the interannual variation in vegetation vigour in the south-east USA, captured by AVHRR 

NDVI, for the period 1982-1992.  The moving average and “baseline” methods (anomaly from the 

long term mean) were used to extract interannual patterns in the NDVI signature for croplands, 

deciduous forest and evergreen forests.  The ENSO cycle was measured using mean SST anomalies 

and the percentage of SST cells above certain threshold values (e.g. 1.0 oC above the long term 
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mean).  The baseline method indicated a weak, yet persistent, negative correlation between ENSO 

warm phase events and vegetation vigour in the south-east USA.  The moving average method 

yielded similar results but produced higher correlation values (-0.45 to -0.76, significant at the 0.01 

level).  Use of 2.0 
o
C threshold SST anomaly was found to yield the highest correlation values as it 

captures not only the presence but also the intensity of ENSO warm phase events.  These results 

indicate that there is a clear and recognizable, through inconsistent, relationship between ENSO and 

vegetation vigour in the southeast USA. 

 

 

EL NINO - SOUTHERN OSCILLATION (ENSO), INDIAN OCEAN DIPOLE 

MODE EVENT AND THEIR IMPACTS ON INDONESIA 
 

The El Nino-Southern Oscillation (ENSO) is a coupled oceanic-atmospheric phenomenon 

consists of a sympathetic movement involving the Pacific Ocean and associated atmosphere in an 

essentially chaotic manner along the equator.  The system oscillates between extremes of the so-

called "warm events" usually lasting 1 or 2 year and involving movement of warm sea water from 

the western Pacific along the equator to impact on the west coast of the American continent and 
"cold event" associated with easterly trade-wind-induced flows of colder water from the eastern 

Pacific towards the west.   

Historical data indicate that ENSO years as experienced by the Island of Java are either much 

warmer than non-ENSO years or only slightly, if it all, warmer than normal (non-ENSO) years.  

Using more than 40 year data, Harger (1995a) found that in recent years, since 1950, of the 9 ENSO 

warm events, the initial year tends to have been hot and dry for 6 (1951, 1957, 1963, 1972, 1982, 

1991) and neutral or cool and wet for 3 (1968, 1976, 1986). The increasing annual trend in air-

temperature exhibited by the mean monthly values over the period 1866-1993, for the Jakarta and 

the Semarang data taken together is 1.64 oC (0.0132 oC per year from 25.771 to 27.409 oC).  The 

1.65 oC difference between 1866 and 1991 can presumably be partitioned into: (1) urban heat-island 

effect, (2) effect of deforestation, (3) effect of secular micro-climate shift, (4) influence of general 

global warming with particular reference to the tropics.   

In general ENSO years are associated with higher temperature than non-ENSO years, with a 

significant negative correlation between subsequent years which are thereafter systematically 

cooler.  This may be because the ENSO event actively mixes excess heat energy into the ocean-sink 

to an extent that is in direct proportion to the outstanding positive temperature deviation.  A weak 

ENSO, preceded by a relatively modest temperature build-up in the lead-up non-ENSO years, then 

results in limited mixing which leads to a relatively warm subsequent year while strong event leads 

to extensive mixing and so generally results in a following very much cooler year.  Atmospheric 

temperature build-up possibly associated with the greenhouse effect may be coupled to an 

increasingly wider temperature swing in west and central Java associated with the warm pool 

influence but anchored by the ocean-sink (Harger, 1995a). 

According to Harger (1995b), information drawn from meteorological records in the 
southeast Asia clearly indicates that each ENSO event is unique in terms of the signature which it 

imposes on the rainfall and temperature from location to location.  Nevertheless, a strong underlying 

pattern within the context of each event, itself apparently initiated or molded by the character of the 

preceding years, can be detected.  This pattern permits relatively circumscribed predictions of 



Variability of Normalized Different Vegetation Indices in Sumatra 

 25 

forward conditions (drought intensity) for 2-3 year, to be made once the event “locks in” for the 

duration of the warm event and at least 1 year beyond.  The character of the intervening non-ENSO 

years can also be projected but in a more tenuous, though fairly regular manner. 

For the available historical data, all markedly upward-moving traces eventually delivered a 

hot dry season in east Indonesia.  This sort of tendency within non-ENSO blocks can thus serve as a 

caution in the sense that a very hot ENSO event is likely in the offing.  The correlation between the 

cumulative temperature deviation of the inter-ENSO blocks in relation to the temperature deviation 

of the first ENSO year is 0.43. In the region of southeast Asia represented by Indonesia and the 

Philippines, relatively secure predictions concerning likely upcoming drought can be made specific 

instances once an ENSO event “locks in” for successive years (2-4) until the warm event set 

terminates.  In the case of Java and within succeeding inter-ENSO years, further prediction can be 
made with reference to successive years in terms of the character of preceding years.  This system, 

in conjunction with predictions generated by models could form the basis of prediction of drought 

or rainfall within dry season from one year to the next. 

The 1997-1998 El Nino, the strongest in recorded history, manifested itself with a number of 

unusual features associated with the Pacific wind system.  According to Chen et al. (2001) these 

features include: (1) an annual cycle of an east-west migration of a weakened wind speed zone 

between 2 oN – 9 oN; (2) an asymmetric see-saw process of trade wind variation between the two 

hemispheres in terms of relative intensity and central position; and (3) an 18-month cycle of 

meridional oscillations of the Pacific doldrums and trade wind belts.  In addition, the commonly-

used argument of trade wind relaxation in association with El Nino appears to be partly introduced, 

at least for the present case, by the „tilt effect‟ of the Pacific zonal winds.  These novel findings, 
revealed by the newly available multi-year TOPEX altimeter data, may help to improve existing 

theories on El Nino formation, and may also contribute to its future prediction. 

In the region of southeast Asia represented by Indonesia and the Philippines, relative secure 

predictions concerning likely upcoming droughts can be made in specific instances once an ENSO 

event "locks in" for successive years (2-4) until the warm event terminates.  In the case of Java and 

within succeeding inter-ENSO years, further predictions can be made with reference to successive 

years in terms of the character of preceding years (Harger, 1995).  

Saji et al. (1999) found other prominent oscillation of the atmosphere over Indian Ocean.  

The oscillation is characterized by posotive sea surface temperature anomaly at western part of  

Indian Ocean and negative sea surface temperature (SST) anomaly at eastern part of the Ocean 

(west of Sumatra).  The oscillation is called Dipole Mode Event (DME).  Various impacts of DME 
were indentified as flood in Kenya, east coast of Africa, and India, and contraryly droughts in 

Indonesia, east China, and Korea. 

Dipole Mode Event is developed in subtropics of south Indian Ocean during summer.  The 

initiation includes surface wind changes over Sumatra to southeastward which will increase local 

upwelling, raise thermocline, and decrease sea surface temperature.  Coller waters in east Indian 

Ocean will induce easterlies along the equator, increase cooling of equatorial east Indian Ocean, and 

increase warming in west Indian Ocean.  Warming in west part of the ocean will cause Ekman 

region over 10o S and it will spread westward (Webster et al., 1999). 

During normal summer monsoon, Indian Ocean climate system is characterized by cooler 

SST in the western part and warmer SST in the eastern part, and symetric SST distribution in the 



Erna S.A., dan Kustiyo 

 26 

equatorial eastern part, OTCZ (Oceanic Tropical Convergenze Zone) is situated in the south of 

equator and causes rainfall of about 10 mm/day in the area, surface wind over southeast Indian 

Ocean weakens.  During DME, changes will take place: cooling of SST in southeast Indian Ocean, 

asymetric SST distribution over equator, easterlies and passat over southeast Indian Ocean 

strengthen and spread out across equator, OTCS dissapears and convection over west Indian Ocean 

strengthen since SST is warmer than normal.  This configuration is commonly called positive 

Dipole Mode.  In fact, a negative Dipole Mode is also developed following/preceding positive DME 

with a converse configuration (Rao et al., 2001, 2002). 

An index has been suggested to indentify DME, called Dipole Mode Index (DMI).  Intensity 

of DME is represented by gradient of SST anomaly between western part of equatorial Indian 

Ocean (50°- 70°E and 10°S-10°N) and southeastern part of equatorial Indian Ocean (90°-110°E dan 
10°S-0°) (Saji et al., 1999).  

DME greatly depends on wind strenght over southern part of Indonesia during southeast 

monsoon.  If southeast monsoon strengthens, DME may occur.  DME in 1972, 1994, and 1997 

coincided with the onset of El Nino during east monsoon (May-September) and it caused severe 

droughts in Indonesia (Mihardja et al., 2002).  However, mechanism of the oscillation development 

is still not understood well.  Several hypothesis suggested that this mode was related to ENSO (Alan 

et al., 2001), but other scientists suggested that this mode was an independent air-sea interaction 

over Indian Ocean and not affected by ENSO (Saji, 2000).  Meanwhile, Webster et al. (1999) and 

Murtugudde et al. (2000) found a weak interaction between Indian Ocean and Pacific Ocean 

oscillations.  Mihardja et al. (2002) found an interaction between ENSO, DME, and monsoon 

related to Indonesian region.  According to Li et al. (2002), DME differs from ENSO because of 
several reasons: differences in relationship of cloud phase-SST between warm and cold pools, 

inversion of zonal wind basic position, slope of east-west thermocline, effects of Asia monsoon and 

its negative feedback on DME.  

Furthermore, Saji et al. (1999) using 40 year observation data also indentified six DMEs, that 

is in 1961, 1967, 1972, 1982, 1994, and 1997.  Rao et al. (2002) suggested that during the last 127 

years, there were 14 positive strong DMEs and 19 negative strong DMEs, but only 5 positive DMEs 

and 7 negative DMEs coincided with ENSO.  In other words, about 65 percent of DME does not 

coincide with ENSO. 

Several studies have identified statistically significant correlations between Pacific sea 

surface temperature anomalies and NDVI anomalies in Southern Africa.  Cross validation 

techniques suggested a more useful relationship for regions of wet anomaly than for regions of dry 
anomaly.  Observed 1998 NDVI anomaly patterns were consistent with this result.  Wet anomalies 

were observed as expected, but wide areas of expected dry anomalies exhibited average or above-

average greenness.  Cross-validation statistics suggest that Nino3 SSTs are more accurate predictors 

of increased greenness in the north Africa than decreased greenness in the south Africa (Verdin et 

al., 1999).  Their results reveal that cross-validation has been shown to be a powerful measure of the 

expected performance of equatorial Pacific SST for forecasting Southern Africa NDVI.  

Mennis (2001) has also indentified  statistically significant correlations between Pacific sea 

surface temperature anomalies and NDVI anomalies in Southern Africa. Cross validation techniques 

suggested a more useful relationship for regions of wet anomaly than for regions of dry anomaly.  

Observed 1998 NDVI anomaly patterns were consistent with this result.  Wet anomalies were 

observed as expected, but wide areas of expected dry anomalies exhibited average or above-average 
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greeness.  Cross-validation statistics suggest that Nino3 SSTs are more accurate predictors of 

increased greenness in the north Africa than ddecreased greenness in the south Africa.  Their results 

reveal that cross-validation has been shown to be a powerful measure of the expected performance 

of equatorial Pacific SST for forecasting Southern Africa NDVI.  

 

 

DATA AND METHODS 
 

AVHRR and Climatic Data 

Daily LAC NOAA-AVHRR data of February 1996 to December 2002 were collected from 

LAPAN (Indonesian Institute of Aeronautics and Space) Ground Station in Jakarta.  The data 

consists of NOAA-12 and NOAA-14.  Global climatic data of the same period were also collected 

from NCEP-NOOA website.  The climatic data consists of sea surface temperature anomaly (SSTA) 

over Nino 3.4 region (covers area between 5N - 5S and 170 W - 120 W) and Southern Oscillation 

Index (SOI) which indicates the difference between Tahiti air pressure and Darwin air pressure at 

mean sea level. 

 

AVHRR Data Processing 

AVHRR data were pre-processed to obtain radiometrically and geometrically corrected 

data of Sumatra.  Band 1 and 2 of the data were then processed to derive LAC NDVI using equation 
as follows: 

 NDVI = (C2 - C1) / (C1+C2) 

C1 is albedo of channel 1 (red) AVHRR and C2 is albedo of channel 2 (near infrared) AVHRR 

respectively.  The albedo of each channel is determined by digital number, gain and intercepts 

values of the channel.  Gain and intercept values were obtained from the header of the data after 

radiometric correction were accomplished.  Maximum composite of daily LAC NDVI for one 

month were used to obtain monthly NDVI images for LAC datasets from February 1996 to 

December 2002.  NDVI values of 22 areas represent all provinces in Sumatra were then extracted to 

make time series of NDVI for each location. 

 

Data Analysis 

Variability of NDVI for each area in Sumatra was analyzed based on coefficient of 

variance (CV).  The greater the CV the greater the variability of NDVI.  CV is calculated using 

equation as follows: 

 CV = (SD / MEAN) * 100 

With SD is standard deviation and MEAN is arithmatic average of NDVI parameter. 

Canonical Correlation Analysis (CCA) is multivariate statistical technique to analyze the 

correlation among two variable sets.  Using this technique of analysis, a complex relation structure 

of two variable sets could be described.  The objective of the analysis is to find linear combination 

of p independent variables which have maximum correlation with q linear combination of 

dependent variables.  General equation of CCA is:   

 
Y1B1 + Y2B2 + Y3B3 +...YnBn = A0 + X1A1 + X2A2 + X3A3 +...XnAn 
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Canonical correlation analyses (CCA) includes several steps in computing several parameters of 

CCA.  Firstly, canonical correlation coefficients are obtained by establishing a correlation matrix 

(R).  The structure of matrix is as follows: 
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where: RXX  = correlation matrix for X variable set, RYY = correlation matrix of Y variable set, RXY 

RYX  = correlation matrix between X and Y. 
Each element of the matrix was coumputed by: 
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Eigenvalue () was then computed based on R matrix using the following equation:  
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Eigenvalue was used to obtain eigenvector, which comprised of canonical variable coefficients.  

Eigenvector was calculated using equations: 
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The eigenvectors are a and b, which are canonical coefficients or canonical weights.  

Canonical variables can be constructed using eigenvector consist of [p, q] sets as follow:  

 

V1 = a1X W1 = b1Y 

V2 = a2X W2 = b2Y 

. .                  . 

. . 

Vp = apX Wq = bqY 
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Canonical correlation coefficients were the computed by employing : 
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Data variance explained by each variable set can be obtained as follows: 

 

i

iceDataVarian






 

Further analyses on canonical variable sets is based on the limit of cumulative variance, which is 80 

percent (Dillon and Goldstein, 1984). 

Hypothesis test is accomplished as follows: 

Ho : i = 0, there is no sgnificant correlation between ith canonical variable sets.  

H1 : i   0, there is no sgnificant correlation between ith canonical variable sets. 
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The last steps in CCA are determination of dominant variables and interpretation of canonical 

variables.  Two techniques can be used: 

a. Canonical Weight: indicates the contribution on the variability of canonical variables. 

b. Canonical Loading: measures simple correlation between original variables and canonical 

variables.  It reflects variance and contribution on canonical variables.  The larger the loading 

the more important the loading in canonical variable derivation.  

 

 

RESULT AND DISCUSSION 
 

Variability of NDVI 

Vegetation index variability in Sumatra for the period of 1996 to 2002 was analyzed based 

on its variance coefficients (CV).  The results were then plotted spatially as shown in Figure 1 and 

2.  Figure 1 shows spatial NDVI variability in Sumatra for west monsoon (September to February) 

and Figure 2 shows variability for east monsoon (March to August).  

From Figure 1 and 2 we see that variability of NDVI varies between seasons.   The NDVI 

variability in Sumatra is summarized in Table 1.  As depicted from Figure 1 and 2 it showed that 

during west monsoon (represented by September to February) the variability of NDVI on November 

was the highest and it is the lowest on January.  Meanwhile during east monsoon (represented by 

March to August) the variability of NDVI on June was the highest and it the lowest on March.  It 
was also shown that NDVI variability varied spatially.  High variability was found on the eastern 

coast part, south part, and northern part of the island.  The western and central parts of the island 

had low variability.   

 

 

  
September October  
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November December 

  
January February 

 
Figure 1. Distribution of monthly NDVI variability in Sumatra as indicated by average coefficient 

of variance for west monsoon (September to February).  
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March April 

  
May June 
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July August 

 

Figure 2. Distribution of monthly NDVI variability in Sumatra as indicated by average coefficients 

of variance for east monsoon (March to August).  

 

As a whole, NDVI variability in Sumatra during west monsoon was higher than during east 

monsoon.  Minimum CV was 15.17 and reached on August, while maximum CV was 1468.88 and 
reached on November.  Since only southern part of Sumatra is affected by monsoon, this part of the 

island has NDVI which varies more than the most northern part (except in northmost part).  It 

means that any anomaly in monsoon circulation will greatly affect NDVI in southern Sumatra rather 

than northern part. 

 

Table 1.  Summary of monthly coefficients of variance for NDVI in Sumatra 

 
CV JAN FEB MAR APR MAY JUN JUL AGS SEP OCT NOV DEC 

Mean 75.20 112.25 63.41 72.34 80.23 110.43 70.47 69.40 132.26 151.90 238.65 198.28 

Min 22.65 28.99 33.31 29.00 37.47 54.03 33.99 15.17 46.83 75.56 86.99 64.63 

Max 316.25 1104.98 216.40 294.74 235.26 297.51 181.95 145.24 976.89 368.11 1468.88 745.52 

 
Canonical Correlation of ENSO (El Nino - Southern Oscillation) and DME (Dipole Mode Event) 

with Vegetation Index (NDVI) in Sumatera 

Based on 21 NDVI variables in Sumatra and 3 climate variables (SOI, SSTA, and DMI),  

three canonical variable sets, V1 and W1, V2 and W2, V3 and W3, were established.  Canonical 

correlations for the three variable sets are presented in Table 2.  
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Table  2.  Canonical Corrrelation Coeficients  

 

Canonical 

Variable Sets 
Canonical corrrelation coeficients for each time lag 

 Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 

1 0.838 0.763 0.750 0.749 0.796 0.796 0.794 

2 0.776 0.697 0.712 0.645 0.728 0.740 0.666 

3 0.631 0.617 0.523 0.625 0.583 0.692 0.586 

 

From Table 2 we can see that V and W canonical variables were highly correlated.  

Canonical correlations for the three variable sets of 0 to 6 month time lags are more than 50 percent 

and the highest correlation was 83.8 percent.  Table 2 also shows that to an extent the longer the 

time lag the lower the correlation.  This results indicate that climate parameters (SOI, SSTA, and 

DMI) not only highly affect NDVI in Sumatra but also significantly as shown by P-value (Table 3).    

It is important to note from Table 3 that ENSO and DME affect vegetation indices in Sumatra 

significantly for time lags of 0, 4, and 5 month (significant level at 5 %), while for the remaining 

time lags the significance is less.  For prediction purposes, however, it can be said that the optimum 
time lag was 5 months meaning that climate parameters is able to be used to predict NDVI for 5 

months ahead. 

 

Table 3. Significance Test of Canonical Correlations 

 

Time Lag lag 0 lag 1 lag 2 lag 3 lag 4 lag 5 lag 6 

P-Value 0.00 0.10 0.22 0.22 0.04 0.01 0.11 

Significance is indicated by P-value computed using Wilks‟ Lambda 

Bold numbers indicates high significance. 

 

Relation between climate parameters and vegetation indices 

Contribution of independent variable sets on the variability of dependent variable sets was 

also analyzed to assess the relationship between climate parameters and vegetation indices.  Based 

on computation, squared canonical correlation coefficients were then obtained.   The results for the 

three variable sets are presented in Table 4. 
 

Table  4.  Squared Canonical Corrrelation Coefficients  

 

Canonical 

Variable Sets 
Squared Canonical Corrrelation Coeficients for each Time Lag 

 Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 

1 0.701 0.582 0.563 0.560 0.633 0.633 0.630 

2 0.603 0.486 0.507 0.417 0.530 0.547 0.444 

3 0.398 0.381 0.274 0.390 0.340 0.479 0.343 
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Table 4 shows relatively great contribution of climate variable sets in affecting NDVI 

variable sets.  The greatest contribution was given by the 1st canonical variable of lag 1 (R2=0.701).  

This means that 70.1 percent of NDVI variability can be explained by DMI, SOI, and SSTA 

parameters.  Meanwhile, about 29.9 percent of NDVI variability is caused by other factors.  Since 

the correlation and significance of climate parameters was statistically proven to be high, they could 

be used as predictors of NDVI in Sumatra.  This result is also similar to those which were suggested 

by previous works in attempting to predict NDVI using climate parameters (Verdin et al., 1999; 

Mennis, 2001).  Unlike previous studies, except ENSO parameters this study also included Indian 

Ocean Oscillation or Dipole Mode Event (DME) parameter in the analyses.  The result reveals that 

both ENSO and DME phenomena are highly and significantly correlated with NDVI in Sumatra.  

 
Table 5.  Data Variance Explained by each Canonical Variable Sets 

 

Canonical 

Variable Sets 

Explained Data 

Variance 

Cumulative Data 

Variance 

Lag 0 

1 0.5187 0.5187 

2 0.335 0.8538 

3 0.1462 1 

Lag 1 

1 0.4717 0.4717 

2 0.3202 0.792 

3 0.208 1 

Lag 2 

1 0.4785 0.4785 

2 0.3815 0.86 

3 0.14 1 

Lag 3 

1 0.4847 0.4847 

2 0.2716 0.7563 

3 0.2437 1 

Lag 4 

1 0.5119 0.5119 

2 0.335 0.8469 

3 0.1531 1 

Lag 5 

1 0.448 0.448 

2 0.3138 0.7618 

3 0.2382 1 

Lag 6 

1 0.5637 0.5637 

2 0.2637 0.8274 

3 0.1726 1 

 

Variance of NDVI which could be explained by each canonical variable set is presented in 

Table 5.  From the table we can see that data variance explained by 1st canonical variable set is 

0.5187 for lag 0, meaning that 51.87 percent of NDVI data is described by 1st canonical variable set 

of lag 0.  Similarly, data variances of lag 1 to 6 respectively were highest for respective 1st canonical 

variable sets.  The variance of 2nd canonical variable set was lower than the 1st variable set and the 

3rd canonical variable set had the lowest data variance.  Among the six time lags, variable set of 6-
month time lag had the highest variance.  This result reveals that the 1st variable set of lag 6 was the 
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best, followed by lag 0, lag 4, lag 3, lag 2, lag 1 and lag 5 respectively.  However, this does not 

imply that 1st variable set of 6-month time lag is the best predictor of NDVI.   Further analyses 

based on significance test and canonical weight should be done to prove this.  Significance test as 

shown in Table 3 indicates that the canonical correlations of lag 0, lag 4, and lag 5 were highly 

significant (at level 95%). 

To describe canonical correlation, it also is important to analyze cumulative variance.  The 

structur of canonical correlation can be analyze if the independent data variance is more than 80 

percent.  As we can see from Table 5, this condition was fulfilled by cumulative variance of the 1st 

and 2nd variable sets of lag 0 (92.48%), lag 2, and lag 6 respectively.  Meanwhile, cumulative 

variance of lag 1, lag 3, and lag 5 was more than 80 percent for the three variable sets. 

Further analyses on canonical weight and canonical loading was needed to determine the 
dominance of each predictor variable set.  Table 6 has showed that standardized canonical weights 

was most significant for the 1st variable set of lag 0, followed by lag 5 and lag 4 respectively.  The 

table also indicates that 2nd variable set of lag 5 was highly significant.  Those means that lag 5 has 

the most significant variable sets.  Analyses on climate parameters showed that SSTA gave the 

greatest contribution to the 1st climate variable sets of lag 0, lag 2, lag 3, and lag 6, while SOI gave 

the greatest contribution to lag 1 and DMI to lag 4 and lag 5 respectively (see Table 7).  The 

greatest contribution to the 1st NDVI variable sets of lag 0 was given by Bengkulu, lag 1 by Gunung 

Sitoli, lag 2 by Jambi, Palembang and Rengat, lag 3 by Rengat, lag 4 by Palembang, lag 5 by 

southern part of South Sumatra, and lag 6 by west Riau.  Based on canonical weights we suggest 

that SSTA is the greatest contributor to NDVI variability in Sumatra.  On the other side, SOI 

significantly contributed to NDVI variability only at lag 2 and DMI at lag 4 and 5. 
 

Table 6. Standardized Canonical Weights for each Time Lag 

 

Canonical 

Variable Sets 
lag 0 lag 1 lag 2 lag 3 lag 4 lag 5 lag 6 

1 0.00 0.10 0.22 0.22 0.04 0.01 0.11 

2 0.06 0.30 0.48 0.47 0.26 0.05 0.52 

3 0.41 0.48 0.87 0.44 0.65 0.15 0.64 

Bold numbers indicates very high significance, the rest indicates moderate to 
low significance. 

 

Analyses on canonical loadings (Table 7) suggested that the structure of canonical 

correlations for climate variable sets at lag 0 and lag 1 were dominated by SOI and SSTA.  

Meanwhile the correlations at lag 2, lag 5, and lag 6 were dominated by SOI, SSTA, and DMI.  The 

correlations at lag 3 and lag 4 were dominated by DMI and SSTA.  The structure of canonical 

correlations for NDVI variable set at lag 0 were dominated by South Aceh and east of West 

Sumatra.  Nevertheless, no location dominated the structure of canonical correlation of NDVI at lag 

1 to lag 6.  These results imply that the three climate parameters were appropriate to predict NDVI 

at lag 2, lag 5, and lag 6.  Considering analyses on correlation coefficient and significance test, we 

suggest that canonical correlation analyses is optimum method to predict NDVI at time lag of 5 
months using SOI, SSTA, and DMI as predictors. 
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Table 7. Canonical Loadings for each Time Lag at Several Locations 

 

Parameters 
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 

V1 V1 V1 V1 V1 V1 V1 

DMI 0.23 0.49 0.59 0.72 1.00 0.93 0.80 

SOI -0.94 -0.99 -0.69 -0.42 -0.36 -0.62 -0.64 

SSTA 0.89 0.88 0.97 0.84 0.59 0.85 0.93 

Location W1 W1 W1 W1 W1 W1 W1 

ACEH 2 0.504 0.357 0.352 0.308 0.296 0.432 0.444 

 PADANG 1 0.520 0.430 0.406 0.295 0.272 0.444 0.475 

 PADANG 2  0.417 0.296 0.299 0.223 0.233 0.284 0.252 

SICINCIN 0.214 0.078 0.035 0.103 0.370 0.285 0.260 

 BANGKA 2       -0.036 -0.171 -0.225 -0.371 -0.102 -0.158 -0.156 

Bold numbers indicate canonical loadings of more than 0.5. 

 

 

CONCLUSION 
 

During west monsoon (represented by September to February) the variability of NDVI on 
November was the highest and it is the lowest on January.  High variability was found on the 

eastern coast part, south part, and northern part of the island.  The western and central parts of the 

island had low variability.  As a whole, NDVI variability in Sumatra during west monsoon was 

higher than during east monsoon. 

ENSO and DME affect vegetation indices in Sumatra significantly for time lags of 0, 4, and 

5 month (significant level at 5 %), while for the remaining time lags the significance is less.  For 

prediction purposes, however, it can be said that the optimum time lag was 5 months meaning that 

climate parameters is able to be used to predict NDVI for 5 months ahead.   

The greatest contribution was given by the 1st canonical variable of lag 1 (R2=0.701), 

meaning that 70.1 percent of NDVI variability can be explained by DMI, SOI, and SSTA 

parameters.  Meanwhile, about 29.9 percent of NDVI variability is caused by other factors.  Since 

the correlation and significance of climate parameters was statistically proven to be high, they could 
be used as predictors of NDVI in Sumatra. 

Among the six time lags, variable set of 6-month time lag had the highest variance.  This 

result reveals that the 1st variable set of lag 6 was the best, followed by lag 0, lag 4, lag 3, lag 2, lag 

1 and lag 5 respectively.  However, this does not imply that 1st variable set of 6-month time lag is 

the best predictor of NDVI.   Further analyses based on significance test and canonical weight 

should be done to prove this.  Significance test indicates that the canonical correlations of lag 0, lag 

4, and lag 5 were highly significant (at level 95%).  The structure of canonical correlations for 

climate variable sets at lag 0 and lag 1 were dominated by SOI and SSTA.  Meanwhile the 

correlations at lag 2, lag 5, and lag 6 were dominated by SOI, SSTA, and DMI.  The correlations at 

lag 3 and lag 4 were dominated by DMI and SSTA. 

Considering analyses on correlation coefficient and significance test, we suggest that 
canonical correlation analyses is optimum method to predict NDVI in Sumatra at time lag of 5 

months using SOI, SSTA, and DMI as predictors. 
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