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Abstrak 

  Jaringan Syaraf Tiruan (JST) khususnya reccurent neural network (RNN) telah banyak 

digunakan untuk memprediksi nilai tukar mata uang. Algoritma pembelajaran yang umum 

digunakan dalam JST adalah Stochastic Gradient Descent (SGD). Salah satu kelebihan SGD 

adalah waktu komputasi yang dibutuhkan relatif singkat. Tetapi SGD juga memiliki kelemahan, 

termasuk SGD yang membutuhkan beberapa hiperparameter seperti parameter regularisasi. 

Selain itu SGD relatif membutuhkan banyak zaman untuk mencapai konvergensi.  

Extended Kalman Filter (EKF) sebagai algoritma pembelajaran pada RNN digunakan 

untuk menggantikan SGD dengan harapan tingkat akurasi dan konvergensi yang lebih baik. 

Penelitian ini menggunakan data nilai tukar IDR / USD dari 31 Agustus 2015 hingga 29 

Agustus 2018 dengan data 70% sebagai data pelatihan dan 30% data sebagai data uji. 

Penelitian ini menunjukkan bahwa RNN-EKF menghasilkan kecepatan konvergen yang lebih 

baik dan akurasi yang lebih baik dibandingkan dengan RNN-SGD. 
  

Kata kunci— mata uang, peramalan, recurrent neural network, stochastic gradient descent, 

extended Kalman Filter 

 

 

Abstract 

  Artificial Neural Networks (ANN) especially Recurrent Neural Network (RNN) have 

been widely used to predict currency exchange rates. The learning algorithm that is commonly 

used in ANN is Stochastic Gradient Descent (SGD). One of the advantages of SGD is that the 

computational time needed is relatively short. But SGD also has weaknesses, including SGD 

requiring several hyperparameters such as the regularization parameter. Besides that SGD 

relatively requires a lot of epoch to reach convergence. Extended Kalman Filter (EKF) as a 

learning algorithm on RNN is used to replace SGD with the hope of a better level of accuracy 

and convergence rate. This study uses IDR / USD exchange rate data from 31 August 2015 to 

29 August 2018 with 70% data as training data and 30% data as test data. This research shows 

that RNN-EKF produces better convergent speeds and better accuracy compared to RNN-SGD. 
 

Keywords— exchange rates, forecasting, recurrent neural network, stochastic gradient descent, 

extended Kalman Filter. 

 

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

https://core.ac.uk/display/297915214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:1muhammad.asaduddin.h@mail.ugm.ac.id


          ISSN (print): 1978-1520, ISSN (online): 2460-7258 

IJCCS  Vol. 13, No. 3,  July 2019 :  293 – 300  

294 

1. INTRODUCTION 

 There are two main approaches to forecast exchange rates: fundamentally and 

technically approach. The fundamental approach looks at the situation the economy of a region 

and conduct relationship analysis, whereas technical approach is an attempt to estimate prices 

with observing changes in prices in the past, including time-series method and neural network. 

Exchange rate data has many variables, with two most used variables are value variables and 

time variables. Exchange rate data is included in time-series data which are classified as data 

sequences and forecasting in this field is well developed. Recently, soft computing (especially 

artificial neural network (ANN)) is used as an approach for technical analysis. The advantage of 

artificial neural networks is to produce better results when applied to non-linear data than other 

non-linear methods such as bilinear and regression tree models [1]. 

Conducted a system test on the implementation of the Arima method and Artificial 

Neural Network and merged Arima and ANN [2]. Data that is not stationary will be differed 

using ACF (Autocorrelation Function) and PACF (Partial Autocorrelation Function). The 

results of the calculation of MSE (Mean Square Error) and MAPE (Mean Absolute Percentage 

Error) errors with ANN are the largest. The values of MSE and MAPE when using the merge of 

Arima and ANN show mixed results for each input. Did the Hybrid Arima model with a Neural 

Network to predict time-series data [3]. The Arima is used for predicting time-series data 

containing linear components, while NN for time-series data with non-linear components. The 

hybrid model from Arima-NN has a more accurate prediction accuracy than the traditional 

Arima model. 

One form of artificial neural network that is widely used in modelling data sequences 

is a recurrent neural network (RNN). Slightly different from ordinary ANN, RNN has units 

in the hidden layer that are interconnected and can be used to be inserted into the hidden 

layer again [4]. Therefore, the network can use previous data history for sequence data, and it  

is suitable for exchange rate data using previous data (lag) as input [5]. 

 Apply the RNN with the Backpropagation Through Time (BPTT) learning algorithm to 

forecast stock prices [6]. From the results of the trials conducted on forecasting stock prices 

using RNN-BPTT produces different error values. Prediction by applying RNN was also carried 

out by [7]. The focus of this study is an online prediction, where the tasks are done are far more 

difficult than gratuitous inference with neural networks offline. This study uses discrete-time 

RNN to see the RNN's ability to predict the next symbol in the sequence. 

The common learning algorithm used in conjunction with RNN is Stochastic 

Gradient Descent (SGD). SGD works by minimizing the value of a function by making 

changes to parameter values that affect the function value. One of the advantages of SGD is 

that the computational time needed in one iteration is relatively short. This is because SGD 

changes parameter values after evaluating only one or several pairs of training data compared 

to all available data [8]. SGD itself has experienced various developments to improve the 

performance of ANN on exchange rate forecasting, for example like Adam [9] and RMS 

Prop.  SGD has weaknesses, including SGD requiring several hyperparameters such as the 

regularization parameter. Besides that SGD relatively requires a lot of epochs to reach 

convergence [10]. 

Cernansky, Benuskova [11] and Trebaticky [12] managed to prove that the 

performance of the RNN can be improved by adopting the Extended Kalman Filter (EKF) 

algorithm as a learning algorithm. With EKF, the RNN model obtained has a quicker 

convergent level, and better performance compared to RNN which uses the SGD learning 

algorithm. EKF itself is widely applied to the other field technology. Generally, EKF is 

applied for instructions, navigation, and control of vehicles, especially aeroplanes and 

spacecraft. In addition, EKF is a concept commonly used for time series analysis such as 
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signal processing and econometrics, so the EKF models generated from training data can be 

used to predict future exchange rates [5]. 

The application of Neural Network with EKF has been carried out [13] to predict 

flooding by using ANN and EKF. This study emphasizes ANN to get the best model in the 

accuracy of flood prediction. After that, in the following year [14] conducted a classification 

using the Feedforward Neural Network with EKF. The results of the study provide a 

comparison with the classification using gradient descent. EKF gives better results in the 

classification problem. 

 

 

2. METHODS 

This research has two main objectives: to create an RNN EKF forecasting model with a 

faster convergence rate than RNN SGD and to discover the EKF RNN model has better 

accuracy compared to RNN SGD. 

2.1 Data 

 Historical data on currency exchange rates are obtained from https://www.ofx.com/en- 

gb/forex-news/historical-exchange-rates/. The data obtained consists of 2 variables, namely 

time and exchange rate at that time. Table 4.1 is a data snippet of IDR / USD exchange rates 

from August 31, 2015, to August 29, 2018. Exchange rate data is stored in a file with CSV 

format. 

 

2.2  Method 

This research was conducted to make a forecasting model of currency exchange rates. 

In this case, the exchange rate of the currency to be used is the Indonesian rupiah (IDR) 

exchange rate against the US dollar (USD). 

Normalization in the form of [-1,1] is carried out on exchange rate data. This range of 

values is adjusted to the activation function that will be used, namely tanh. 

In the RNN architecture used there are 4 types of layers. These layers are the input 

layer, hidden layer, an output layer, and a context layer. The neurons in the input layer amount 

to the size of the sliding window used. An experiment will be conducted on the number of 

neurons in the hidden layer. The number of neurons 1 until 10 is used in the experiment to see 

the number of neurons that provide the best results. Neurons in the output layer are one because 

they are a regression problem. The number of neurons in the context layer will follow the 

number of neurons in the hidden layer for Elman Networks. The context layer itself is used to 

store the value of the hidden layer on timestep t-1 for reuse as input to the hidden layer on 

timestep t. The value in the context layer will continue to be updated until the training process is 

complete. 

Training data is the data used during the training process in the RNN-EKF system. 

From the total data available, the percentage of training data is 70% of the total data. Training 

data that enters the network is 760 data points. 

The learning algorithm that will be used in ANN is EKF. The equation for measurement 

updates from EKF can be simplified to [10]: 

 
         

          
     

  ………………………………..(1) 

  ̂      ̂             ̂    …………………..……………..(2) 

                   ……………………..…………….(3) 
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With    is the gain,    is automatic covariance error,    is the Jacobian matrix,    is 

the measurement noise covariance matrix,   ̂  is the new weight prediction,    is the desired 

output, Q_t is the process noise covariance matrix. 

The learning parameters in the RNN in this study are the value of the Q noise 

covariance process, measurement noise covariance R, and the number of epochs (up to 1000 

epochs). 

Process noise covariance Q is a matrix of size nw*nw where nw is the sum of all 

weights on ANN. Measurement noise covariance R is a variable size matrix where it is the 

number of neurons in the output layer. Q and R have a value of n * I  where n is a scalar and I is 

an identity matrix. Will be tested against the value of n to determine the effect of the value of Q 

and R on the results of predictions. Data for testing needs to be done normalizing the forecasting 

data. Testing is done by calculating the value of RMSE and Dstat. 

 

 

 

3. RESULT AND DISCUSSION 
 

In ANN that uses the EKF learning algorithm, the process noise Q covariant value, and 

measurement noise R covariance value replace the learning rate function in the ANN that uses 

the SGD learning algorithm. Therefore, it is necessary to know the right Q and R values so that 

the training process can run optimally. 

 The test is carried out with values of 1, 0.1, 0.01, and 0.001 for the values of Q and R. 

Other parameters will be regulated constantly, a namely sliding window of 1, 2 units of neurons 

in hidden layers, and maximum epochs of 1000. Figure 1 is a training loss graph for Q variation 

values. 

 

 

Figure 1 Loss training graph for each Q value 

 

It can be seen that there are some instabilities in each Q value but the loss is stable to 

converge when it approaches the epoch 1000 value. By looking at the loss graph, the Q value of 

1 is chosen as the EKF parameter because it produces a more stable loss graph compared to 3 

other Q values. 
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Figure 2 Loss training graph for each R-value 

 

Figure 2 is a training loss graph for the R-value of the training loss value for each R-

value, and it can be seen that the R-value does not have a significant effect on network loss 

when Q is 1. Therefore the value is determined R is 1 as the EKF parameter. 

Tests are carried out with fixed parameters Q and R and with the variation of sliding 

windows from 1 to 8. Dstat results from 10 trials for each architectural test are presented in 

Table 1. We use Dstat to observe the accuracy primarily because the data is a financial 

instrument so this parameter is the most appropriate one. 

 

Table 1. Results of the Dstat for variation of the sliding window 

Experiment 
Sliding Window 

1 2 3 4 5 6 7 8 

1 60,62 58,95 58,20 58,69 55,45 53,75 51,72 54,08 

2 59,70 58,64 68,11 60,55 58,88 58,44 57,05 59,43 

3 60,92 55,86 60,99 64,91 58,78 59,38 60,18 56,28 

4 59,07 57,09 53,25 57,45 53,27 51,56 56,74 57,54 

5 59,07 57,40 55,73 55,28 61,06 53,44 63,22 58,18 

6 60,61 61,11 55,11 59,01 60,44 56,56 60,82 62,57 

7 62,46 58,95 65,94 62,11 59,50 61,25 58,62 61,32 

8 60,30 68,20 64,09 60,56 61,06 56,25 60,82 58,80 

9 62,15 52,77 58,20 52,17 51,09 56,25 59,56 58,81 

10 65,53 61,11 64,70 59,68 56,07 60,31 59,56 63,20 

Maximum 65,53 68,20 68,11 64,91 61,06 61,25 63,22 63,20 

Minimum 59,07 52,77 53,25 52,17 51,09 51,56 51,72 54,08 

  Average 61,04 59,01 60,43 59,04 57,56 56,72 58,83 59,02 

 

The summary for the sliding windows testing is presented in Table 2. 
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Line

ACER007
Line



          ISSN (print): 1978-1520, ISSN (online): 2460-7258 

IJCCS  Vol. 13, No. 3,  July 2019 :  293 – 300  

298 

Table 2 Test results for sliding windows 

 

Parameter 
Sliding Window  1 Sliding Window 3 

Min Max Mean Min Max Mean 

RMSE 49,82 74,04 62,09 57,36 88,20 72,39 

Dstat ( % ) 59,07 65,53 61,04 53,25 68,11 60,43 

 

  

The number of neurons tested is 1 to 10 neuron units in one hidden layer. Testing is the 

same as testing the size of a sliding window, where 10 attempts will be used for each neuron 

value. The Dstat results for each neuron are presented in Table 3.  

 

Table 3 Results of Dstat(%) on sliding windows 1 and 3 

Number of 

Neurons 

 Sliding window 1 Sliding window  3 

Min Max Mean Min Max Mean 

1 59,38 63,08 60,52 56,04 66,56 61,24 

2 59,07 65,53 61,04 53,25 68,73 60,83 

3 59,07 63,08 60,58 56,66 70,58 62,48 

4 59,07 63,38 60,89 52,63 67,49 62,14 

5 56,01 63,69 60,77 58,51 72,76 65,08 

6 58,77 63,38 61,44 60,99 73,06 65,42 

7 54,46 67,38 61,57 52,63 63,16 58,73 

8 59,08 63,08 60,99 51,08 73,07 61,30 

9 54,10 66,46 61,62 52,63 72,45 61,12 

10 59,08 63,38 60,71 52,32 68,73 60,22 

 

 

The best results for the use of 1 sliding window were found in the application of 7 units 

of neurons at Dstat of  67.38%. Whereas for the average Dstat the best is obtained by applying 9 

units of neurons at 61.62%. The best results for the use of sliding window with size 3 were 

found in the application of 8 units of neurons by 73.07% but the value was not much different 

when applying neurons as much as 6 units of 73.06%. Whereas for the best average Dstat 

obtained on the application of neurons as much as 6 units of 65.42%. So the best architecture for 

the RNN-EKF, in this case, is 3-6-1. The summary accuracy data for a number of neurons for 1 

and 3 sliding windows, with RMSE data, are presented in Table 4.  

 

Table 4 Accuracy data for the number of neurons with RMSE data  

 

Parameter 
Sliding window 1 with 6 

neurons 

Sliding window 3 with 8 

neurons 

Min Max Mean Min Max Mean 

RMSE 49,82 74,04 62,09 57,36 88,20 72,39 

Dstat ( % ) 54,46 65,53 61,57 51,08 73.08 61,30 

 

 

The model produced will be compared with models trained using RNN-SGD. This test 

is conducted to find out which model is better used to forecast currency exchange rates. 
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The architecture that will be used is the 3-6 - 1 architecture, similar to the architecture 

in the RNN-EKF model. From 10 times the experiment with a maximum epoch of 1000, the 

results obtained as shown in Table 4. 

 

Table 5 Results of RNN SGD accuracy 

Experiment 
RNN - SGD 

Dstat (%) RMSE 

1 43,65 141,30 

2 45,51 222,01 

3 44,58 167,38 

4 43,96 225,75 

5 46,74 92,63 

6 50,77 107,97 

7 46,43 200,27 

8 47,36 123,26 

9 43,65 104,57 

10 45,82 180,70 

Minimum 43,65 92,63 

Maximum 50,77 225,75 

Average 45,85 156,58 

 

 

In Table 5, the maximum Dstat of 50,77% is achieved with 6 nodes in the hidden 

neurons. The average Dstat accuracy is 45,85%. This Dstat accuracy is less than accuracy 

achieved by RNN-EKF with a maximum accuracy of 73.08% and average  61.30 %.  

The minimum RMSE for RNN-SGD is 92,63 with an average of 156,58. This RMSE 

accuracy is much higher than achieved from RNN-EKF model which the minimum  RMSE is 

57,36 and the average is 72,39. From the Dstat and RMSE values achieved by RNN-EKF and 

RNN_SGD, it can be seen that RNN-EKF model having higher accuracy than RNN-SGD. 

 

 

4. CONCLUSIONS 

The results of this study indicate that the EKF RNN provides high accuracy, and higher 

accuracy compared to RNN-SGD with a considerable increase in accuracy in Dstat and a 

considerable reduction in RMSE. Further research can be done on other learning algorithms on 

Kalman Filters such as the Unscented Kalman Filter or other learning algorithms. 
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