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Abstrak 
Masalah utama pengiriman data adalah bagaimana mengurangi panjang pengiriman 

paket data, sehingga dapat mengurangi waktu pengiriman data. Salah satu metode yang dapat 

digunakan untuk mengurangi ukuran data adalah dengan mengompresi ukuran data. Kompresi 

data adalah teknik untuk mengompresi data untuk mendapatkan data dengan ukuran yang lebih 

kecil dari ukuran aslinya sehingga dapat mempersingkat waktu pertukaran data. 

Penelitian ini bertujuan untuk mengembangkan teknik kompresi data dengan 

memodifikasi dan menggabungkan teknik pengkodean dan pemodelan berdasarkan algoritma 

RAKE. Percobaan pengujian penelitian ini menggunakan 4 metode yang berbeda dalam 5 

periode waktu yang berbeda untuk menentukan nilai kompresi, parameter efisiensi dekompresi, 

dan parameter waktu transmisi data. 

Hasil dari penelitian ini adalah teknik pengkodean data yang menggunakan desimal ke 

data konverter biner dan teknik pemodelan dengan menghitung residu dari nilai sensor akan 

menghasilkan data dalam ukuran kecil dan mendapatkan nilai efisiensi kompresi 45%. Untuk 

teknik pengkodean menggunakan ASCII dan teknik pemodelan dengan operasi XOR akan 

menghasilkan data ukuran yang lebih besar dan nilai efisiensi kompresi 71%. Dalam pengujian 

dekompresi data, nilai efisiensi dekompresi 100%, tidak ada kehilangan data. 

 

Kata kunci— Cloud, Internet of Things, Kompresi Data, Transmisi Data 

 

Abstract 
The main problem of data transmission is how to reduce the length of data packet 

delivery, so it can reduce the time of sending data. One method that can be used to reduce the 

data size is by compressing the data size. Data compression is a technique for compressing data 

to get the data with smaller size than the original size so that it can shorten the data exchange 

time 

This study aims to develop the data compression techniques by modifying and 

combining the coding and modelling techniques based on the RAKE algorithm. This study 

testing experiments use 4 different methods in 5 different time-periods to determine the value of 

the compression, decompression efficiency parameters, and the data transmission time 

parameters. 

The result of this study is the data coding technique that using decimal to binary 

converter data and the modeling technique by calculating the residue from the sensor value will 

produce data in small sizes and get a compression efficiency value of 45%. For coding 

techniques using ASCII and modeling techniques with XOR operations will produce bigger size 

data and the compression efficiency value of 71%. In testing data decompression, the 

decompression efficiency value of 100%, there is no data loss. 

 

Keywords—Cloud, Internet of Things, Data Compression, Data Transmission.  
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1. INTRODUCTION 

 

The main problem of data transmission is how to reduce the length of data packet 

delivery, so it can reduce the time of sending data. One method that can be used to reduce the 

data size is by compressing the data size[1]. The more data stored and in a long period, the 

higher the size of the data. The solution that can be done is to reduce the size (compression) of 

the data [4]. 

The algorithm that can be used for IoT data compression is a lossless RAKE 

compression algorithm, this is because lossless algorithms are more widespread in some IoT 

scenarios [5]. Although several other lossless compression algorithms are available. For 

example, the Lempel-Ziv algorithm, most are not suitable when only limited storage and 

computing resources are available [6]. Also, the implementation of this RAKE algorithm only 

requires basic calculation operations, limited overhead (only a few extra bits are needed to 

encode all required parameters for decompression), centralized storage (not dependent on 

previous codewords) and this algorithm can easily be extended to a sequence of integers [4]. 

G-Connect Project is one of the use of Cloud-based systems and Internet of Thing (IoT), 

while G-Connect project one of the community service projects at Computer Science 

Department of Universitas Gadjah Mada with the goal is to provide independent information 

access into a small area with limited infrastructure support and also areas with high levels of 

disaster vulnerability. This project applied the disaster information remote monitoring and 

monitoring technology by implementing IoT and cloud technology to help disaster-prone areas. 

In 2016, the research phase and prototype development to limited trials were carried out through 

an independent research scheme. The results of the technology that supports this connectivity 

are in the form of a mobile access device consisting of several components including hot air 

balloon components, solar panels as power supply components, power banks as power storage 

components, SBC mini routers as access control components and wireless as a spreader 

component access [7]. 

The problem faced by the G-connect project at this time is the signal limitations and the 

absence of a method to reduce the size of sensor data that will be sent to the cloud. The more 

data, the higher the size of the data sent, so that information access will not be fast because it 

needs more time to transmit data. For this reason, a method is required in order to reduce the 

size of the data. Based on the explanation above, in this study development will be carried out in 

coding techniques and modeling a method of compression and decompression of data using the 

RAKE algorithm. This study aims to compress and reduce the time of sending data obtained 

from IoT G-Connect devices to the cloud 

 

 

2. METHODS 

 

An analysis of the minimum device requirements is recommended for building the 

system. In this study used several supporting equipment consisting of hardware and software.  

2.1 System in General 

The focus of this research is on two subsystems which are then integrated into a whole 

system, namely the IoT gateway subsystem (Raspberry Pi) and the cloud platform subsystem 

(Digital Ocean Server). Figure 2 is a general diagram of the system to be built: 
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Figure 1 General System 

 

In this system, there are several sensor nodes to collect data from the real environment. 

Sensors are connected to the local gateway on the client-side, reporting values obtained from all 

sensors continuously and or according to the pre-arranged time, and then the data is sent to the 

cloud platform. The gateway on the system is responsible for managing IoT devices, receiving 

sensor data and then compressing sensor data before data is sent to the cloud. While the cloud 

platform is responsible for storing device data using a service interface provided by the gateway 

so that users can store device data sent by the gateway and decompress data using the RAKE 

algorithm. 

This research is part of the G-Connect project which comes with the main concept of 

providing access to information that is independent of a region and implements the IoT devices 

and Cloud technology to help disaster-prone areas. G-Connect device record data from the 

environment using SHT11 (Temperature and humidity), GY-521 MPU 6050 (x, y, z movement) 

and Anemometer (wind speed. Apart from sensors, G-Connect also uses Arduino and Raspberry 

Pi. The use of Arduino on G-Connect functions as a hardware interface that deals directly with 

sensor devices, while the Raspberry Pi functions to request sensor data to Arduino which will 

then be sent to the cloud. Data is recorded at any time and sent to the cloud server regularly. 

Then the collected data is presented in the form of time series information and can be analyzed 

data on temperature, humidity, wind speed and symptoms of symptomatic land movement in 

landslides. Information on the cloud server can be accessed to provide an early warning on the 

scope of the region. Figure 1 shows the G-Connect project which is divided into seven main 

parts: Communication device between Arduino and Raspberry Pi, The operating system and 

scheduling on Raspberry Pi, Scheduling data sensor to cloud, The data compression and data 

transmission on Raspberry Pi to cloud, extracting shipping data, correct data and validating data 

on the cloud.  
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Figure 2  G-Connect Project Schemes 
 

2.2 System Requirement 

Table 1 is the general requirements for software that used in the development of the 

RAKE algorithm for compression and transmission of IoT G-Connect sensor data to the cloud.  

 

Table 1 

General requirements for Software and Hardware 

 

Software Hardware 

OS at running Client Mac OS X Raspberry Pi 

OS at server Ubuntu Server Arduino 

OS at Raspberry Pi Raspbian  SHT11 

Language Programming on  

Raspberry Pi 
Phyton  

MPU6050 

Arduino Compiler Arduino IDE 1.8.2  Anemometer 

Cloud Server Digital Ocean Server Wifi 

OS at Smartphone Android  

Hotspot App (getting the IP)  Hotspot manager  
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2.3   The Compression and the Decompression System Stages in General 

The stages of the data compression delivery chart based on the RAKE algorithm can be 

explained as follows:  

a. The first step is to take the timestamp and a number/package of sensor data received by 

the time of data collection. 

b. Then the data coding process is carried out, namely by converting sensor data values. 

c. Check if the data taken is the value / first set of bits. If yes, then a set of bits is sent and 

saved to the cloud as the default which functions as an identity if data will be retrieved and 

decompressed. 

d. If the value is not the first set of bits (set to 1 + n, and so on), then the default bit values 

that are on the cloud will be retrieved. 

e. The next step is checking whether there is still sensor data after that that must be taken. If 

not, it will proceed to the compression process resulting from data modeling. If there is 

still sensor data, it will proceed to the timestamp value retrieval process and sensor data 

collection. 

f. Then the compression of binary numbers results from the modeling process using the 

RAKE algorithm. 

 

After the value of the sensor data is successfully compressed, the next step is the process 

of sending compressed data to the cloud. Then the data decompression process will be carried 

out in the cloud, so that the data can be returned intact and can be used/displayed. The process 

of decompressing data includes the process of data normalization and the process of converting 

data to the original data form. The data decompression chart based on the RAKE algorithm 

explanation  is as follows: 

a. The process of retrieving data from compression on cloud platform.  

b. Cloud Platform Decompresses the compressed data. 

c. Data Normalitation 

d. Data conversion, by changing the binary value to the text by using ASCII, or converting 

the binary value of the sensor to decimal. 

 

2.4   System Implementation And Testing 

2.4.1 Data Coding and Data Modeling Implementation 

In this study using three methods in the process of coding data and the process of 

modeling data as follows: 

1)  ASCII + XOR 

Encoding: ASCII 

Modeling: XOR Operation + RAKE  

2)  (Binary Decimal + XOR) 

Encoding: Decimal to Binary Converter 

Modeling: XOR Operation + RAKE 

3)  (Binary Decimal + RAKE-residue) 

Encoding: Decimal to binary converter. 

Modeling: Residue + RAKE 

 

2.4.2 Data Testing 

The configuration flow before conducting the test, in general, will be shown in Figure 3 

 
Figure 3 General Testing Design Flow 
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Figure 3 describes the flow of the test system design in general, starting from the 

hardware configuration, namely the Raspberry Pi as a client to compress data and send data to 

the cloud server. Generally, a testing system must have an input, process, and output. The 

testing phase begins with inputting sensor data into the system as material for analyzing 

performance. The process consists of the process of data compression and decompression and 

the process of sending data. The output is the analysis of data obtained from the compression 

and transmission of data from the IoT gateway to the cloud platform.  

 

 
 

Figure 4 The Test Block Diagram 

 

Figure 4 describes the test block diagram. First of all, sensor data input is done as 

entering the load into the system. After that the process of compression and transmission of 

sensor data is carried out, then monitoring of each parameter will be used as material for 

analysis of test results, namely data delivery time (without compression and compression), data 

size before and after compression, compression ratio and compression efficiency. After the 

testing system is prepared, the next process is to carry out testing and measurement of the 

system that has been implemented and then analyze the system, whether the system created is in 

accordance with what was planned. The conditions tested are as follows: 

 

4)  Performance test of data compression algorithms in test files. 

- Compression Ratio (CR) is defined as the ratio between the number of bits before and after 

compression. Calculation of the compression ratio is shown in equation (1)[15]. 

 

                       (1) 

- Compression Efficiency (CE%) defined as:  

 

     (2) 

The compression efficiency is presented in percentage to describes a measure of the success of 

data compression. 

 

5)  Performance test algorithm for decompressing data in text files. 

- Decompression ratio is defined as the ratio between the number of bits before and after 

decompression. Calculation of the decompression ratio is shown in equation (3). 

 

 (3) 
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- Decompression Efficiency (DE%) is shown in equation (4). 

 

(4) 

 

 

The decompression efficiency is presented in percentage that describes a measure of the success 

of data decompression. 

 

 

3. RESULT AND DISCUSSION 

 

 

3.1 Compression Efficiency Parameter 

The compression efficiency parameter is obtained from the calculation of the 

compression ratio by considering variable size data before compression and variable size data 

after compression according to a predetermined period. The results of testing data compression 

using several coding methods and modeling are attached to the attachment chapter. In this study, 

sensor data was first collected using five different periods for each testing experiment. This was 

done to obtain various data size values. The time period used is 10 minutes, 15 minutes, 20 

minutes, 25 minutes, and 30 minutes with each period carried out as many as 70 attempts, then 

data compression is done using 4 different coding methods and data modeling methods. 

 

3.1.1. ASCII + XOR Method Data Compression Testing 

In the coding method by using text to binary conversion with ASCII, the size of the data 

length is large. This is because coding in this method is done per character (1 character is 

translated to 8 bits). So, the more data sensor is taken, the more characters produced. But the 

efficiency of compression using this coding method is above 70%. Figure 5 is the Graph of 

compression efficiency on the data length of testing data compression using ASCII coding and 

modeling using the XOR operation and the RAKE algorithm, while T1, T2, T3, T4 and T5 

mean the number of experimen. 

 

 

 
 

Figure 5 Compression efficiency graph of the data length 

 

Based on the graph of compression efficiency on the data length, which is taken as 

many as 5 test times, for 10 minutes, 15 minutes, 20 minutes, 25 minutes, and 30 minutes, it can 

be seen that the compression efficiency value uses ASCII coding methods, and modeling 

methods using XOR gets an average yield of around 71.501% to 72.487%. This is because the 

T1 T2 T3 T4 T5

EK(%) 71,886 71,545 72,487 71,746 71,501

70

70,5

71

71,5

72

72,5

73

Compression Efficiency (%) 
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coding used is in the form of converting text characters to binary forms using ASCII so that 

changes in sensor values produce data changes that are not so large. So, when the XOR 

operations are carried out on the data, the possibility of '0' binaries appearing more, so 

compression efficiency is higher.  

 
 

3.1.2. Binary-Decimal Method + XOR Data Testing 

Fig 6 shows the graph of compression efficiency using coding by converting decimal to 

binary data and modeling using XOR operations and RAKE algorithms.In the data coding 

method using decimal to binary conversion, the data size is smaller than the data encoding using 

ASCII, this is because in binary coding to decimal for the sensor value in this study only 

requires 17 bits per sensor value, namely 1 bit as a negative representation, and the other 16 bits 

for decimal to binary representation. But the efficiency of compression using this coding 

method is low.  

 

 
 

Figure 6 Compression efficiency graph of the data length 

 

 

Figure 6 describes the compression efficiency value uses a binary-decimal data 

conversion coding method and the modeling method using XOR gets an average yield of around 

3.367% to 3.827%. The value of compression efficiency using this method gets a lower 

compression efficiency value than the method with ASCII coding. This is because, in this 

method, data that is converted in binary form is only a binary conversion of a decimal value 

from the default sensor value with a sensor value at a specific time, ignoring the character. The 

binary value of the conversion of a decimal number has a significant change. For example, the 

binary humidity sensor value of 5422 is [1010100101110] XORed with 5423 which has a 

binary value [1010100101111], it will produce many bits 1. The more differences in data, the 

more likely the appearance of binary ‘1’ in XOR operation. While this RAKE algorithm will be 

more effective if there are 0 binary numbers with large numbers, conversely, the less data is 

taken, the difference in data will be smaller.  

 

3.1.3. Decimal-Binary + Residue Data Testing 

Fig. 7 shows the Graph of compression efficiency using coding by converting decimal 

to binary data and modeling using residual values and RAKE algorithms. In the coding method 

using decimal to binary conversion, the data size is smaller than the data encoding using ASCII, 

this is because in binary coding to decimal for the sensor value in this study only requires 17 

bits per sensor value, namely 1 bit as a negative representation, and the other 16 bits for decimal 

to binary representation. 

 

 

 

T1 T2 T3 T4 T5

EK(%) 3,46 3,577 3,827 3,367 3,508

3

3,2

3,4

3,6

3,8

4

Compression Efficiency (%) 
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Figure 7 Compression efficiency graph of the data length 

 

Based on the graph in Fig. 7 it can be seen that the compression efficiency value by using 

decimal to binary conversion coding method and using compression sensor residue values for 

modeling method gets an average yield of about 45.152% to 45.908%. This is because the 

process of directly reducing the value of the sensor is done directly to the default value, then the 

difference will be converted in binary form. The residual value does not change, so that when it 

is converted to binary form, the possibility of getting a binary value of '0' is greater. 

 

3.1.4. ASCII + Residue Data Testing 

In this section, data compression testing is carried out using the original method which 

will then be compared. In this method, the coding technique used is to use character conversion 

into binary using ASCII, as well as modeling techniques using compression residual values. In 

the coding method by using text to binary conversion with ASCII, the size of the data length is 

large. This is because coding in this method is done per character (1 character is translated to 8 

bits). 

 

 
 

Figure 8 Compression Efficiency graph of the data length 

 

3.2 Resume  

The compression efficiency using the ASCII coding method and modeling with the 

XOR process gets the highest presentation value of 71.833%. After did the XOR operation to 

the data, the possibility of getting a bit with a value of '0' will be greater. The second-largest 

percentage of compression efficiency is to use coding using decimal to binary conversion and 

residual modeling, which is 45.459%. This is because changes to the sensor value will be 

T1 T2 T3 T4 T5

EK(%) 45,152 45,429 45,908 45,251 45,557

44,6
44,8

45
45,2
45,4
45,6
45,8

46

Compression Efficiency (%) 

T1 T2 T3 T4 T5

EK(%) 31,622 31,836 32,474 29,531 30,209

28

29

30

31

32

33

Compression Efficiency (%) 



          ISSN (print): 1978-1520, ISSN (online): 2460-7258 

IJCCS  Vol. 13, No. 4,  October 2019 :  345 – 356 

354 

immediately reduced, then the decimal value of the residue will be converted to binary form. So 

the possibility of producing '0' binaries is also greater.  

 

  
 

Figure 9 Resume 

 

For the compression method using coding with decimal to binary conversion and 

modeling using the XOR operation, the average compression efficiency value is only 3.55%. 

This is because when there is a change in data, the conversion of decimal to binary from the 

sensor value obtained has the possibility of a large change in value. So that when the XOR 

operation is performed, it will generate a lot of '1' binary. The more binary '1' in the value of 

data to be compressed using the RAKE algorithm, the higher the size of the compressed data. 

 

3.3        Decompression Efficiency Parameters 

In the data decompression test, 4 test scenarios are carried out using five different 

periods. Table 3 is a summary of the results of testing of sensor data decompression using the 

RAKE algorithm. From the results of testing the decompression of the data, it is known that 

100% of the data successfully returned as a whole. 

 

Table 2 Decompression Efficiency Parameters 
 

Number 

of Test 

Decompression Efficiency (%) 

ASCII 

+XOR 

XOR-

Desimal 

Residue-

Desimal 

Residue-

ASCII  

P1 100 100 100 100 

P2 100 100 100 100 

P3 100 100 100 100 

P4 100 100 100 100 

P5 100 100 100 100 

 

In the data decompression test, 70 trials were conducted for 5 periods with the aim that 

the results of the research conclusions can be generalized for all decompressed sensor data. 

From the results of the decompression test, the value of the data length before and after 

decompression remains the same and does not change. Then when the conversion of the 

compressed data is carried out, the data value is obtained before compression and the data value 

after the SAME / WHOLE compression for all compression methods that have been done. So 

that it can be concluded that 100% of the data has returned to its original state as a whole. 
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4. CONCLUSION 

 

Based on the results of experimental data compression testing using ASCII+XOR, 

XOR-Decimal, Residue-Decimal, and Residue-ASCII methods, it can be seen that the 

combination of data coding techniques using ASCII and data modeling using XOR operations 

will produce the highest compression efficiency value, which is about 71%. While the Data 

compression using coding techniques to convert binary data to decimals combined with 

modeling techniques using residual values produces the smallest compression data. 

The results of the test analysis using five different periods and data sizes indicate that 

sending data using coding techniques to convert decimal to binary data will produce small data, 

while coding techniques that use text to binary conversion with ASCII will produce data with 

large size. The compression efficiency will increase if the binary '1' in the bitmap set is less than 

15% of the overall set of bitmaps, the more binary is '0' in the bitmap set, the more data is 

compressed. 
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