
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Vol.12, No.2, July 2018, pp. 149~160

ISSN (print): 1978-1520, ISSN (online): 2460-7258

DOI: 10.22146/ijccs.34102  149

Received March 20th,2018; Revised July 7th, 2018; Accepted July 30th, 2018

The MapReduce Model on Cascading Platform

for Frequent Itemset Mining

Nur Rokhman *
1
, Amelia Nursanti

2

1
Department of Computer Science and Electronics, FMIPA UGM, Yogyakarta, Indonesia

2
Computer Science Study Program, FMIPA UGM, Yogyakarta, Indonesia

e-mail: *
1
nurrokhman@ugm.ac.id,

2
amelia.nursanti@mail.ugm.ac.id

Abstrak

Implementasi algoritma paralel telah menjadi penelitian yang menarik dewasa ini.

Paralelisme sangat cocok untuk menangani pemrosesan data berukuran besar. Saat ini tersedia

beberapa model pemrograman paralel dan terdistribusi seperti Mapreduce, MPI dan CUDA.

Implementasi algoritma paralel menghadapi beberapa kendala ketika ukuran data dan

kompleksitas bertambah. Cascading menyediakan skema yang mudah bagi sistem Hadoop yang

menerapkan model MapReduce untuk melakukan refactor, testing, eksekusi aplikasi kompleks,

dan konversi aplikasi yang telah dibangun ke sistem Hadoop.

Frequent Itemset adalah obyek-obyek yang sering muncul dalam himpunan data.

Frequent Itemset Mining (FIM) memerlukan komputasi yang kompleks. FIM merupakan

masalah kompleks bila diterapkan pada data berukuran besar.

Makalah ini mendiskusikan penerapan model MapReduce pada Cascading untuk

keperluan FIM. Eksperimen dilaksanakan dengan menggunakan himpunan data pembelian

produk Amazon. Eksperimen menunjukkan fakta bahwa mekanisme sederhana pada Cascading

seperti yang identik dengan merangkai sistem pipa dapat digunakan untuk menyelesaikan

masalah FIM. Hal ini menghasilkan kompleksitas waktu O(n), lebih efisien dari proses non

paralel yang memiliki kompleksitas O(n2/m).

Kata kunci— Frequent Itemset Mining, MapReduce, Cascading

Abstract
 The implementation of parallel algorithms is very interesting research recently.

Parallelism is very suitable to handle large-scale data processing. There are parallel and

distributed programming models, such as MapReduce, MPI, and CUDA. The implementation of

parallel programming faces difficulties when the data size and complexity increase. The

Cascading gives easy scheme of Hadoop system which implements MapReduce model to

refactor, test, execute a complex application and converting an application into Hadoop system.

Frequent itemsets are objects which most often appear in a dataset. The Frequent

Itemset Mining (FIM) requires complex computation. Therefore, FIM is a complicated problem

when implemented on large-scale data.

This paper discusses the implementation of MapReduce model on Cascading for FIM.

The experiment uses the Amazon dataset product co-purchasing network metadata. The

experiment shows the fact that the simple mechanism of Cascading which like assembling a pipe

system can be used to solve FIM problem. It gives time complexity O(n), more efficient than the

nonparallel which has complexity O(n2/m).

Keywords— Frequent Itemset Mining, MapReduce, Cascading

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

https://core.ac.uk/display/297915177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:1nurrokhman@ugm.ac.id
mailto:2amelia.nursanti@mail.ugm.ac.id

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 12, No. 2, July 2018 : 149 – 160

150

1. INTRODUCTION

1.1 Previous works

The fast-growing of computer technology causes a tremendous data increasing. Frequent

itemsets are objects that often appear on a dataset. Objects are said to be frequent if their

appearance greater than a specified support value. By finding the frequent itemsets in a system,

the patterns of the system can be recognized. Frequent itemsets can mine the relevant evidence

of computer crime, mine crime trends, and mine connections among different crimes. It can help

polices detect case and prevent crime with clues and criterions [1]. Frequent itemset mining also

plays an important part in college library data analysis. RFP-Growth algorithm was used to find

the frequent itemset college library database. There are a lot of redundant data in a library

database. The mining process may generate intra-property frequent itemsets [2].

 Frequent Itemsets Mining (FIM) is a process of finding the frequent itemsets by using

data mining. FIM is a very interesting problem. Some research focus on the algorithm such as

MRApriori algorithm [3], parallel balanced mining algorithm for Closed Frequent Itemsets

based on the MapReduce [4], Hadoop-MapReduce model for handling massive datasets in

mining infrequent itemsets [5], Sequence-Growth algorithm on MapReduce framework [6], data

partitioning strategy on Hadoop [7], and the mining algorithm of frequent itemsets based on

MapReduce and FP-tree (MAFIM algorithm) [8]. Some other research focus on the algorithm

implementation for specific objects.

A substantial frequent itemset mining algorithms and their MapReduce implementations

are introduced and investigated [9]. The use of Hadoop MapReduce framework makes the

execution time linear to the number of transactions per batch. It was found that the increasing

stock size did not give much impact on execution time. Execution time is also inversely

proportional to the number of nodes [10]. The MapReduce framework can be used for mining

frequent itemsets to infer greater scalability and speed in order to find out the meaningful

information from large datasets [11].

A deep review of different FIM techniques shows that the current distributed FIM

algorithms often suffer from generating huge intermediate data or scanning the whole

transaction database for identifying the frequent itemsets[12]. The MapReduce framework is

used to build a collaborative filtering. It makes automatic predictions (filtering) about the

interests of a user by collecting the preferences or taste information from many users

(collaborating) [13]. Three MapReduce tasks are implemented to complete the mining of big

datasets by using the parallelism among computing nodes of clusters to improve the

performance of frequent pattern mining on Hadoop clusters [14].

MapReduce is a programming model for distributed and parallel computing which is very

suitable for large-scale data processing. MapReduce was originally developed by Google for

parallel and distributed processing [15]. MapReduce was developed to work on thousands of

machines and massive datasets [16].

The implementation of three Aeste-based a priori algorithm based on Hadoop

MapReduce namely MRApriori, one-phase, and k-phases have been compared [3]. The

MRApriori algorithm took only two phases of MapReduce jobs to search for all Frequent k-

Itemsets. Experimental results show that the MRApriori algorithm outperforms comparing the

other two algorithms.

MapReduce-based balanced mining algorithm for closed frequent itemset has been

presented [4]. The algorithm adopts the Greedy strategy to balance the parallel computing. The

algorithm consists of three steps: parallel computation, global construction of the frequent list

and group maps as well as parallel mining for closed frequent itemset. The experiment showed

the effectiveness and scalability the close FIM on a large scale data.

The MapReduce Apriori algorithm on FIM was used to speed up the response time [9]. It

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 

The MapReduce Model on Cascading Platform for Frequent Itemset... (Nur Rokhman)

151

found a solution for porting the Count Distribution algorithm to MapReduce.

Parallel Improved Single Pass Ordered (PISPO) based on cloud-computing framework

and MapReduce has been proposed [4]. The algorithm improved SPOTree, FP-Growth and

MapReduce algorithms. PISPO was used to find the frequent itemset in electronic evidence.

There are many other application which use FIM on Hadoop MapReduce. Among of this

generates the association rules in the transactional data stream [10] and handles FIM in Social

Network Data [11].

MapReduce is a complex and difficult framework to be implemented even for software

engineers. The Cascading platform may be used to simplify the process of writing program

code. The Cascading libraries abstract the complex data flow on MapReduce programming

model [17].

This paper explores the use of Cascading platform on simplifying the MapReduce

programming code for FIM problem. Then, the program is used to find the frequent itemset of

Amazon transaction data. The time needed to solve the problem is observed. The time needed

by the parallel program which implemented on Cascading platform and the non-parallel

program are compared. Also, the effect of data size and support number to the execution time

are observed.

1.2 Related Works

1.2.1 MapReduce

MapReduce is a programming model for processing large scale data. MapReduce model

has two main processes namely Map process and Reduce process. Figure 1 shows the relation

between Map and Reduce processes. The MapReduce process is begun by breaking up the input

data into multiple data items. The Map function outputs one or more key-value pairs. The key-

value pairs then sorted and grouped based on the key value. For each distinct key, Reduce

function processes and outputs one or more key values to a file as the final result [18].

Figure 1. Map and Reduce function [18].

1.2.2 Hadoop

Hadoop is the most popular implementation of MapReduce model. Hadoop is a software

framework for reliable, scalable, parallel and distributed computing [16]. The Hadoop

framework consists of libraries and utilities required for other Hadoop modules, Hadoop

Distributed File System (HDFS), and Hadoop Yet Another Resource Negotiator (YARN).

HDFS is a distributed system that provides high access via data applications. YARN is a

framework for job scheduling and cluster resource management. YARN provides APIs for

resource management. YARN also serves another application framework such as Spark and

Tez. Hadoop MapReduce is a YARN-based system for large-scale parallel data processing.

Figure 2 shows the Hadoop MapReduce model as a YARN-based system.

1.2.3 Cascading

Cascading is an application development platform for building big data applications on

Hadoop. Cascading has Java Application Programming Interface (API) which is used to

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 12, No. 2, July 2018 : 149 – 160

152

simplify the complexity of MapReduce-based programming that run on the Hadoop. Cascading

creates and executes complex data workflow processing on Hadoop. Cascading consists of API

for data processing, integration, process design and process scheduling. Cascading can be used

directly as Hadoop has been installed [17]. Figure 2 shows the Hadoop MapReduce model.

Figure 2. The Hadoop MapReduce model as a YARN based system [19]

Cascading does not change the layer of mapper-reducer and sub-system layers structure

in Hadoop. Cascading provides an abstraction for the MapReduce programming model. The

workflow used in Cascading is called "Source-Pipe-Sink". Figure 3 shows the workflow of the

Cascading.

Figure 3. The work flow of the Cascading [20]

In the Cascading model, data is saved in the input part called “source”. Then, data is sent

to the output part called “sink”, through the path called “pipe”. Additional processes may be

executed while the data flows from the “source” to the “sink”.

A Cascading application may have many “flow”. Every “flow” represent physical plan

which analog to the scheduling topology on Hadoop. Every “pipe” has head and tail. A “flow”

works independently and parallel to the other “flow”. Cascading uses tuple-centric data model.

All data is represented as tuples. Tuples are a list of values. Tuples flow in the “pipe”.

Cascading has pipe types which defined as operations in the stream. Among of this

operation are Each, Merge, GroupBy, Every, CoGroup and HashJoin pipes. The Each

operation is an operation for the individual tuple. It contains filter, replace value, and remove

tuple operations. The Merge operation merges two or more streams. The GroupBy operation

groups the tuple based on the field and its value.

The grouping operation prepares the stream to be processed by using aggregator

operation and buffer in the group such as counting, totaling, or averaging. The Every

operation works on the grouped stream tuple, the output of GroupBy or CoGroup operation.

The CoGroup and HashJoin are grouping operation which group two or more streams to

get the specific field of output stream.

1.2.4 Frequent Itemset

Frequent itemsets are objects that often appear on a dataset. Objects are said to be

frequent if their appearance greater than the specified support value [3]. Table 1 shows examples

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 

The MapReduce Model on Cascading Platform for Frequent Itemset... (Nur Rokhman)

153

of transaction data.

Table 1. Examples of transaction data
ID Item

1 Processor, motherboard, memory

2 processor, motherboard, memory

3 Processor

4 processor, motherboard

5 Motherboard

6 processor, motherboard.

7 Processor, memory

8 motherboard, memory

9 Motherboard

10 Memory

The appearance of each item in the transaction is counted. Support count is the frequency

number of each item in the transaction. Suppose n is an integer number, Ln is the number of item

in the itemset.Table 2 shows the support count of the itemset. If the minimum support count is 4

then the Frequent Itemset is shown in Table 3.

Table 2. Support Count of Each Item

Ln Product ID Support

count

L1 Processor 1,2,3,4,6,7 6

L1 Motherboard 1,2,4,6,8,9 6

L1 Memory 1,2,7,8,10 5

L2 Processor, motherboard 1,2,4,6 4

L2 Processor, memory 1,2,7 3

L2 Motherboard, memory 1,2,8 3

L3 Processor, motherboard,

memory

1,2 2

Table 3. The Frequent Itemset with minimum support count 4
Products

Processor

Motherboard

Memory

Processor, motherboard

2. METHODS

This research focuses on the application development of parallel FIM based on

MapReduce by using Cascading. The application is used to find the FIM in Amazon product co-

purchasing network metadata [21]. The time needed to execute is observed. The effect of data

size and support number are observed. The observations are used to determine the complexity.

2.1 Data preprocessing

The experiment uses Amazon product co-purchasing network metadata. It is 35,4 MB

data which contains the product metadata and review information about 548,552 different

products such as Books, music CDs, DVDs and VHS video tapes. For each product, the

following information is available: title, sales rank, list of similar products, detailed product

categorization, and product reviews (time, customer, rating, number of votes, number of people

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 12, No. 2, July 2018 : 149 – 160

154

that found the review helpful).

The first step of the experiment is transforming the experiment data into transaction data.

The transaction data consists of two columns, the customer column, and the ASIN (Amazon

Standard Identification Number) columns. This is carried out by using MapReduce Model. The

Amazon dataset is inserted into the Hadoop Distributed File System (HDFS) for subsequent

processing by Hadoop which gives output key-value pair of <Customer ID, Item purchased>.

Figure 4 shows the data preprocessing.

Figure 4. Data preprocessing

2.2 Algorithm design and program implementation

In this experiment, L1 and L2 itemsets are mined from the transactional data. The

transactional data are put into the Cascading input tab. The L1 itemsets are mined during the

transactional data flow from the input tab to the output tab. The Cascading output tab outputs

the L1 itemsets. This process is depicted in Figure 5.

The output of the process in Figure 5 is used as the input of finding the L2 itemsets. In this

process, HadoopDistributedCache is used to take the L1, followed by the process in the

pipe which same with the process in Figure 5. The output of this process is L2 where the key is

2-Frequent itemsets and the value is the support count. Figure 7 shows the flowchart of mining

Lk itemsets in the pipe.

The implementation of flowcharts in Figure 5, 6, and 7 are started by defining the input

tap and the output tap. The program code is shown in Figure 8. This step is followed by creating

the pipe. It contains the main operations of FIM, namely Each, GroupBy, and Every

operations. The program code is shown in Figure 9.

The detail process of finding the L1 itemsets in the pipe is depicted in Figure 7. In the

Cascading, the Each, GroupBy and Every operation are abstractions of MapReduce

functions. Transaction data is processed one by one by Each operation. The operation takes

itemID and converts each itemID into <itemID, 1>. Then, the GroupBy operation groups the

data by itemID. The Every operation counts the appearance of the item. The Every

operation gives Frequent Itemset in the format of <itemID, support count>.

The Each operation works for the individual tuple. It needs stream tuples which will be

processed by Each operation. Figure 10 shows the CreateL1 class which will act as the

tuples stream. The Each operation is same with the map phase in MapReduce system.

The GroupBy operation is used to group the result of the Each operation. The

GroupBy operation is same with the reduce phase in MapReduce system. The Every

operation works for a group of tuples. This operation needs an aggregator. The aggregator code

for FIM is shown in Figure 11.

The sequential processes in Figure 5, 6, and 7 can be duplicated by using MapReduce.

The transaction data is converted into <CID, item> by HDFS. HDFS also distributes the

transaction data to the mapper. The output of the mapper is <key, 1> where the key is the

CustomerID and 1 as the value. The GroupBy operation groups all the outputs of the mapper

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 

The MapReduce Model on Cascading Platform for Frequent Itemset... (Nur Rokhman)

155

based on the key. The results of this operation are the candidate of itemset (Ck) in the form of

<Item, {1..n}>. Then, the reducer uses the Every operation to add the value of the itemset

candidate. The reducer outputs the key and its support count. The final result of L1 itemsets is

the union of all reducer output. Figure 12 shows the detailed process of L2 itemsets by using

MapReduce. The mappers give output in the form of <item1, item2, 1>. The GroupBy

operations give output in the form of <item1, item2, {1..n}>. The reducers give output in the

form of <frequent-2 itemsets, count>. The union of these outputs gives the L2 final result.

Figure 8. The definition of the input tap and the output tap.

Figure 9. The main operations of FIM.

Start

Transaction

Data

Input Tap

Output Tap

L1 (1- frequent

itemset, support

count)

End

 Find frequent 1-

itemset based on map

reduce on Pipe

Figure 5. Mining L1

Start

L1

Hadoop

Distributed Cache

Output Tap

L2 (2- frequent

itemset,

support count)

End

Input Tap

 Find frequent 2-

itemset based on map

reduce on Pipe

Figure 6. Mining L2

Start

Transaction

Data

<CustomerID,

itemID>

“Each”

Operation

splitting

<itemID,1>

Ck

(k- frequent

itemset

candidate)

“GroupBy”

Operation

Grouping

<itemID, count>

“ Every” Operation

<frequent itemset,

support count>

Lk

<k-frequent

itemset , support

count>

End

Figure 7. Mining Lk in the pipe

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 12, No. 2, July 2018 : 149 – 160

156

Figure 10. The tuples stream codes

Figure 11. The aggregator code for FIM

2.3 Experiments

Two experiments have been done in this research [22]. The MapReduce and the non-

MapReduce processes for L1 and L2 FIM have been observed. Four values of support count are

used: 50, 75, 100, and 125. These support counts are used for three different size data. For each

experiment, the time needed to accomplish the FIM processes are observed.

3. RESULTS AND DISCUSSIONS

3.1 Results

The first step of the experiment is transforming the transactional data into key-value pair

data of CustomerID and itemID. This process gives 5.524.141 bytes which consist of 156.852

transactional data. The L2 FIM is mined from three different size transactional data: 156.852,

78.426, and 39.213. Table 4 shows the experiment result. Figure 13 shows the comparison of L2

FIM execution time on a non-MapReduce system. Figure 14 shows the comparison of L2 FIM

execution time on MapReduce system. Figure 15 shows the comparison of the whole L2 FIM

execution time. The line at the bottom of Figure 15, actually represents all the execution time on

MapReduce system.

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 

The MapReduce Model on Cascading Platform for Frequent Itemset... (Nur Rokhman)

157

<Item1, supp count>

<Item2, supp count>

...

<Itemn, supp count>

<Itemn, supp count>

<Itemn, supp count>

...

<Itemn, supp count>

<Itemn, supp count>

<Itemn, supp count>

...

<Itemn, supp count>

Mapper (Each) Mapper (Each) Mapper (Each)

<Item1, Item2 1>

<Item2, Item3 1>

...

<Itemm, Itemn 1>

<Itemm, Itemn 1>

<Itemm, Itemn 1>

...

<Itemm, Itemn 1>

<Itemm, Itemn 1>

<Itemm, Itemn 1>

...

<Itemm, Itemn 1>

Data Aggregation (GroupBy)

<Item1, Item2 {11..n}>

<Item2, Item3 {11..n}>

...

<Itemm, Itemn, {11..n}>

<Itemm, Itemn, {11..n}>

<Itemm, Itemn, {11..n}>

...

<Itemm, Itemn, {11..n}>

<Itemm, Itemn, {11..n}>

<Itemm, Itemn, {11..n}>

...

<Itemm, Itemn, {11..n}>

Reducer (Every) Reducer (Every) Reducer (Every)

<Frequent 2-

Itemset, count>

<Frequent 2-

Itemset, count>

<Frequent 2-

Itemset, count>

Frequent 2-

Itemset

<Itemset,

supp count>

Frequent 1-

Itemset

<Itemset,

supp count>

Hadoop

Distributed

Cache

Output Tap

Figure 12. The L2 Frequent itemset mining based on MapReduce

3.2 Discussions

Two processes of L2 frequent itemset mining have been observed in the experiment, a

non-MapReduce process dan MapReduce processes. Both processes worked on three different

sizes data and four minimum support counts namely 50, 75, 100, and 125.

Both MapReduce and non-MapReduce processes give the same result, but as shown in

Table 4, the time needed to accomplish the FIM are very different. The MapReduce system runs

faster than the non-MapReduce system.

The change of minimum support count affect significantly the time needed to accomplish

the L2 FIM on the non-MapReduce system as shown in Figure 13, but not significant for the

MapReduce system as shown in Figure 14. By comparing the whole experiment result in Figure

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 12, No. 2, July 2018 : 149 – 160

158

15, the execution time of a non MapReduce system increases in O(n2) as the number of datasets

increasing. On the other hand, it decreases in O(1/m) as the minimum support count increasing.

The time complexity of L2 FIM for a non-MapReduce system is O(n2/m) with n dataset and m

minimum support count.

The execution time of MapReduce system increases in O(n) as the number of datasets

increasing, but the minimum support count does not affect the execution time, as shown in

Figure 14 and Figure 15.

4. CONCLUSIONS

Based on the experiment and the discussion, it can be concluded that:

1. Cascading platform can be combined with Hadoop to implement MapReduce to mine the

L2 Frequent Itemset.

2. The execution time of the L2 frequent itemset mining with Cascading platform is O(n),

while the regular process is O(n2/m), with n dataset and m minimum support count.

Table 4. L2 FIM execution time

Number of

transactional

data

Time (seconds)

MapReduce Non MapReduce

Min

Supp

count 50

Min

Supp

count 75

Min

Supp

count

100

MinSupp

count 125

Min Supp

count 50

Min Supp

count 75

Min

Supp

count

100

MinSupp

count 125

39.213 12,723 12,556 12,530 12,675 42,52 23,663 19,32 17,36

78.426 24,431 23,543 18,398 22,274 303,253 132,52 91,15 64,83

156.852 34,169 33,826 32,658 33,423 2572,76 1101,61 643,92 404,105

Figure 13. Comparison of L2 FIM execution time on non MapReduce system

Figure 14. Comparison of L2 FIM execution time on MapReduce system

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 

The MapReduce Model on Cascading Platform for Frequent Itemset... (Nur Rokhman)

159

Figure 15. Comparison of L2 FIM time complexity

REFERENCES

[1] X. Jiang and G. Sun, “MapReduce-based Frequent Itemset Mining for Analysis of

Electronic Evidence ”, Eight International Workshop on Systematic Approaches to

Digital Forensic Engineering (SADFE), 2013. Available:

http://ieeexplore.ieee.org/document/6911549/ [Accessed: 19-Mar-2018].

[2] X. Li, “An Algorithm for Mining Frequent Itemsets from Library Big Data ”, Journal of

Software, Vol. 9, No. 9, September 2014. Available:

http://www.jsoftware.us/vol9/jsw0909-18.pdf [Accessed: 19-Mar-2018].

[3] O. Yahya, O. Hegazy, and E. Ezat, “An Efficient Implementation of Apriori Algorithm

Based on Hadoop-MapReduce Model”, International Journal of Reviews in Computing,

31
st
 Dec 2012, Vol.12, pp.59-67 [Online]. Available:

http://www.ijric.org/volumes/Vo12/Vol12No7.pdf [Accessed:19-Feb-2018].

[4] G.P. Chen, Y. B. Yang, and Y. Zhang, “MapReduce-based Balanced Mining for Closed

Frequent Itemset”, IEEE 19th International Conference on Web Services, 2012.

Available : http://ieeexplore.ieee.org/document/6257941/ [Accessed: 19-Mar-2018].

[5] T. Ramakrishnudu and R.B.V. Subramanyam, “Mining Interesting Infrequent Itemsets

from Very Large Data based on MapReduce Framework”, I.J. Intelligent Systems and

Applications, 2015, 07, 44-49, Published Online June 2015 in MECS (http://www.mecs-

press.org/). Available: http://www.mecs-press.org/ijisa/ijisa-v7-n7/IJISA-V7-N7-6.pdf

[Accessed: 19-Mar-2018].

[6] Y. H. Liang and S.Y. Wu, “Sequence-Growth : A Scalable and Effective Frequent

Itemset Mining Algorithm for Big Data Based on MapReduce Framework ”, IEEE

International Congress on Big Data, 2015. Available:

http://ieeexplore.ieee.org/document/7207249/ [Accessed: 19-Mar-2018].

[7] C. V. Suneel, K. Prasanna, and M.R. Kumar, “Frequent Data Partitioning using Parallel

Mining Item Sets and MapReduce”, International Journal of Scientific Research in

Computer Science, Engineering and Information Technology, Volume 2 | Issue 4 |, 2017.

Available: http://ijsrcseit.com/CSEIT1724152 [Accessed: 19-Mar-2018].

[8] B. He, H. Zhang and J. Pei, “The Mining Algorithm of Frequent Itemsets based on

Mapreduce and FP-tree”, International Conference on Computer Network, Electronic

and Automation, 2017. Available:

https://www.computer.org/csdl/proceedings/iccnea/2017/3981/00/3981a108.pdf

[Accessed: 19-Mar-2018].

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6902669
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6902669
http://ieeexplore.ieee.org/document/6911549/
http://www.jsoftware.us/vol9/jsw0909-18.pdf
http://www.ijric.org/volumes/Vo12/Vol12No7.pdf
http://ieeexplore.ieee.org/document/6257941/
http://www.mecs-press.org/
http://www.mecs-press.org/
http://www.mecs-press.org/ijisa/ijisa-v7-n7/IJISA-V7-N7-6.pdf
http://ieeexplore.ieee.org/document/7207249/
http://ijsrcseit.com/CSEIT1724152
https://www.computer.org/csdl/proceedings/iccnea/2017/3981/00/3981a108.pdf

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 12, No. 2, July 2018 : 149 – 160

160

[9] F. Kovacs and J. Illes, “Frequent Itemset Mining on Hadoop”, IEEE 9th International

Conference on Computational Cybernetics (ICCC 2013), July 8-10, 2013, pp.241–245.

Available: http://ieeexplore.ieee.org/document/6617596/ [Accessed: 19-Mar-2018].

[10] H. Chaudhary, “MapReduce Based Frequent Itemset Mining Algorithm on Stream

Data”, Global Conference on Communication Technologies (GCCT 2015), pp.598–603,

2015. Available: http://ieeexplore.ieee.org/document/7342732/ [Accessed: 19-Mar-

2018].

[11] S. Saha and M. S. I. Islam, “Comparative Analysis of Mapreduce Framework for

Efficient Frequent Itemset Mining in Social Network Data”, Global Journal of Computer

Science and Technology Cloud and Distributed, 2016, Volume 16 Issue 3. Available :

https://globaljournals.org/GJCST_Volume16/7-Comparative-Analysis-of-Mapreduce.pdf

[Accessed: 19-Mar-2018].

[12] M.A. Shinde and K.P. Adhiya, “Frequent Itemset Mining Algorithms for Big Data using

MapReduce Technique - A Review”, International Conference on Global Trends in

Engineering, Technology and Management (ICGTETM-2016), 2016. Available:

http://www.ijettjournal.org/Special%20issue/ICGTETM-

2016/ICGTETM_2016_paper_131.pdf [Accessed: 19-Mar-2018].

[13] A. Padmapriya and R. Venkatachalam, “Collaborative-Frequent Itemset Mining of Big

Data Using Mapreduce Framework”, International Journal of Computer Science and

Engineering (NCSACT–2017), 2017. Available:

http://www.internationaljournalssrg.org/IJCSE/2017/Special-Issues/NCSACT/IJCSE-

NCSACT-P119.pdf [Accessed: 19-Mar-2018].

[14] S. Tribhuvan and B.P. Vasgi, “Parallel Frequent Itemset Mining for Big Datasets using

Hadoop-MapReduce Paradigm”, International Journal of Advanced Research in

Computer and Communication Engineering, Vol. 6, Issue 6, June 2017. Available:

https://www.ijarcce.com/upload/2017/june-17/IJARCCE%2035.pdf [Accessed: 19-Mar-

2018].

[15] A. N. Nandakumar and N. Yambem, “A Survey on Data Mining Algorithms on Apache

Hadoop Platform”, International Journal of Emerging Technology and Advanced

Engineering. Vol. 4, Issue 1, January 2014. Available:

http://www.ijetae.com/files/Volume4Issue1/IJETAE_0114_95.pdf [Accessed: 19-Mar-

2018].

[16] M. R. Ghazia and D. Gangodkara, “Hadoop, MapReduce and HDFS: A Developers

Perspective”, International Conference on Intelligent Computing, Communication &

Convergence (ICCC-2015), 2015. Available:

https://www.researchgate.net/publication/277935711_Hadoop_MapReduce_and_HDFS_

a_developers_perspective [Accessed: 19-Mar-2018].

[17] ----, “Cascading 2 User Guide”, Concurrent, Inc., Publication date October 2012.

Available: http://docs.cascading.org/cascading/2.0/userguide/pdf/userguide.pdf

[Accessed: 19-Mar-2018].

[18] S. Perera and T. Gunarathne, “Hadoop MapReduce Cookbook”, February 2013, Packt

Publishing Ltd.

[19] T. White, “ Hadoop: The Definitive Guide”, 2015, O’Reilly Media, Inc.

[20] P. Nathan, “Enterprise Data Workflows with Cascading”, 2013, O'Reilly Media, Inc.

[21] http://snap.stanford.edu/data/#amazon [Accessed: 19-Mar-2018].

[22] A. Nursanti, “Frequent Itemset Finding Based On Mapreduce Using Cascading

Platform”, 2017. Available :

http://etd.repository.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetai

l&act=view&typ=html&buku_id=107287&obyek_id=4 [Accessed: 19-Mar-2018].

http://ieeexplore.ieee.org/document/6617596/
http://ieeexplore.ieee.org/document/7342732/
https://globaljournals.org/GJCST_Volume16/7-Comparative-Analysis-of-Mapreduce.pdf
http://www.ijettjournal.org/Special%20issue/ICGTETM-2016/ICGTETM_2016_paper_131.pdf
http://www.ijettjournal.org/Special%20issue/ICGTETM-2016/ICGTETM_2016_paper_131.pdf
http://www.internationaljournalssrg.org/IJCSE/2017/Special-Issues/NCSACT/IJCSE-NCSACT-P119.pdf
http://www.internationaljournalssrg.org/IJCSE/2017/Special-Issues/NCSACT/IJCSE-NCSACT-P119.pdf
https://www.ijarcce.com/upload/2017/june-17/IJARCCE%2035.pdf
http://www.ijetae.com/files/Volume4Issue1/IJETAE_0114_95.pdf
https://www.researchgate.net/publication/277935711_Hadoop_MapReduce_and_HDFS_a_developers_perspective
https://www.researchgate.net/publication/277935711_Hadoop_MapReduce_and_HDFS_a_developers_perspective
http://docs.cascading.org/cascading/2.0/userguide/pdf/userguide.pdf
http://snap.stanford.edu/data/#amazon
http://etd.repository.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=107287&obyek_id=4
http://etd.repository.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=107287&obyek_id=4

