
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) 

Vol.12, No.1, January 2018, pp. 53~62 

ISSN (print): 1978-1520, ISSN (online): 2460-7258 

DOI: 10.22146/ijccs.27871                                   53 

 

Received August 30th,2017; Revised January 5th, 2018; Accepted January 9th, 2018 

Adaptive Unified Differential Evolution for Clustering 
 

 

Maulida Ayu Fitriani*
1
, Aina Musdholifah

2
, Sri Hartati

3 

1
Magister of Computer Science FMIPA UGM, Yogyakarta, Indonesia

 

2,3
Department of Computer Science and Electronics, FMIPA UGM, Yogyakarta, Indonesia 

e-mail: *
1
bemaulz@gmail.com, 

2
aina_m@ugm.ac.id, 

3
 shartati@ugm.ac.id  

 

Abstrak 

Berbagai metode clustering untuk memperoleh informasi  optimal terus berkembang 

salah satu perkembangannya adalah Evolutionary Algorithm (EA). Adaptive Unified 

Differential Evolution (AuDE), adalah pengembangan dari Differential Evolution (DE) yang 

merupakan salah satu teknik EA. AuDE memiliki parameter kontrol faktor skala (F) dan 

crossover rate  (Cr) self-adaptive. Juga memiliki single strategi mutasi yang mewakili dari 

strategi-strategi mutasi standar yang sering digunakan dari penelitian-penelitian sebelumnya.  

Metode clustering AuDE diuji menggunakan 4 dataset. Silhouette Index  dan CS Measure 

merupakan fungsi fitness yang digunakan sebagai alat ukur kualitas hasil clustering. Kualitas  

hasil  clustering  AuDE  kemudian dibandingkan  terhadap  kualitas  hasil  clustering  

menggunakan metode DE. 

Hasil penelitian menunjukkan bahwa strategi mutasi AuDE dapat memperluas pencarian  

pusat cluster  yang dihasilkan oleh DE sehingga dapat diperoleh kualitas hasil  clustering  yang  

lebih  baik. Perbandingan kualitas dari AuDE dan DE menggunakan Silhoutte Index menujukan 

1 : 0.816, sedangkan pada penggunaan CS Measure menunjukan perbandingan 0.565 : 1. 

Waktu eksekusi yang dibutuhkan AuDE menunjukan hasil yang lebih baik namun tidak 

signifikan, ditujukan dengan perbandingan pada penggunaan Silhoutte Index yaitu 0.99:1, 

sedangkan pada penggunaan CS Measure didapatkan hasil perbandingan 0.184 : 1. 

 

Kata kunci— AuDE, DE, Clustering 

 

Abstract 
 Various clustering methods to obtain optimal information continues to evolve one of its 

development is Evolutionary Algorithm (EA). Adaptive Unified Differential Evolution (AuDE), 

is the development of Differential Evolution (DE) which is one of the EA techniques. AuDE has 

self adaptive scale factor control parameters (F) and crossover-rate (Cr).. It also has a single 

mutation strategy that represents the most commonly used standard mutation strategies from 

previous studies. 
The AuDE clustering method was tested using 4 datasets. Silhouette Index and CS 

Measure is a fitness function used as a measure of the quality of clustering results. The quality 

of the AuDE clustering results is then compared against the quality of clustering results using 

the DE method. 

The results show that the AuDE mutation strategy can expand the cluster central search 

produced by ED so that better clustering quality can be obtained. The comparison of the quality 

of AuDE and DE using Silhoutte Index is 1:0.816, whereas the use of CS Measure shows a 

comparison of 0.565:1. The execution time required AuDE shows better but Number significant 

results, aimed at the comparison of Silhoutte Index usage of 0.99:1 , Whereas on the use of CS 

Measure obtained the comparison of 0.184:1. 
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1. INTRODUCTION 

 

Clustering as one of the popular pattern recognition techniques and has been used in 

various fields, such as web mining, machine learning, image segmentation, biometric 

recognition, electrical engineering, mechanical engineering, remote sensing, and genetics [1]. 

Various clustering methods to obtain optimal information continue to grow with the 

rapidity of science. One such development is the Evolutionary Algorithm (EA). EA is part of 

the Evolutionary Computation in Artificial Intelligence that mimics the evolutionary biology of 

living things. There are several algorithms included in the Evolutionary Algorithm, including 

Genetic Algorithm (GA), Genetic Programming (GP), Evolutionary Strategies (ES), Differential 

Evolution (DE), Evolutionary Programming (EP), and Grammatical Evolution (GE). Data 

clustering studies like [2] and [3] use DE as the main method.  

In 1995 Storm and Price introduced DE as one of the techniques of Evolutionary 

Computation. The DE population encoding uses real numbers and has been widely applied to 

solve optimization problems e.g. in data clustering, digital filter design, linear function 

optimization, and multi-objective optimization [4].  

DE has parameters that greatly affect its own performance. Determining the right 

combination of parameter values in the DE is not easy because it takes careful observation and 

also depends on the issues to be solved. Therefore some researchers like [5], [6], and [7] 

developed parameter tuning models automatically to overcome manual parameter tuning 

weaknesses. In addition to the control parameters that greatly affect performance, DE also relies 

heavily on its mutation strategy [8]. When DE is used to solve the optimization problem, the 

first must be determined is the mutation strategy, then determined the control parameters of the 

DE by the procedure of trial and error. The selection of appropriate mutation strategies and 

parameter values with these trial and error procedures often takes a great deal of time, the 

problem being the initial ideas of developing new DE variations with self adaptive parameters. 

In 2016 Qiang and Mitchel introduced Adaptive Unified Differential Evolution (AuDE). 

AuDE has a scale factor control parameter (F) and a self-adaptive crossover rate (Cr). AuDE 

also has a single mutation strategy from some combination of mutation strategy expressions that 

are representative of commonly used standard mutation strategies from previous studies [9]. 

In this study AuDE is used for clustering. The application of AuDE in clustering begins 

with a chromosome initialization process containing the centroid. Each chromosome contained 

the activation threshold to be used as an active determinant of whether or not a centroid. The 

initialization process of forming a chromosome population which underwent the process of 

updating the population through mutation, crossover and selection to get the population of 

chromosomes that will be used in the next generation. In the AuDE, there is a new generation of 

scaling factor parameter values (F) and crossover rate (Cr) self-adaptive in mutation and 

crossover processes so that users do not need to select the appropriate control parameters. 

 

2. METHODS 
 

In this study AuDE was applied to overcome the weaknesses of DE in determining 

static parameters. Evaluation of population quality was performed using Silhouette Index and 

CS Measure as a fitness function of AuDE clustering. The results of the AuDE evaluation were 

then compared with the results of the clustering evaluation produced using DE. In addition to 

measuring the quality of clustering results, the execution time of both methods will also be 

compared. 
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Figure 1. Clustering testing architecture 

Figure 1 is a clustering testing architecture using AuDE and DE. The quality of 

clustering results and execution time is obtained from clustering testing of 25 experiments for 

each dataset with different methods and fitness functions. 

2.1 Testing Data 

Table 1 is a breakdown of the amount of data, attributes, and classes on each dataset 

used to test the clustering results. 

 

Table 1 Details of the tested dataset (UCI Machine Learning Repository) 

Dataset Number of 

Data 

Number of 

Attributes 

Number of 

Classes 

Iris 150 4 3 

Wine 178 13 3 

Glass 214 9 7 

Ecoli 336 7 8 

The dataset used to compare the clustering results of AuDE and DE is the Iris dataset, 

Wine, Glass, Ecoli from the UCI Machine Learning Repository (URL: 

http://archive.ics.uci.edu/ml/) [10]. 

2.2  Adaptive Unified Differential Evolution (AuDE) 

AuDE is a development algorithm of Differential Evolution (DE) proposed by Qiang 

and Mitchell in 2016. DE belongs to the population-based metaheuristic category. The basic 

idea of ED is to take advantage of individual differences within the population to perform a 

search for solutions. DE is an algorithm included in the Evolutionary Algorithm (EA) group. 

The development of the AuDE algorithm lies in the control parameters used during the 

mutation and crossover process, in addition the AuDE mutation strategy also gains 

development.  

2.2.1 Initialization Population 

The initialization stage is the determination of initial control parameters and initial 

generation (G) population. Initialization of the initial population is done by determining the 
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number of members in the population (NP). For each chromosome or target vector in a 

population it can be written with . 

  a control parameter scale factor worth positive natural number between 

[0,1] that are used during the process of mutation to control the evolution of the population. Cr 

is a parameter of the control parameter value between the positive natural numbers [0,1] are 

used to determine the inheritance of genes possessed by the target vector  and mutant vectors 

 in formation trial vector  by comparing it with the random number generated at the 

crossover process , in other words Cr controls the crossover process. 

2.2.2 Mutation Process 

Mutation is the process of mutant vector formation. Before the process of forming the 

mutant vector, the four parameters of the new scale factor control Fj with j = 1, 2, 3, 4 in 

generation (G + 1) are searched using Equation 1. While the mutant vector formation is done by 

using Equation 2. 

............................ (1) 

  

 (2) ............................................................. (2) 

 

In Equation 2,  is the i-th mutant vector,   is the i-th destination vector,  is the best vector 

among the population NP, and , , , ,  are random vectors of the population NP. 

 

2.2.3  Crossover Process 

The crossover process between the mutant vector and the target vector is done to 

improve the diversity of potential new solutions. Prospective new solutions formed from these 

two vectors are called trial vector . The component of the trial vector is 

generated from the mutant vector or the target vector depending on the value of the crossover 

rate control parameter (Cr). Equation 4 is a crossover scheme used in AuDE. Before performing 

the crossover process, carried out searches crossover rate control parameter in the generation of 

new Cr (G + 1) using Equation 3.  

 ............................ (3) 

 

 .................................................. (4) 

 

In Equation 4,   is the i-th trial vector,  is a random value between [0, 1], and 

 is the randomly selected element of the target vector target .  

2.2.4 Selection Process 

The selection process is performed to generate target vectors in the next generation by 

comparing the value of the vector fitness trial with the target vector fitness value, if the trial 

vector fitness value is better than the target vector fitness value then the trial vector will be the 
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target vector or the new chromosome in the next generation. Conversely, if the fitness value of 

the trial vector is no better, then  will still be used as a chromosome in the next 

generation. The rule can be written in Equation 5 as follows: 

 ................................ (5) 

In Equation 5,   is the i-th destination vector for the next generation,  is 

the fitness value of the i-th trial vector and  is the value fitness i-th target vector. 

2.3 Silhouette Index 

In Equation 6, Si is the Silhoutte Index of the i data or silhoutte width,  is the average 

distance of the i data with the other data in the same cluster, whereas  is the average distance 

between the i data and the data in different clusters [11].  and   can be calculated using 

Equation 7 and Equation 8,  representing the distance between the i-th and j-th data while  

and  represent the number of i-th cluster data and the k-cluster 

  ...................................................................................................... (6) 

 ................................................................................................ (7) 

  ............................................................ (8) 

After obtaining the silhoutte width  for each data, the calculation of the Silhoutte 

Index (SC) value is done as a whole by summing all Si values then divided by the amount of 

data (n) or can be seen in Equation 9. SC values are in the range [-1, 1 ] where -1 shows the 

result of bad clustering, 0 indicates indifferent, and 1 shows good. 

 ............................................................................................................ (9) 

2.4 CS Measure 

CS Measure is one of the simplest index tools that can put more centroid into areas with 

low data density. Before CS Measure was applied, the centroid was derived from the average 

data point used in the clustering. The distance between the 2 data points Xi and Xj in Source 

with d (Xi, Xj) CS Measure is defined as in Equation 10. 

............................................................... (10) 

2.5 Similarity Measure 

The Euclidean distance between X and Y is defined as Equation 11. 

 ....................................................................... (11) 

In Equation 11 Xk and Yk are the values of x and y in the k-th attribute. Determination of 

cluster membership is done by allocating data into cluster members where the data distance to 

the cluster center point is the shortest [13]. 

2.6 Clustering Flow Using AuDE 

The clustering flow using AuDE is shown in Figure 2. 
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Input dataset 

Set the initial control parameters  , , =1, , 

=1, , , ,BestSol.Cost= Infinity in G=0. 

Initialization 

For i=1:NP 

Take centroid a number of Cmax from the dataset. 

Take random threshold activation between [0,1] a number of Cmax.    

The result of forming a single chromosome or target vector ). 

Find the active centroid. 

Calculate the closest distance using Euclidean Distance. 

Data labeling.  

Evaluation of target vector  using Silhoutte Index or CS Measure. 

The evaluation result . 

     if <BestSol.Cost  

        best vector = ) 

End 

Set the generation G = 0 

While stopping criteria has not been met, do: 

For i = 1 to NP (for every ): 

Mutation 

Find new scale factor control parameters for j = (1,2,3,4) 

 
Find the mutant vector using (uDE) 

  

Crossover 

Find new Crossover rate control parameters 

 
Generate new trial solution  

using a binomial crossover scheme 

randgen=rand([1 numel( )]) 

for j=1:numel( ) 

   

   

     

  else 

   

Selection  

Find active centroid from  

Calculate the closest distance using Euclidean Distance. 

Data labeling. 

Evaluation of target vector   using Silhoutte Index or CS Measure. 

The evaluation result  

 

 
Update best vector 

          if >BestSol.Cost 

               

          else   

                

End For 

G = G+1 

End While 

Figure 2 Clustering flow using AuDE 

 The active centroid of each i-target vector is obtained by using rule Figure 3. 

IF activation threshold > 0.5 THEN  centroid  ACTIVE,  

ELSE centroid  INACTIVE 
Figure 3 The centroid activation rule  

Figure 3 is a centroid activation rule. Centroid is declared active when threshold 

activation ≥ 0.5 while centroid is declared inactive when threshold activation <0.5.  
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3. RESULT AND DISCUSSION 

3.1  Comparison of Number of Final Clusters 

Table 2 is the average number of clusters end results of 25 trials using Silhouette Index. 

On testing Aude use Silhouette Index, Ecoli dataset has average number of clusters end results 

and the standard deviation of the best among the four datasets are 7.88 and 0.6. While dataset 

Wine has the average number of clusters end result and the worst standard deviation is 3.85 and 

1.3. 

Reviewed DE testing using Silhouette Index, Iris dataset has the average number of 

clusters end results and the standard deviation of the best among the four datasets are 4.28 and 

0.93. While E. coli dataset has the average number of clusters end result and the worst standard 

deviation is 5.76 and 1.36. Standard deviation can have great value due to the result of the 

number of clusters in 25 trials had variations in results with a range of great value. 
 

Table 2 Average number of final clusters using Silhouette Index 

Dataset 
Number of Original 

Cluster 

AuDE DE 

Average St. Deviation Average St. Deviation 

Iris 3 3.28 0.842615 4.28 0.936305 

Wine 3 3.85 1.320708 4.8 1.214496 

Glass 6 6.12 1.013246 4.76 1.331666 

Ecoli 8 7.88 0.6 5.76 1.362596 

Table 3 is an average number of 25 trial times the final cluster uses CS Measure. In the 

AuDE test using CS Measure, Glass dataset has average number of final clusters and the 

standard deviation of the best among the four datasets, which is  6 and 1. While dataset Wine 

has average number of final clusters and the standard deviation which is 5.1 and 2,66. 
 

 Table 3 Average number of final clusters using CS Measure 

Dataset 
Original 

Class 

AuDE DE 

Average St. Deviation Average St. Deviation 

Iris 
3 

3.52 1.530795 3.36 0.907377 

Wine 
3 

5.1 2.66966 4.95 0.950055 

Glass 
6 

6 1 3.96 1.171893 

Ecoli 
8 

6.88 1.536229 4.96 1.536229 

Table 3 is the result of DE using CS Measure, Iris dataset has the best average number 

of final clusters and the standard deviation among the four datasets which is 3.36 and 0.91. 

While Ecoli dataset has average number of final clusters and the worst standard deviation which 

is 4.96 and 1.53. 
 

3.2 Comparison of Clustering Results Quality 

Comparison of cluster quality using Silhoutte Index from clustering result by using 

AuDE and DE method can be seen in Table 4. 
 

Table 4 Comparison of cluster quality using Silhouette Index 
Dataset AuDE DE 

Iris 0.715359 0.702683 

Wine 0.735226 0.714945 

Glass 0.582457 0.375623 

Ecoli 0.502398 0.440565 

Silhouette Index has a value range [-1 1], the resulting clusters would be well worth it if 

the validity of close to 1, and will be worth bad if close to -1. The clustering results in Table 4 

using Silhouette Index shows Aude has validity better value in all the tested dataset compared 

with the use DE methods, but the methods of DE also generate good validity in the dataset Iris 

and Wine. 

Tabel 5 Perbandingan validitas cluster menggunakan CS Measure 
Dataset AuDE DE 

Iris 0.898261 1.14782 
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Wine 0.761709 1.122008 

Glass 0.315147 2.706308 

Ecoli 1.487058 2.164753 

Comparison of CS Measure of clustering results by using Aude and DE can be seen in 

Table 5. The results of the cluster using the CS Measure will be well worth it if the validity 

value close to 0, and would be worth worse if the value generated even greater. The clustering 

results using the CS Measure cluster validity show that the AuDE method has better validity on 

all tested datasets than the DE method, but the AuDE method also has poor validity on the Iris, 

Wine and Ecoli datasets because they have sufficient CS measures which is 0.78, 0.86, and 

1.48. 
 

3.3 Comparison of Cluster Quality Changes 

Figure 4 is a comparison graph of changes in cluster quality values or fitness values for 

each generation in AuDE and DE using the Silhoutte Index cluster quality gauge. Based on 

Figure 4 it can be analyzed that on the use of the Silhouette Index the change in the rate of 

fitness in AuDE has increased in the next generation. Increased fitness values in AuDE occur 

because of the search for adaptive control parameters and mutation strategies that can perform 

wider searches. 

The use of the Silhouette Index in DE, most of the 25 trials of each dataset, results in a 

fitness value that does not change significantly for each generation. This occurs because of the 

search for control parameters on static DE and simple mutation strategies owned by ED so that 

the results in updating chromosomes mutation process is less varied. 

 

a. Iris (AuDE) 

 

a. Iris (DE) 

 

b. Iris  (AuDE) 

 

b. Iris (DE) 

 

c. Iris (AuDE) 

 

c. Iris (DE) 
 
 
 
 
 

Figure 4 Comparison of cluster quality change graphs or fitness values 

3.4. Comparison of Execution Time 

The required execution time using the Silhouette Index in AuDE and DE as shown in 

Table 6 shows the difference in yields that are not too large, but of the four datasets, Wine, 
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Glass and Ecoli require longer execution time in AuDE compared to the time of execution on 

DE. This is because AuDE takes time to look for new scale factor parameters in the mutation 

process and new crossover rate parameters in crossover process adaptively. 

Tabel 6 Waktu eksekusi menggunakan Silhoutte Index 

Dataset 
Silhoutte 

AuDE DE 

Iris 7.124031 8.686344 

Wine 26.19617 23.58887 

Glass 21.32109 21.2569 

Ecoli 27.04355 26.19172 

Besides finding a new control parameters, Aude also takes time to get five random 

vectors and have a longer mutation strategy. The execution time in the clustering testing process 

using AuDE and DE is greatly influenced by the size of the population and the number of 

generations. 

Table 7 Execution time using CS Measure 

Dataset 
CS Measure 

AuDE DE 

Iris 3.165976 3.240039 

Wine 8.478502 11.94717 

Glass 8.336542 8.792321 

Ecoli 9.147294 9.697849 

The required execution time using CS Measure in AuDE and DE also shows the result 

difference is not too large. By Table 7, execution time using CS Measure validity takes more 

time on DE testing, with the most time difference occurring in the Wine dataset. 

 

4. CONCLUSIONS 

 

Based on the data used in this study can be concluded the quality of the clustering using 

a measuring instrument Silhouette Index show that the clustering results generated by Aude 

better with a ratio of 1: 0816 compared to classical DE. The quality of clustering results using a 

measuring instrument CS Measure indicate that the clustering results generated by Aude better 

with a ratio of 0565: 1 compared to DE. 

Execution time using Silhouette Index in AuDE shows the execution time is almost 

equal to DE, can be seen from the comparison of execution time AuDE with DE is 0.99: 1. 

While the execution time using CS Measure, AuDE and DE has a ratio of 0.82: 1. 
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