
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Vol.12, No.1, January 2018, pp. 73~82

ISSN (print): 1978-1520, ISSN (online): 2460-7258

DOI: 10.22146/ijccs.28707  73

Received October 3rd,2017; Revised December 20th, 2017; Accepted January 4th, 2018

Optimization of LZW Compression Algorithm With

Modification of Dictionary Formation

Restu Maulunida*
1
, Achmad Solichin*

2

1
Magister Ilmu Komputer, Universitas Budi Luhur, Jakarta, Indonesia

2
Teknik Informatika, Universitas Budi Luhur, Jakarta, Indonesia

e-mail:
1
vandalz12@gmail.com, *

2
achmad.solichin@budiluhur.ac.id

Abstrak

Pada masa sekarang ini, kebutuhan dalam mengakses data telah bertransformasi

kedalam data digital dan penggunaannya sudah berkembang sangat pesat. Transformasi ini

disebabkan karena penggunaan internet berkembang sangat pesat dan juga pengembangan

perangkat mobile yang berkembang secara masif. Orang-orang cenderung menyimpan banyak

file dalam media penyimpanan mereka dan mentransfer file dari satu media ke media yang lain.

Ketika media penyimpanan mendekati batasnya, maka akan semakin sedikit file yang dapat

disimpan. Untuk mengefisiensikan ukuran suatu file, dibutuhkan suatu teknik kompresi. Teknik

dictionary coding merupakan salah satu teknik kompresi lossless, LZW merupakan algoritma

untuk mengimplementasikan teknik kompresi dictionary coding. Pada algoritma LZW proses

pembentukan dictionary menggunakan future based dictionary dan proses encoding

menggunakan Fixed Length Code. Hal ini memungkinkan proses encoding menghasilkan urutan

yang masih cukup panjang. Penelitian ini akan memodifikasi proses pembentukan dictionary

dan menggunakan Variable Length Code, untuk mengoptimasi rasio kompresi. Penelitian ini

akan menguji rasio kompresi.

Kata kunci— Kompresi Data, Variable Length Code, Lossless, LZW

Abstract

 Digital data storage has become a fundamental requirement. The need for efficient

storage media increases with increasing number of data to be stored. Data compression

algorithms are designed to reduce the size of data. With compressed data, it will save data

storage and also speed up the process of data exchange through the network. The dictionary

coding technique is one of the lossless compression techniques. It is implemented on the LZW

algorithm. In the LZW algorithm, the process of forming a dictionary uses a future based

dictionary and encoding process using the Fixed Length Code. It allows the encoding process to

produce a sequence that is still quite long. In this study, we modify the process of forming a

dictionary on the LZW algorithm and use Variable Length Code to optimize the compression

ratio of the algorithm. Based on the test using the data used in this study, the average

compression ratio for LZW algorithm is 42,85%, and our proposed algorithm is 38,35%. It

proves that the modification of the formation of the dictionary we proposed has not been able to

improve the compression ratio of the LZW algorithm.

Keywords— Data Compression, Variable Length Code, Lossless, LZW

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

https://core.ac.uk/display/297915171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:1xxxx@xxxx.xxx
mailto:2xxx@xxxx.xxx

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 12, No. 1, January 2018 : 73 – 82

74

1. INTRODUCTION

Currently, digital data storage has become a fundamental requirement. The need for

efficient storage media increases with increasing number of data to be stored. Data compression

algorithms are designed to reduce the size of data. With compressed data, it will save data

storage and also speed up the process of data exchange through the network [1][2][3]. People

tend to store files in their storage when storage is close to the limit; they try to reduce the file

size by using a software for data compression [4]. Compression is not only done for files of type

documents, but also on digital images [5], audio, and video.

The compression algorithm basically consists of two types: lossless compression and

lossy compression. In lossless compression, the compression process is performed without

losing data [6]. Thus, the compressed file can be restored to the original file completely.

Lossless compression is generally applied to data that does not tolerate the difference between

the original data and the compressed data so that data integrity is maintained. Examples of

lossless compression algorithms are Huffman, RLE, LZ77, LZ78, and LZW. Meanwhile, on the

lossy compression algorithm, it allows data loss occurs. Therefore, the compressed file cannot

be restored to its original file. With the possibility of data loss, the lossy compression algorithm

produces a better compression ratio than the lossless compression algorithm. However, the

compressed file cannot be restored to the original file [7]. Lossy compression techniques are

often applied to image file types, audio, and video. Compression in digital imagery will reduce

image size by reducing the intensity and detail of the color, but not reduce the visual quality of

the image. Examples of lossy compression algorithms are Differential Modulation, Adaptive

Coding and Discrete Cosine Transform (DCT).

The dictionary coding technique is one of the lossless compression techniques. This

technique utilizes the structure of the data to be in compression. LZW algorithm is one of the

implementations of compression dictionary coding technique. The LZW algorithm forms a list

of tables that will encode the sequence of symbols into the N-bit index contained in the table.

Table size has 2
N
 dictionary list. With the encoding process using the N-bit index in the table,

the LZW algorithm uses the fixed length code to encode the sequence of symbols. If the bit

length used to encode the symbol sequence contained in the dictionary is 12 bits, then an index

dictionary with bit length 8-12 will be encoded into 12 bits. The formation of a dictionary on the

LZW algorithm uses a future based dictionary and a symbol encoding process using a fixed

length code. In the experimental results compression ratio of 42.85%. This study aims to

optimize the LZW compression algorithm by modifying the process of forming the dictionary.

Research related modification algorithm that has been done regarding optimization has

been done, such as optimization of Artificial Neural Network algorithm [8] and chaos algorithm

optimization to predict the number of unemployed people [9]. Some researchers have also

modified the LZW algorithm such as Suarjaya [4] which has implemented a new algorithm to

optimize data compression called by j-bit encoding (JBE). J-bit encoding works by

manipulating bits of data to reduce the size and optimize input for other algorithms. The

workings of j-bit encoding are by reading input data per byte. Then separate non zero bytes with

zero bytes. Non zero bytes will be inserted into Data I and enter bit 1 into a Temporary byte.

Zero bytes will only include bit 0 into a Temporary byte. Then the last process by combining the

length of data input, Data I, and Data II.

Nishad and Chezian [10] have done the process of searching the sequence of symbols

contained in the dictionary, to speed up the formation of the dictionary in the encoding and

decoding process of LZW algorithm by applying Binary Search Tree (BST). Meanwhile, Nandi

and Kumar [11] have also modified the LZW algorithm. The proposal technique begins with an

empty dictionary. The encoded symbol is not contained in a dictionary encoded with 8 bits.

Otherwise, it is encoded with the highest code bit length contained in the dictionary. When the

dictionary is full, the elements in the dictionary will be removed using the LRU (least recently

used) technique.

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 

Optimization of LZW Compression Algorithm With Modification of ... (Restu Maulunida)

75

Jain et al. [6] have also modified the LZW algorithm by applying OLZWH with

Adaptive Huffman Coding. The proposal technique begins with an empty dictionary. The

encoded symbol is not contained in a dictionary encoded with 8 bits. Otherwise, it is encoded

with the highest code bit length contained in the dictionary. And whenever there is an

appearance of ASCII code Adaptive Huffman Coding will be applied to it. Gupta et al. [12]

modify the dictionary list on the LZW algorithm by pruning the dictionary list. If the dictionary

list is full, a function will be called to delete all dictionary lists that have never been used.

In this research, we modified the LZW algorithm in the process of forming the

dictionary. The process of forming a dictionary adds a sequence of symbols based on the history

of the previous symbol. By applying this dictionary addition process, it can reproduce a list of

adjacent symbol sequences in the dictionary that is useful for encoding longer sequences of

longer symbols to increase the compression ratio. This research also implements the variable

length code for the encoding process, i.e., the code will be encoded with a length of 8-12 bits to

maximize the use of the bits to be encoded.

This research performs a comparison of data compression performance by using

dictionary coding method that is LZW algorithm and our proposed algorithm. The comparable

variable is the size of the data compression ratio. To analyze the comparison between the

algorithm, we took the sample of digital data as much as 200 pieces consisting of 5 file types

(*.txt, *.doc, *.xls, *.ppt, *.exe). To assist in comparing the size of the compression ratio, we

also create data compression applications using Java programming language.

2. METHODS

2.1 System Analysis

This research implements a lossless compression technique by modifying the LZW

algorithm. The application designed in this research is a data compression application using

Java programming language. Through this application is done data compression using LZW

algorithm and our proposed algorithm. Next, compare the compression ratio of the two

algorithms. The compression ratio calculation process used in this study is shown in the

equation (1).

(((original_size – compressed_size) / original_size) * 100) (1)

The application program menu schematic is shown in Fig 1.

Main Menu

Open File ExitCompression Decompression

Figure 1. Application menu design

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 12, No. 1, January 2018 : 73 – 82

76

Data CompressionData Compression

File Name Enter Text

Open File Compression Decompression Exit

Type LZW Usulan Peneliti

Figure 2. Application screen design

In Fig 2 is a screen design for the proposed application. For the operation of this

application, the user first clicks the Open File button and choose the file to be compressed or

decompressed. After the user chooses the file, the application will display the selected file name

in the file name field. Next, the user must choose the type in the field type for what process will

be done, in this application, there are two types of LZW and Proposed Algorithm (modified

LZW). The next stage is the user to do the compression and decompression process, to perform

file compression the user clicks the Compression button and to decompress the user file clicking

the Decompression button. Exit button is used to exit the application.

2.2 Algorithm Design

2.2.1 The Original LZW Algorithm

The original LZW algorithm is an algorithm which is included in the dictionary coding

technique. The process of forming a dictionary on the LZW algorithm uses a future based

dictionary and symbol encoding process using fixed length code. For example, there is a

sequence of symbols to be encoded, i.e., wabba/bwabba/bwabba/bwabba/bwoo/bwoo/bwoo

[14]. The symbol /b instead of a space symbol. It is assumed that the source of the alphabet is

{/b, a, b, o, w}, dictionary for the initial conditions of the LZW algorithm shown in Table 1.

Table 1. Initial condition of dictionary of the LZW Algorithm

Index Entry

1 /b

2 a

3 b

4 o

5 w

The encoder first looks for the w pattern in the dictionary. If this pattern is found in the

dictionary, then the encoder adds the w pattern to the next pattern which is in the source, i.e.,

pattern a, forming the wa pattern. If this pattern is not found in the dictionary, so the encoder

will encode the pattern w with index 5, and add the pattern wa into the dictionary with index 6,

then the search for the new pattern will start with the symbol a. This process is continued until

all sequences of symbols are encoded, the dictionary forming process for encoding is shown in

Table 2.

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 

Optimization of LZW Compression Algorithm With Modification of ... (Restu Maulunida)

77

Table 2 Forming of dictionary for encoding LZW

Index Entry Index Entry

1 /b 16 ba/b

2 a 17 /bwa

3 b 18 abb

4 o 19 ba/bw

5 w 20 wo

6 wa 21 oo

7 ab 22 o/b

8 bb 23 /bwo

9 ba 24 oo/b

10 a/b 25 /bwoo

11 /bw

12 wab

13 bba

14 a/bw

15 wabb

After the encoding process has been done for all symbols contained in the alphabetical

order, the result of the output sequence generated by the encoder is {5 2 3 3 2 1 6 8 10 12 9 11 7

16 5 4 4 11 21 23 4}. The next process is to do the decoding, the result of the output sequence

generated by the encoder is {5 2 3 3 2 1 6 8 12 12 11 11 16 16 16 16 4}. The decoding process

reads the sequence of symbols generated during the encoding process and forms the same

dictionary as the encoding process. The decoding process reads the symbol sequence of

encoding results as an index in the dictionary.

2.2.2 The Proposed Algorithm

The proposed algorithm applied in this research is based on LZW algorithm by

modifying the process of forming dictionary and using variable length code with a length of 8-

12 bits. For example, there is a sequence of symbols to be encoded, i.e.,

wabba/bwabba/bwabba/bwabba/bwoo/bwoo/bwoo [14]. The symbol /b instead of a space

symbol. It is assumed that the source of the alphabet is {/b, a, b, o, w}, dictionary for the initial

conditions of our proposed algorithm shown in Table 3.

Tabel 3 Initial conditions of dictionary of the proposed algorithm

Index Entry

1 /b

2 a

3 b

4 o

5 w

The encoder first places the prevDictionary pointer on the empty position and looks for

the w pattern inside the dictionary. If this pattern is found in the dictionary, then the encoder

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 12, No. 1, January 2018 : 73 – 82

78

reads the next a pattern and combines it into a wa pattern. If this pattern is not found in the

dictionary, the encoder returns index 5, adds the pattern wa into the dictionary with index 6, fills

the prevDictionary pointer with the wa pattern, and adds it to the dictionary if the pattern is not

already registered. Next, the search for the new pattern will start from the symbol a and the

prevDictionary pointer is placed on the symbol w, then the encoder read the next pattern that is

the b pattern and combine it into the ab pattern. If this pattern is not found in the dictionary, the

encoder returns index 2, adds the ab pattern to the dictionary with index 7, fills the

prevDictionary pointer with the wab pattern, and adds it into the dictionary with index 8. Next,

the search for the new pattern will start from the symbol b and the pointer prevDictionary is

placed on symbol a. This process continues until the entire sequence of symbols in the data

source has been encoded. The process of forming a dictionary for encoding is shown in Table 4.

Table 4. Forming in dictionary for encoding the proposed algorithm

Index Entry Index Entry

1 /b 21 wabba

2 a 22 /bwabba

3 b 23 a/bwo

4 o 24 ba/bwo

5 w 25 oo

6 wa 26 woo

7 ab 27 o/b

8 wab 28 oo/b

9 bb 29 /bwo

10 abb 30 o/bwo

11 ba 31 oo/bw

12 bba 32 woo/bw

13 a/b 33 woo

14 ba/b 34 /bwo

15 /bw

16 a/bw

17 wabb

18 /bwabb

19 ba/bw

20 bba/bw

After the encoding process has been performed for all symbols contained in the

alphabetical order, the result of the output sequence generated by the encoder is {5 2 3 3 2 1 8

14 17 16 4 4 15 28 5 25}. The next process is to do the decoding, the result of the output

sequence generated by the encoder is {5 2 3 3 2 1 8 14 17 16 4 4 15 28 5 25}. The decoding

process reads the sequence of symbols generated during the encoding process and forms the

same dictionary as the encoding process. The decoding process reads the symbol sequence of

encoding results as an index in the dictionary. Figures 3 and 4 show the compression and

decompression process of the proposed algorithm.

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 

Optimization of LZW Compression Algorithm With Modification of ... (Restu Maulunida)

79

Start Input File
Generate Initial

Dictionary
Read File to K

K != EOF
searchData =

matchData + K

searchData

exist in

Dictionary

matchData =

searchData

Process and Write

to Disk index

dictionary of

matchData

prevCandidateDicti

onary =

prevCandidateDicti

onary +

searchData

Yes

No

Temp is not

empty

Yes

Add item in temp

to dictionary
Yes

Clear temp

Add searchData to

Dictionary if not

exist and size of

dictionary <

maxSizeDictionary

Add

prevCandidateDicti

onary to Dictionary

if not exist and

size of dictionary <

maxSizeDictionary

Num of bits

size dictionary

is not changed

No

Add searchData to

Dictionary if not

exist and size of

dictionary <

maxSizeDictionary

Add

prevCandidateDicti

onary to Dictionary

if not exist and

size of dictionary <

maxSizeDictionary

Yes

Add searchData

and

prevCandidateDicti

onary to temp

No

prevCandidateDicti

onary = last byte of

matchData

matchData = K

Process and Write

to Disk index

dictionary of

matchData

End

Figure 3. The Flowchart of the proposed compression algorithm

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 12, No. 1, January 2018 : 73 – 82

80

Start Input File
Generate Initial

Dictionary

oldCode = read

code of File

oldData = get

bytes data of

oldCode index in

dictionary

Write oldData to

disk

(newCode =

read code of

File) != EOF

newCode >=

size of current

dictionary

currentData = get

bytes data of

newCode index in

dictionary

No

(newCode –

size of current

dictionary) == 1

Yes Yes

Character = get

last byte of

prevCandidateDicti

onary

currentData =

character +

oldData +

character

Yes

Character = get

first bytes data of

oldCode

currentData =

oldData +

character

No

Write currentData

to Disk

firstDictionary =

oldData + get first

byte of

currentData

Add firstDictionary

to dictionary if not

exist and size of

dictionary <

maxSizeDictionary

prevCandidate

DictionaryEmpt

y == false

P = last byte of

prevCandidateDicti

onary

C = first byte of

currentData

secondDictionary

= p + oldData + c

Yes

Add

secondDictionary

to dictionary if not

exist and size of

dictionary <

maxSizeDictionary

prevCandidateDicti

onary = oldDdata

oldData =

currentData

prevCandidateDicti

onaryEmpty =

false

No

End

Figure 4. The Flowchart of the proposed decompression algorithm

3. RESULTS AND DISCUSSION

In this section, we will discuss the results of the testing of the compression algorithm.

The experimental data was performed on 200 files consisting of 5 file types: extension *.doc,

*.exe, *.ppt, *.txt and *.xls. Table 5 shows the average of the compression ratio of the

experimental result.

Table 5. Compression ratio of the proposed algorithm and the original LZW algorithm

File type Compression ratio (%)

Original LZW Proposed algorithm

doc 40,13 36,83

exe 12,51 9,08

ppt 34,57 31,22

txt 48,50 45,15

xls 46,87 39,85

Average 42,85 38,35

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258 

Optimization of LZW Compression Algorithm With Modification of ... (Restu Maulunida)

81

Table 5 shows the average of the experimental results. The size of the compression ratio

result is written in percentage units. Based on the average result data in Table 5 it is known that

the average compression ratio for LZW algorithm is 42.85% and the average compression ratio

for the proposed algorithm is 38.35%. The compression ratio used in this research is the storage

media space that can be spared.

This research proposes a new method to perform data compression by dictionary coding

technique by modifying the formation of the dictionary on LZW algorithm and applying

variable length code. Nevertheless, the result is still not very good. The compression ratio of the

proposed algorithm is smaller than the original LZW algorithm. On the other hand, the resulting

application can perform file compression of various types of file types and can perform the

decompression process into its original form. However, there are cases where the compression

results are larger than the original file size. This happens because the dictionary coding

technique is influenced by the structure of the data and the dictionary.

4. CONCLUSION

Based on the test using the data used in this study, seen the difference in the

compression ratio between the original LZW algorithm and our proposed algorithm. The

average compression ratio of experimental results for LZW algorithm is 42,85%, and our

proposed algorithm is 38,35%. It proves that the compression ratio of our algorithm is smaller

than the original LZW compression ratio which states that the LZW algorithm is better than the

research proposed algorithm.

Based on the discussion that has been described, the authors provide suggestions based

on what has been known to the author of this data compression research. For further

development, it is expected that the writer's suggestion algorithm can be improved so that it can

improve the performance of the algorithm that is the compression ratio and expected to perform

the compression and decompression process for many files or folders or files in the folder.

REFERENCES

[1] W. Al Hayek, “An Effective Method For Data Compression Based On Adaptive

Character Wordlength.pdf,” Int. Arab J. e-Technology, vol. 2, no. 4, pp. 197–201, 2012.

[2] A. Kaur and N. S. Sethi, “Approach for Lossless Text data Compression using Advanced

Bit Reduction Algorithm,” Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 5, no. 7, pp.

1172–1176, 2015.

[3] S. M. Choudhary, A. S. Patel, and S. J. Parmar, “Study of LZ77 and LZ78 Data

Compression Techniques,” Certif. Int. J. Eng. Sci. Innov. Technol., vol. 4, no. 3, pp. 45–

49, 2015.

[4] I. M. A. D. Suarjaya, “A New Algorithm for Data Compression Optimization,” Int. J.

Adv. Comput. Sci. Appl., vol. 3, no. 8, pp. 14–17, 2012.

[5] A. P. Utomo, A. E. Putra, and C. Atmaji, “Analisis Hasil Proses Pemampatan JPEG

dengan Metode Discrete Cosine Transform,” IJEIS, vol. 2, no. 1, pp. 1–10, 2013.

[6] P. Jain, A. Jain, and C. Agrawal, “IMPROVING DATA COMPRESSION RATIO BY

THE USE OF OPTIMALITY OF LZW & ADAPTIVE HUFFMAN ALGORITHM

(OLZWH),” Int. J. Inf. Theory, vol. 4, no. 1, pp. 11–19, 2015.

[7] M. Kaur and G. Kaur, “A Survey of Lossless and Lossy Image Compression

Techniques,” Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 3, no. 2, pp. 323–326, 2013.

[8] H. G. Nugraha and A. S. N., “Optimasi Bobot Jaringan Syaraf Tiruan Mengunakan

Particle Swarm Optimization,” Indones. J. Comput. Cybern. Syst., vol. 8, no. 1, pp. 25–

36, 2014.

[9] R. Pramitasari and R. Wardoyo, “Penerapan Algoritma Optimasi Chaos pada Jaringan

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 12, No. 1, January 2018 : 73 – 82

82

Ridge Polynomial untuk Prediksi Jumlah Pengangguran,” IJCCS-Indonesian J. Comput.

Cybern. Syst., vol. 6, no. 2, pp. 47–56, 2012.

[10] P. M. Nishad and R. M. Chezian, “OPTIMIZATION OF LZW (LEMPEL-ZIV-WELCH

) ALGORITHM TO REDUCE TIME COMPLEXITY FOR DICTIONARY

CREATION IN ENCODING AND DECODING,” Asian J. Comput. Sci. Inf. Technol.,

vol. 5, pp. 114–118, 2012.

[11] U. Nandi and J. K. Mandal, “Modified Compression Techniques Based on Optimality of

LZW Code (MOLZW),” Int. Conf. Comput. Intell. Model. Tech. Appl., vol. 10, pp. 949–

956, 2013.

[12] N. Gupta, R. Kumar, and A. Gupta, “Removing Redundancy in Dictionary based

Compression Techniques,” Int. J. Comput. Sci. Emerg. Technol., vol. 1, no. 4, pp. 237–

240, 2010.

[13] M. Singh, S. Kumar, S. Singh, and M. Shrivastava, “Various Image Compression

Techniques : Lossy and Lossless,” Int. J. Comput. Appl., vol. 142, no. 6, pp. 23–26,

2016.

[14] K. Sayood, Introduction to Data Compression, 3rd ed. San Francisco: Morgan

Kaufmann, 2012.

