
 Indonesian Journal of Innovations in Soft Computing and Cybernetic Systems, vol.1(1), September 2006

I. Habibi, The Balinese Unicode Text Processing 1

The Balinese Unicode Text Processing

Imam Habibi and Rinaldi

Informatics Engineering Department
Bandung Institute of Technology

Ganesha 10 Street Bandung 40132

e-mail : if12042@students.if.itb.ac.id, imam_beckham@yahoo.com

Abstract

In principal, the computer only recognizes numbers as the representation of a character. Therefore, there
are many encoding systems to allocate these numbers although not all characters are covered. In Europe,
every single language even needs more than one encoding system.
Hence, a new encoding system known as Unicode has been established to overcome this problem. Unicode
provides unique id for each different characters which does not depend on platform, program, and
language. Unicode standard has been applied in a number of industries, such as Apple, HP, IBM,
JustSystem, Microsoft, Oracle, SAP, Sun, Sybase, and Unisys. In addition, language standards and
modern information exchanges such as XML, Java, ECMA Script (JavaScript), LDAP, CORBA 3.0, and
WML make use of Unicode as an official tool for implementing ISO/IEC 10646.
There are four things to do according to Balinese script: the algorithm of transliteration, searching,
sorting, and word boundary analysis (spell checking).
To verify the truth of algorithm, some applications are made. These applications can run on
Linux/Windows OS platform using J2SDK 1.5 and J2ME WTK2 library. The input and output of the
algorithm/application are character sequence that is obtained from keyboard punch and external file.
This research produces a module or a library which is able to process the Balinese text based on Unicode
standard. The output of this research is the ability, skill, and mastering of
1. Unicode standard (21-bit) as a substitution to ASCII (7-bit) and ISO8859-1 (8-bit) as the former

default character set in many applications.
2. The Balinese Unicode text processing algorithm.
3. An experience of working with and learning from an international team that consists of the foremost

experts in the area: Michael Everson (Ireland), Peter Constable (Microsoft-US), I Made Suatjana,
and Ida Bagus Adi Sudewa.

Keywords: Unicode, transliteration, searching, sorting, word boundary analysis, canonical combining class,
normalization, and Unicode Collation Element.

1. Introduction
Language and local script are the most

precious cultural assets that have to be preserved
for generations to come. Balinese script which can
be used to writing Balinese language is threatened
to extinction because Balinese is rarely used and
has less scope of usage. Efforts to preserve it have
been attempted but met an obstacle, i.e. the lack of

application to accommodate opinions using
Balinese script. Basically, the more sophisticated
the tool is, the more guaranteed the education and
culture in the future are. This tool refers to the
computer which is capable to build software
engineering easily in such a manner to produce
and process Balinese script quickly and properly
[1].

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

https://core.ac.uk/display/297914988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:if12042@students.if.itb.ac.id
mailto:imam_beckham@yahoo.com

 Indonesian Journal of Innovations in Soft Computing and Cybernetic Systems, vol.1(1), September 2006

I. Habibi, The Balinese Unicode Text Processing 2

The endeavor to computerize Balinese script
is being conducted by Bali Galang Foundation.
The first step is done by including the Balinese
script in standard of Unicode character. The
Unicode Consortium1 and the ISO/IEC
JTC1/SC2/WG22 committee have agreed in
principle to include the Balinese script as per
defined in the formal proposal written by Michael
Everson and I Made Suatjana in the standards that
they maintain[6]. This proposal, numbered N2908,
was presented to the committee submitted to the
WG2 46th meeting in Xiamen, China, in January
2005. The information given in the proposal is by
all means complete but will only be finalized
during the next WG2 meeting in Sophia-Antipolis,
France, in September 2005.

The conventional methods of processing a
string of Latin text are not applicable to the
Balinese text because there are at least three
different areas for the Balinese Unicode text
processing [6], i.e.:
1. Searching algorithm should work on both

pre-composed and decomposed strings.
Searching for U+1B12 BALINESE
LETTER OKARA TEDUNG should be
equivalent with searching for U+1B11

BALINESE LETTER OKARA and
U+1B35 BALINESE VOWEL SIGN
TEDUNG .

2. Sorting algorithm should not be based purely
on character code points. Vowels should be
ignored when comparing consonants, but
vowels should be factored in only when the
consonants are equal. Furthermore, there are
two different sorting schemes exist: the
traditional Balinese HANACARAKA
ordering and the Sanskrit ordering.

3. The Balinese text does not use spaces as
word separators. A spell-checking algorithm

1 http://www.unicode.org
2 http://anubis.dkuug.dk/JTC1/SC2/WG2

should be able to perform a dictionary-based
lookup to determine word boundaries and to
validate the spelling of the text.

2. Text Processing in Computer

Generally, information which flows from and
into computer is in the form of text document,
Figure, audio, video, and combination among
them. Text is used to submit information in
language and written with understandable scripts
by human being as either the subject or object of
the information. In order to being processed in
computer, these scripts need to be decoded in
number since computer can only recognize in
number. This number consists of binary numbers,
i.e. 0 and 1, known as bit.

In fact, bit processing is processed on octet
(from Latin word, octo which means eight), a bit
combination of eight digits also called byte. Some
methods of convention are made to look for
solution of how to interpret octet and other series
of octet on the way to represent data. For example,
four series of octet are used to interpret real
numbers. In this final project, octet series is used
to interpret string. The simplest way which is still
used widely to interpret character is by mapping
one octet with one character according to the
mapping table. In doing so, we can interpret 256
(2^8=256) characters. This number of characters
exceeds those in character set3 used by Latin
script, a script which has widely been used to
write many languages around the world such as
English and Indonesian. This technique is also
used by ASCII character standard (American
Standard Character for Information Interchange)
which is developed at 1960’s and has been being
used up to now.

In general, text processing in computer works
when user types with keyboard, and the keyboard

3 The script character collection. It is not yet
related to its code representation. For
example, Indonesian alphabet with its
punctuation mark.

http://www.unicode.org
http://anubis.dkuug.dk/JTC1/SC2/WG2

Indonesian Journal of Innovations in Soft Computing and Cybernetic Systems, vol.1(1), September 2006

I. Habibi, The Balinese Unicode Text Processing 3

sends its scan codes to the keyboard driver. Then,
the driver transforms the scan codes into
meaningful character sequence. In the case of non-
roman input mode is on, the driver also checks the
input sequences and rejects invalid sequences.
After that, the text processor manipulates the
characters. It may do searching, copy-pasting,
sorting, word counting, line breaking,
transliteration, etc. These characters are also
stored in memory or other storage devices. In
order to show character sequences, the rendering
engine picks the glyph that represents the
character. Then, the display such as monitor and
printer displays the rendered glyphs.

Unicode is a character coding standard for
representing a written language in computer.
Unicode was actually not the first coding standard,
because it came as the answer to the problems
arising from the previous coding standard for
years [9]. Therefore, Unicode is close to the
previous existing coding standard. When Unicode
version 1.0 was issued in 1991, ASCII and
ISO-8859 had become the most well known
standard.

The development of the Unicode character
model follows 10 basic rules stated below [9].
However, not all are actually fulfilled.
Consistency can be sacrificed in order to keep
simplicity, efficiency, and compatibility with the
precious standard. The basic rules are:
Universality, Efficiency, Character, not glyphs,
Semantics, Plain text, Logical order, Unification,
Dynamic Composition, Equivalent Sequences,
Convertibility.

3. Balinese Unicode

3.1 Balinese Script
The Balinese script is used for writing the

Balinese language, the native language of the
people of Bali. It is a descendent of the ancient
Brahmic script from India; therefore it has some
notable similarities with modern scripts of South
Asia and Southeast Asia that also are descendent

of the Brahmic script. The Balinese script is also
used for writing Kawi, or Old Javanese, which had
a heavy influence to Balinese language in the 11th
century. Some Balinese words are also borrowed
from Sanskrit, thus Balinese script is also used to
write words from Sanskrit.

The basic elements of the alphabet are
syllables. Each syllable has inherent sound of /a/
or /ĕ/ depending of the position of the syllable
within a word.

The text direction of the Balinese script is
from left to right, with vowel signs attached to
either before, after, below or above the syllable.
Some vowel signs are split vowels, meaning that
they appear at more than one position to the
syllable.

Writing system of Balinese script is more
complex than Latin script. The alphabet consists
of syllables. Every syllable ends up with vowel
sound /a/.

Consonant cluster is a consonant group of
syllable appearing without any vowels. In
Balinese script, consonant naturally obtains the
suffix of vowel sound /a/. In general, there are two
ways to omit original vowel sound:

Utilizing consonant in the form of gantungan
or gempelang attached to the next consonant. This
gantungan or gempelan consonant is applied to
omit the vowel on its left side, not the vowel on
itself. For example, word ‘bakta’ (bring).

Utilizing adeg-adeg, U+1B44 BALINESE
ADEG-ADEG. For example, word ‘kadep’
(sold).

Position adjustment in Balinese script writing
is divided into several different areas (see Figure
1), i.e.:

Baseline area: writing base of Balinese
script. Consonants are written in this area.

Area on the left side or pre-base marks
(prem) and on the right side or post-base marks
(pstm) baseline: used to write dependent vowel
and gempelan.

Area on the top side or above-base marks
(abvm) and on the bottom side or below-1 base

 Indonesian Journal of Innovations in Soft Computing and Cybernetic Systems, vol.1(1), September 2006

I. Habibi, The Balinese Unicode Text Processing 4

marks (blw1m) and below-2 base marks (blw2m)
baseline: used to write gantungan, and pengangge
suara.

Figure 1. Writing position of Balinese script

3.2 Reordering and Split Vowel
Dependent vowel in Balinese script modifies

base consonant syllable with several forms. A
consonant or a cluster of consonants may have a
dependant vowel to change the last vowel sound
attached to it. Balinese script has various forms of
dependant vowel, the spacing and the non-spacing
one written on the previous, the next, the top side,
or the bottom side of the base character. Yet the
combination of them is also possible.

Unicode standard determines that the
combining character is coded after its base
character. Therefore, when a character sequence
contains dependent vowels, reordering is
necessary in the computer memory just before it is
displayed on the screen. The function of the
reordering is to make a change of the glyph order
so that glyph component of dependent vowel is
displayed properly (see Figure 2).

Figure 2. Reordering

Split vowel is a vowel whose components
appear on two different sides of its consonant. The
component may appear on either the top-right
side, or the left and right side of its base
consonant.

Glyph of vowels drawn on the bottom side of
base character needs a special treatment because
glyph selection depends on the context of the
consonant frequency or the previous consonant
cluster. These vowels are 1B38 BALINESE
VOWEL SIGN SUKU (u) and 1B39
BALINESE VOWEL SIGN SUKU ILUT
(uu). Both of these vowels have two different
glyphs, i.e.: the one attached on the base
consonants and their conjunct forms (Pengangge
Aksara).

3.3 Ligatures
A glyph representing more than one character

is called ligature, a script that is handwritten on a
paper with no more than one scratch. Several
Balinese scripts appearing adjacent to one another
form ligature. Therefore, they seem on the screen
as if they were only one glyph. For example,
U+1B35 BALINESE VOWEL SIGN TEDUNG
(aa) forms a ligature when attached to a
syllable.

3.4 Line Breaking
Although Balinese script is written without

any spaces between two successive words, line
breaking cannot be conducted at random places.
Hence, there are two common rules of line
breaking, i.e.:

Line breaking may not be done between a
syllable and any following combining characters.

Line breaking may not be done just before
any punctuation.

3.5 Characteristics of Balinese Script
Like any other Unicode script, Balinese script

has some unique characteristics (see table 1). They
are published in the proposal L2/05-008 which
was approved by Unicode Consortium. However,

Indonesian Journal of Innovations in Soft Computing and Cybernetic Systems, vol.1(1), September 2006

I. Habibi, The Balinese Unicode Text Processing 5

the decomposition mapping property should be
added to the proposal. Therefore, according to the
Unicode standard, there should be ten characters

requiring decomposition mapping (see algorithm
1).

Table 1. Characteristics of Balinese Script

1B00;BALINESE SIGN ULU
RICEM;Mn;230;NSM;;;;;N;;ardhacandra;;;

1B01;BALINESE SIGN ULU
CANDRA;Mn;230;NSM;;;;;N;;candrabindu;;;

1B02;BALINESE SIGN
CECEK;Mn;230;NSM;;;;;N;;anusvara;;;

1B03;BALINESE SIGN
SURANG;Mn;230;L;;;;;N;;repha;;;

1B04;BALINESE SIGN
BISAH;Mc;226;L;;;;;N;;visarga;;;

1B05;BALINESE LETTER
AKARA;Lo;0;L;;;;;N;;a;;;

1B06;BALINESE LETTER AKARA
TEDUNG;Lo;0;L;1B05 1B35;;;;N;;aa;;;

1B07;BALINESE LETTER
IKARA;Lo;0;L;;;;;N;;i;;;

1B08;BALINESE LETTER IKARA
TEDUNG;Lo;0;L;1B07 1B35;;;;N;;ii;;;
1B09;BALINESE LETTER
UKARA;Lo;0;L;;;;;N;;u;;;

1B0A;BALINESE LETTER UKARA
TEDUNG;Lo;0;L;1B09 1B35;;;;N;;uu;;;

1B0B;BALINESE LETTER RA
REPA;Lo;0;L;;;;;N;;vokalic r;;;

1B0C;BALINESE LETTER RA REPA
TEDUNG;Lo;0;L;1B0B 1B35;;;;N;;vokalic
rr;;;
1B0D;BALINESE LETTER LA
LENGA;Lo;0;L;;;;;N;;vokalic l;;;

1B0E;BALINESE LETTER LA LENGA
TEDUNG;Lo;0;L;;;;;N;;vokalic ll;;;

1B0F;BALINESE LETTER
EKARA;Lo;0;L;;;;;N;;e;;;
1B10;BALINESE LETTER
AIKARA;Lo;0;L;;;;;N;;ai;;;

1B11;BALINESE LETTER
OKARA;Lo;0;L;;;;;N;;o;;;

1B12;BALINESE LETTER OKARA
TEDUNG;Lo;0;L;1B11 1B35;;;;N;;au;;;

1B13;BALINESE LETTER KA;Lo;0;L;;;;;N;;;;;

1B14;BALINESE LETTER KA
MAHAPRANA;Lo;0;L;;;;;N;;kha;;;

1B15;BALINESE LETTER GA;Lo;0;L;;;;;N;;;;;
1B16;BALINESE LETTER GA
GORA;Lo;0;L;;;;;N;;gha;;;

1B17;BALINESE LETTER
NGA;Lo;0;L;;;;;N;;;;;

1B18;BALINESE LETTER CA;Lo;0;L;;;;;N;;;;;

1B19;BALINESE LETTER CA
LACA;Lo;0;L;;;;;N;;cha;;;

1B1A;BALINESE LETTER JA;Lo;0;L;;;;;N;;;;;

1B1B;BALINESE LETTER JA
JERA;Lo;0;L;;;;;N;;jha;;;

1B1C;BALINESE LETTER
NYA;Lo;0;L;;;;;N;;;;;

1B1D;BALINESE LETTER TA
LATIK;Lo;0;L;;;;;N;;tta;;;

1B1E;BALINESE LETTER TA MURDA
MAHAPRANA;Lo;0;L;;;;;N;;ttha;;;

1B1F;BALINESE LETTER DA MURDA
ALPAPRANA;Lo;0;L;;;;;N;;dda;;;

1B20;BALINESE LETTER DA MURDA
MAHAPRANA;Lo;0;L;;;;;N;;ddha;;;

1B21;BALINESE LETTER NA
RAMBAT;Lo;0;L;;;;;N;;nna;;;

1B22;BALINESE LETTER TA;Lo;0;L;;;;;N;;;;;

1B23;BALINESE LETTER TA
TAWA;Lo;0;L;;;;;N;;tha;;;

 Indonesian Journal of Innovations in Soft Computing and Cybernetic Systems, vol.1(1), September 2006

I. Habibi, The Balinese Unicode Text Processing 6

3.5.1 Canonical Combining Class of Balinese
Script

The purpose of canonical combining classes
is to establish appropriate equivalence classes
under Unicode normalizations for character
sequences that involve combining marks.
Specifically:

U+1B06 () à [U+1B05,U+1B35]
(,)

U+1B08 () à [U+1B07,U+1B35]
(,)

U+1B0A () à [U+1B09,U+1B35]
(,)

U+1B0C () à [U+1B0B,U+1B35]
(,)

U+1B12 () à [U+1B11,U+1B35]
(,)

U+1B3B () à [U+1B3A,U+1B35]
(,)

U+1B3D () à [U+1B3C,U+1B35]

(,)

U+1B40 () à [U+1B3E,U+1B35]
(,)

U+1B41 () à [U+1B3F,U+1B35]
(,)

U+1B43 () à [U+1B42,U+1B35]

(,)
Symbol à showing that the left sided
element has to be equivalent to the right
side element

Algorithm 1. Decomposition mapping of Balinese script

[7]

Given a pair of combining marks that interact
typographically (i.e., that nominally occupy the
same position relative to the base), different
encoded orders correspond to visually-distinct
relative positions of the marks, hence are
semantically distinct. By assigning these marks to
the same canonical combining class (zero or non-
zero), the nonequivalence of differently-ordered
sequences is established under normalization.

Given a pair of combining marks that do not
interact typographically (i.e., that occupy distinct
positions relative to the base), different encoded
orders are visually identical, hence not
semantically distinct. By assigning these marks to
different, non-zero canonical combining classes,
the equivalence of differently-ordered sequences
is established under normalization.

In canonical combining class, the class 0 has
special behavior in the Unicode normalization
algorithms: if a sequence contains a combining
mark in class 0 and a mark in a non-zero class n,
equivalence classes are defined as though the
class-0 mark belonged to class n; i.e., that
sequence is not equivalent to the sequence
containing those marks in the opposite order.

Using the canonical combining classes
proposed in L2/05-008, there is only one pair of
combining marks for which distinct orders would
be considered canonically equivalent (see table 2).

Table 2. Canonical combining class of Balinese script
proposed in L2/05-008

< 1B34 SIGN REREKAN (ccc=7),
1B44 ADEG-ADEG (ccc=9) > ≡
< 1B44 ADEG-ADEG (ccc=9), 1B34
SIGN REREKAN (ccc=7) >

In proposal L2/05-008, Combinations of

syllable-modifier signs (1B00—1B03), REREKAN
and vowel signs, at least, are linguistically valid.
Because all of these but REREKAN are assigned to
class 0, differently-ordered sequences of these
marks, which would be visually distinct, are not
canonically equivalent. Thus, the use of class 0
provides appropriate results in these cases.

Indonesian Journal of Innovations in Soft Computing and Cybernetic Systems, vol.1(1), September 2006

I. Habibi, The Balinese Unicode Text Processing 7

In this case, < 1B35 BALINESE VOWEL
SIGN TEDUNG, 1B04 BALINESE SIGN
BISAH > is a linguistically plausible
combination. Assuming it is normal use as a
vowel killer, ADEG-ADEG should not co-occur
with either of the other two marks. Again, though,
different encoded orders of a combination of these
marks are possible in principle and would be
visually distinct, and so the use of class 0 provides
appropriate results in these cases.

In the cases described above, the use of class
0 is sufficient to cause differently-ordered
combinations of marks that do interact
typographically (having different visual results) to
be considered not canonically equivalent.
However, the assignment of marks to class 0
breaks down because it is in failing to cause
differently-ordered combinations of marks that do
not interact typographically to be considered
canonically equivalent.

According to Unicode standard, a suggestion
is made by assigning each classes 220, 224, 226,
230 to every character whose position relative to
the base is bottom, left, right, or top [7]. However,
character U+1B34 BALINESE SIGN
REREKAN and U+1B44 BALINESE SIGN
VIRAMA is assigned to fixed-position class 7 and
9.

3.5.2 Normalization of Balinese Script
There are four Unicode normalization forms,

i.e.:
1. Normalized Form D: canonical

decomposition.
2. Normalized Form C: canonical

decomposition, followed by canonical
composition.

3. Normalized Form KD: compatibility
decomposition.

4. Normalized Form KC: compatibility
decomposition, followed by canonical
composition.
Considering the efficiency and performance

of the Unicode normalization algorithm, Balinese
script is processed in the normalized form D.

Besides, the normalized form C is basically
obtained through the same steps as the normalized
form D.

Normalized form D consists of two phases.
First, in every Balinese word is the decomposition
mapping done. Second, canonical reordering is
done according to the canonical combining class
of each character. Decomposition mapping has
recursive property, so the correct character
sequences are obtained (see algorithm 2). For
example, U+1B40 turns into

[U+1B3E,U+1B35], so <U+1B13
KA,U+1B40 VOWEL SIGN TALING
TEDUNG> ≡ <U+1B13 KA,U+1B3E VOWEL
SIGN TALING,U+1B35 VOWEL SIGN
TEDUNG>.

If: X à [Y,Z] (defined)
If: Y à [Y1,Y2] (defined)
Then: X à [Y1,Y2,Z] (conclusion)

Symbol à showing that the left sided
element has to be equivalent to the
right side element

Algorithm 2. Decomposition mapping algorithm

Basically, UCA is a process to create sorting

keys possessing particular priority value. All
strings are first processed on the primary level.
They all are then compared. If they equal to each
other, the comparison is continued to the
secondary level and later to the tertiary level when
necessary.

In general, the sorting keys of UCA are:
Alphabet/base character, Diacritic mark/accent,
Uppercase and lowercase.

3.5.3 Comparison Algorithm of Balinese Script
Comparison algorithm of Balinese script

consists of four phases, i.e.:
Every Balinese script input is first processed

with the normalized form D.
The result from step (1) is then continued to

the UCA according to the chosen sorting method,
either HANACARAKA or SANSKRIT.

 Indonesian Journal of Innovations in Soft Computing and Cybernetic Systems, vol.1(1), September 2006

I. Habibi, The Balinese Unicode Text Processing 8

The next step is separating the values of
collation element and inserting a particular value
from level separator while recombining those
values.

The last step is comparing the values
obtained from the step (3) using binary
comparison algorithm.

3.5.4 Transliteration of Balinese Script
Transliteration is a mapping from one writing

system to another one, e.g. from Balinese script to
Latin and vice versa by considering both accent
and grammar of them [10]. The main criterion is
the lossless information so that user should be
capable of retransforming the information to its
original format. Therefore, transliteration is
different from transcription which only focuses on
voice mapping from one language to another one.
The use of transliteration is for helping people
who can not read the Balinese script. For example,

 [U+1B13 KA,U+1B2E LA] becomes
‘kala’ (time).

Transliteration is performed by building a
table to map characters from Balinese script to
Latin and vice versa. To get it done, a complex
conversion is needed in order to overcome the
change of shape and special case of letters in
source script. The input for transliteration is two
digits from keyboard in hexadecimal format
(0,1,2,…,A,B,C,D,E,F) with padding bit 0 if the
number of digits is odd. The algorithm of
transliteration utilizes data structure of inversion
list (including basic functions: invert, union,
intersection, set difference, adding, and deleting)
in order to save more spaces in memory. The
performance of those operations is faster due to
random access for every element.

Character U+1B33 BALINESE LETTER
HA serves as a neutral place for vowel.
Therefore, when a vowel is written on the first
letter of word, either independent vowel or
character U+1B3 followed by appropriate
dependent vowel may be used.

Character U+1B05 BALINESE LETTER
AKARA serves as a neutral place when

followed by appropriate character or sign, so the
character may be transliterated to ‘e’, ‘i’, ‘o’, ‘u’,
‘ī’, ‘ū’, ‘ĕ’, and ‘ö’.

Character nania (U+1B2C) is used in
consonant cluster between words using appended
form ‘ya’, so this character may be transliterated
to ‘ia’, e.g. ‘siap’ and ‘tabia’.

Character suku kembung (U+1B2F) is used in
consonant cluster between words using appended
form ‘wa’, so this character may be transliterated
to ‘ua’.

Transliteration algorithm calls translate
string function receiving both string input and
output (see algorithm 3 and 4), for example, given
an string input s with n = length(s), then an
iteration for n characters is performed.

In transliteration algorithm, the most
dominant function is searching character in I/O
file. The comparison is performed at Balinese
script block (U+1B00-U+1B7F). In the worst
case, the comparison is performed 128 times.

Given m is the number of comparison at
lookup table in average, the transliteration
algorithm theoretically has a complexity of
O(n*m).

3.5.5 Searching of Balinese Script
Searching of Balinese script has some

challenges, i.e. that there are some characters
which are made of other characters and they are
even possible to be combined into a single
character. Therefore, it should work on both pre-
composed and decomposed strings.

Searching is performed by validating
equivalent forms of Balinese script (see table 3),
e.g. ‘daar’ (eat) and ‘daara’ (eaten),

 ‘baang’ (give) dan ‘baanga’
(given).

In searching algorithm, the most dominant
functions are normalization, sorting key creation
according to UCA, and binary comparison
functions (algorithm 5). Normalization function
receives string input and an array of integer. Given
string input s with n = length(s), then perform
iteration for n characters.

Indonesian Journal of Innovations in Soft Computing and Cybernetic Systems, vol.1(1), September 2006

I. Habibi, The Balinese Unicode Text Processing 9

Input: character sequence of Balinese
script

Output: character sequence of Latin
script

1. Perform a block validation of
Balinese script in Unicode.

2. Perform iteration from the first
character to the last one.

3. If the character is the base
character, then go to step 4.
Otherwise, go to step 7.

4. If the character displays glyph in
the appended form, it means that
there is a usage of character virama.

5. Verify whether the character has a
special case as mentioned before.

6. If the character is character
rerekan, then the previous character
should be validated. Besides, the
previous output should be changed as
well.

7. If the character is dependent vowel,
then the previous vowel of base
character should be turned into an
appropriate character.

8. Finally, perform character matching
using mapping table in appropriate
form. The provided forms are normal
form, appended form, case 1...8
forms, and UNKNOWN_TRANSLATE.

Algorithm 3. Character transliteration of Balinese script

This function consists of two processes:

Canonical decomposition, i.e. recursive function
transforming Balinese script into atomic form. In
the best case, character input has already had an
atomic form. Otherwise, in the worst case,
character input is processed recursively until the
character gets an atomic form. For the case of
Balinese script, the recursion depth is one.

Reordering canonical combining class is a
function that reorders Balinese script character
classes already processed in canonical
decomposition. In the worst case, iteration is
performed until the recursion depth minus one.

Given p is the average recursion depth, the
normalization theoretically has a complexity of
O(p).

In average, element collation function
performs iteration for n times, so the array of

integer is produced with the size of n. Therefore,
this function has a complexity of O(n).

Binary comparison function performs
comparison of element collation values. In the
worst case, the comparison is performed for n
times.

Input : character sequence of Latin

script
Output : character sequence of

Balinese script
1. Perform a block validation of Latin

script in Unicode.
2. If there is a separator character,

then the split characters are
combined.

3. Perform iteration from the first
character to the last one.

4. Verify whether the character has a
special case as mentioned before,
e.g. the vowel.

5. Verify whether the input is a
balanced word (symmetric word) in an
appropriate position.

6. Validate whether the output contains
character virama and rerekan.

7. Then, perform character matching
using mapping table in appropriate
form. The provided forms are normal
form, appended form, case 1...8
forms, and UNKNOWN_TRANSLATE.

8. Finally, verify whether the output
is included into the consonant of
Balinese script using the data
structure of inversion list. If the
output is a consonant, then the
character virama is appended into
the output.

Algorithm 4. Inverse Transliteration of Balinese script

Theoretically, searching algorithm has a

complexity as the following:
T(n) = O(n*(O(p)) + n*(O(n)) + n)

= O(n*p + n2 + n) à pick
the maximum value among the three complexity
values (p<n)

= O(n2)
Therefore, the searching algorithm complexity is
O(n2).

Punctuations consist of seven characters, i.e.:
‘carik’, ‘carik pareren’, ‘panten’, ‘pasalinan’,

 Indonesian Journal of Innovations in Soft Computing and Cybernetic Systems, vol.1(1), September 2006

I. Habibi, The Balinese Unicode Text Processing 10

‘pamada’, ‘carik agung’, and ‘carik pamungkah’
(U+1B5A – U+1B60).

Table 3. The Equivalent Form of Balinese Script

1. U+1B03 BALINESE SIGN SURANG ≡

U+1B2D BALINESE LETTER RA

2. U+1B02 BALINESE SIGN CECEK ≡
U+1B17 BALINESE LETTER NGA ≡

U+1B01 BALINESE SIGN ULU CHANDRA

3. U+1B04 BALINESE SIGN BISAH ≡
U+1B33 BALINESE LETTER HA

4. U+1B00 BALINESE SIGN ULU RICEM ≡
U+1B2B BALINESE LETTER MA

Numbers consist of ten characters (U+1B50

– U+1B59).
Sorting methods, i.e.: HANACARAKA

(table 4) and SANSKRIT (table 5).
Other symbols (U+1B61 – U+1B7C).
Therefore, sorting algorithm of Balinese

script does not depend on the character code pint.
Besides, the vowels must be ignored when
comparing the consonants. The vowels are taken
into account when the consonants are identical.
For example,

 ‘krama’ (member) appears before
’cakra’ (disc) in Sanskrit sorting method. On the
other hand, ‘cakra’ appears before ‘krama’ in
HANACARAKA sorting method.

In sorting algorithm, the most dominant
functions are normalization, sorting key creation
according to UCA, and binary comparison
functions (algorithm 6).

Normalization function receives string input
and an array of integer. Given string input s with n
= length(s), then perform iteration for n characters.
This function consists of two processes:

Canonical decomposition, i.e. recursive
function transforming Balinese script into atomic

form. In the best case, character input has already
had an atomic form. Otherwise, in the worst case,
character input is processed recursively until the
character gets an atomic form. For the case of
Balinese script, the recursion depth is one.

Input: character sequence of

Balinese script
Output: list of character sequence

of Balinese script
1. Perform a block validation of

Balinese script in Unicode.
2. Transform the input into the

equivalent form of Balinese
script according to table 14-1.

3. Normalize the Balinese script
character.

4. Build sorting key according to
UCA.

5. Utilize the data structure
ListSorting and select the
appropriate sorting method
used, either HANACARAKA or
SANSKRIT.

6. Perform binary comparison of
the sorting keys.

7. If the values are equal, put
the values into the list
output.
Algorithm 5. Searching of Balinese Script

Reordering canonical combining class is a

function that reorders Balinese script character
classes already processed in canonical
decomposition. In the worst case, iteration is
performed until the recursion depth minus one.

Given p is the average recursion depth, the
normalization theoretically has a complexity of
O(p).

In average, element collation function
performs iteration for n times, so the array of
integer is produced with the size of n. Therefore,
this function has a complexity of O(n).

Binary comparison function performs
comparison of element collation values. In the
worst case, the comparison is performed for n
times.

Indonesian Journal of Innovations in Soft Computing and Cybernetic Systems, vol.1(1), September 2006

I. Habibi, The Balinese Unicode Text Processing 11

Table 4. HANACARAKA Sorting

A > Ā > Ë > Ö > I > Ī > U > Ū > E > AI >
O > AU >

ha (bisah) > ha-rerekan > na > nna > ca >
cha > ra ([ra-repa = rë], surang) > ka >
ka-rerekan > kaf-sasak > khot-sasak > kha

>
da > da-rerekan > dha > dda > ddha > ta >

tzir-sasak > tha > tta > ttha >
sa > zal-sasak > asyura-sasak > sha > ssa
> wa > wa-rerekan > ve-sasak > la ([la-

lenga = lë]) >
ma (uli ricem) > ga > ga-rerekan > gha >
ba > bha > nga (cecek, ulu candra) > nga-

rerekan
pa > pa-rerekan > ef-sasak > pha > ja

> ja-rerekan > jha > ya > nya

Table 5. SANSKRIT Sorting

A > Ā > Ë > Ö > I > Ī > U > Ū > RË > RÖ >
LË > LÖ > E > AI > O > AU >

ka > ka-rerekan > kaf-sasak > khot-sasak
> kha > ga > ga-rerekan > gha > nga
(cecek, ulu candra) > nga-rerekan >

ca > cha > ja > ja-rerekan > jha > nya >
tta > ttha > dda > ddha > nna >

ta > tzir-sasak > tha > da > da-rerekan >
dha > na > pa > pa-rerekan > ef-sasak >

pha > ba > bha > ma (uli ricem) >
ya > ra (surang) > la > wa > wa-rerekan >

ve-sasak >
sha > ssa > sa > zal-sasak > asyura-

sasak > ha (bisah) > ha-rerekan

Theoretically, sorting algorithm has a
complexity as the following:

T(n) = O(n*(O(p)) + n*(O(n)) + n)
= O(n*p + n2 + n) à pick

the maximum value among the three complexity
values (p<n)

= O(n2)
Therefore, the sorting algorithm complexity is
O(n2).

3.5.6 Word Boundary of Balinese Script
In computer terminology, word boundary or

spell checker is a software facility designed for
verifying the correctness of the spelling in a

document in order to help user obtain the correct
spelling [10].

To handle Balinese script, word boundary
breaks down the sentence structure into its
building words. As mentioned before, in Balinese
script there is no usage of spaces as separator
between two adjacent words, so a dictionary-based
lookup is required.

Input: pair of character sequence of

Balinese script
Output: sequence character order (-

1=smaller, 0=equal, 1=bigger)
1. Perform a block validation of Balinese

script in Unicode.
2. Normalize the Balinese script

character.
3. Build sorting key according to UCA.
4. Utilize the data structure ListSorting

and select the appropriate sorting
method used, either HANACARAKA (see
table 15-1) or SANSKRIT (see table 15-
2).

5. Perform binary comparison of the
sorting keys.

Algorithm 6. Sorting of Balinese Script

Word boundary algorithm is performed by

separating character sequences of Balinese script
into base character cluster (including consonant
and consonant cluster). This algorithm uses data
structure of stack to retrieve valid character cluster
and then process it. The validity of a piece of the
character sequences can be inferred through
comparison between the sequences and the data
stored in dictionary. There are three possible
outputs resulted from the word boundary
algorithm, i.e.:

The character sequences are successfully
separated completely and correctly (the best case).

The character sequences are separated, but
only partially completed because it is possible that
the input is invalid or the data in the dictionary are
not complete. However, the algorithm returns the
best word boundary obtained according to the
statistical principle (the endeavor that produces
the maximum number of Balinese script words).

No output is returned (the worst case).

 Indonesian Journal of Innovations in Soft Computing and Cybernetic Systems, vol.1(1), September 2006

I. Habibi, The Balinese Unicode Text Processing 12

For example, ‘pakraman paksa’

[(U+1B27,U+1B13,U+1B44,U+1B2D,U+1B2B,U
+1B26,U+1B44)(U+1B27,U+1B13,U+1B44,U+1
B32)].

In word boundary algorithm, the most
dominant function is word searching in I/O file
according to Balinese script comparison algorithm
(see algorithm 7). The complexity of this function
is the same as that of searching algorithm of
Balinese script, i.e. O(n2). For the most outer
iteration, word boundary breaks down the
sentence into the building words. Given a sentence
input s with m = length(s), iterate for m/k words
with k = m in the best case and k = 1 in the worst
case. Therefore, the complexity of the word
boundary algorithm is O(m*n2).

Input: Balinese script character

sequence
Output: stack of Balinese script

character sequence
1. Perform a block validation of

Balinese script in Unicode.
2. Break down the character sequence

and push the pieces into a stack
according to the base character.
Then, perform validation based on
the dictionary.

3. Perform the algorithm 15-1.
4. If the output is invalid, pop the

topmost element from the stack.
5. There are three possible outputs

as explained above.

Algorithm 7. Balinese Script Word Boundary

4. Implementasi

4.1 Software Specification
Applications made related to text processing

based on Unicode standard are B-Linguist, B-
Unicode, and desktop application. These
applications require JVM (Java Virtual Machine)
with the following specification: B-Linguist and

B-Unicode is developed on J2ME WTK2 whereas
desktop application on J2SDK 1.5.

B-Linguist is a mobile dictionary application
which has a function as a translator from Balinese
to Indonesian and Balinese to English. B-Unicode
is a mobile text processing application of Balinese
script according to Unicode standard. This
application covers the four main functions, i.e.:
transliteration, searching, sorting, and word
boundary. The desktop application serves as the
dictionary and transliteration generator which is
required by both B-Linguist and B-Unicode.
Especially for desktop application, quick sort
algorithm is implemented to build index file and
dictionary data structure that later are used by both
mobile and desktop applications.

All applications utilize a single library named
balinese. The balinese library has universal
characteristics in order to run on several
platforms, i.e.: the platform of J2SDK and J2ME.

Figure 3. Software Architecture

In addition, the functions of B-Unicode

application are also implemented to desktop
application through some simple drivers in order
to test and verify the truth of designed algorithm
and library. Those drivers are run on TUI (Text
User Interface) mode.

In conclusion, Figure 3 shows that this
software involves mobile device network. The
hardware specifications used in this research are:

HP Sony Ericsson K750i, as well as an active
SIM card. The HP serves as a tool running B-
Linguist and B-Unicode. It also sends feedback to
the developer through SMS technology.

Indonesian Journal of Innovations in Soft Computing and Cybernetic Systems, vol.1(1), September 2006

I. Habibi, The Balinese Unicode Text Processing 13

Table 6. Software Testing

No. Name Description
 B-Linguist

1 Balinese to
English

Successfully tested

2 Balinese to
Indonesian

Successfully tested

3 Balinese Index to
English

Successfully tested

4 Balinese Index to
Indonesian

Successfully tested

5 Change Language Successfully tested
6 Send SMS Successfully tested
 B-Unicode

7 Balinese
Transliteration to
Latin

Successfully tested

8 Latin
Transliteration to
Balinese

Successfully tested

9 Searching Successfully tested
10 HANACARAKA Successfully tested

Sorting
11 SANSKRIT

Sorting
Successfully tested

12 Word Boundary Successfully tested
13 Change Language Successfully tested
14 Send SMS Successfully tested

 Desktop
Application

15 Balinese
Transliteration
Generator to
Latin

Successfully tested

16 Latin
Transliteration
Generator to
Balinese

Successfully tested

17 Unicode Code
Generator

Successfully tested

18 HANACARAKA
Generator

Successfully tested

19 SANSKRIT
Generator

Successfully tested

Table 7. Input Keyboard Testing

No. Input keyboard Description
1 NULL Successfully

tested
2 Only consonants Successfully

tested
3 Both consonants

and vowels
Successfully
tested

4 Both consonant
clusters and
vowels

Successfully
tested

5 All special cases
(e.g., in
searching testing)

Successfully
tested

A PC serves as a tool running desktop
application to generate files required by both B-
Linguist and B-Unicode.

Data cable or Bluetooth connection serves as
a connector between HP and computer.
Pocket PC serves as an SMS receiver from mobile
application user.

4.2 Testing
Testing is performed on a PC with following

specifications:
1. Processor : AMD Athlon XP 1600+
2. Memory : 1 GB
3. Hard disk : 20 GB

Testing is divided into two parts, i.e. software
testing (see table 6) and input keyboard testing
(see table 7).

 Indonesian Journal of Innovations in Soft Computing and Cybernetic Systems, vol.1(1), September 2006

I. Habibi, The Balinese Unicode Text Processing 14

Algoritma Transliteration viceversa

0

10

20

30

40

50

60

Input (n)

W
ak

tu
 e

ks
ek

us
i (

m
ili

se
co

nd
)

Big O(n) dengan m=5
Pengujian

Big O(n) dengan
m=5

10 15 20 25 30 40 50

Pengujian 15 15 15 15 15 15 15

2 3 4 5 6 8 10

t O(n*m)

Figure 5. Big O(n) Testing of Inverse Transliteration
Algorithm

Algoritma Searching (comparison)

0

50

100

150

200

250

Input (n)W
ak

tu
 e

ks
ek

us
i (

m
ili

se
co

nd
)

Big O(n)
Pengujian

Big O(n) 16 36 100 196

Pengujian 47 78 156 203

4 6 10 14

t O(n)2

Figure 6. Big O(n) Testing of Searching Algorithm
(comparison)

Algoritma Searching

0

500

1000

1500

2000

2500

Input (n)W
ak

tu
 e

ks
ek

us
i (

m
ili

se
co

nd
)

Big O(n) dengan m=10
Pengujian

Big O(n) dengan
m=10

160 640 1000 1960

Pengujian 516 734 1000 1015

4 8 10 14

t O(n)
2

Figure 7. Big O(n) Testing of Searching Algorithm

Algoritma Sorting

0

50

100

150

200

250

Input (n)W
ak

tu
 e

ks
ek

us
i (

m
ili

se
co

nd
)

Big O(n)
Pengujian

Big O(n) 16 36 100 196

Pengujian 47 78 156 203

4 6 10 14

t O(n)2

Figure 8. Big O(n) Testing of Sorting Algorithm

Algoritma Word Boundary

0

200000

400000

600000

800000

1000000

1200000

Input (n)W
ak

tu
 e

ks
ek

us
i (

m
ili

se
co

nd
)

Big O(n) dengan m=20
Pengujian

Big O(n) dengan
m=20

720 2880 8000 32000 269120 1E+06

Pengujian 1109 2829 10000 21797 126000 193875

6 12 20 40 116 234

t O(m*n)2

Figure 9. Big O(n) Testing of Word Boundary Algorithm

The result of GUI designing implementation

can be seen on Figure 10, 11, and 12.

Indonesian Journal of Innovations in Soft Computing and Cybernetic Systems, vol.1(1), September 2006

I. Habibi, The Balinese Unicode Text Processing 15

Figure 10. User Interface of B-Linguist

Figure 11. User Interface of B-Unicode

Figure 12. User Interface of B-Unicode (continued)

 Indonesian Journal of Innovations in Soft Computing and Cybernetic Systems, vol.1(1), September 2006

I. Habibi, The Balinese Unicode Text Processing 16

Figure 13. User Interface of Desktop

Figure 14. User Interface of Desktop (continued)

Indonesian Journal of Innovations in Soft Computing and Cybernetic Systems, vol.1(1), September 2006

I. Habibi, The Balinese Unicode Text Processing 17

5. Conclusion and Suggestion
Based on the result of conducted analysis and

research, there are several conclusions taken into
account, i.e.:

The system has successfully performed
Balinese Unicode text processing covering
transliteration, searching, sorting, and word
boundary functions. Moreover, a general and
multiplatform library has been successfully built.
This library runs well on both computer and
handheld device as long as JVM (java virtual
machine) is installed on them.

The algorithm complexity of transliteration,
searching, sorting, and word boundary are
O(n*m), O(n2), O(n2), O(m*n2) with n =
length(string input) and m = the number of
comparison at lookup table in average,
respectively.

It is proved that Unicode has been supported
by many operating systems and browsers. The
trend of global software technology nowadays
involves the usage of Unicode standard and the
availability of supporting devices.

Building software capable of processing
words containing Balinese characters requires a
good cooperation between two fields of study, i.e.
computer science and Balinese culture and
language science. Without mastering those fields,
the software would not handle all possible cases.

When analyzing software requirements,
communication with the user must frequently be
done so that the software meets the demand of the
user.

Beside of the conclusions, there are several
suggestions that can be considered, i.e.:
1. An expert of Balinese script is required in

order to help develop the software.
Specifically:
a. Grouping letters
b. Recognizing Balinese character

properties.
c. Analyzing letter combinations.

d. Evaluating the correctness of the
execution flow of the software.

2. Communication with the user can be
conducted with an interview or a
questionnaire to know specifically the
following things:
a. Layout keyboard compatibility for

Balinese letter.
b. The means of communication with

software, including the language used
when interacting.

3. SIM card used for updating dictionary should
be the prepaid one, so that controlling bill is
not required.

6. Bibliography
[1] Galang. Komputerisasi Aksara Bali. Yayasan

Bali, Maret 2005
[2] IBM J. Martha. Perangkat Lunak Teks Editor

Berhuruf Bali, 1991.
[3] I G. M. Sutjaja. Kamus Sinonim Bahasa Bali,

2003
[4] I N. Medra, et al. Pembinaan Bahasa, Aksara,

dan Sastra Bali: Pedoman Penulisan Papan
Nama dengan Aksara Bali. Dinas Kebudayaan
Prop. Dati I Bali, 1996.

[5] I N. Nikanaya. Surat Rekomendasi Nomor
042/84/DISBUD tentang Temu Wicara Aksara
Bali, 2005.

[6] M. Everson dan I Made Suatjana. Proposal for
Encoding Balinese Script in the UCS, 2005.

[7] P. Constable. Microsoft. Comments on Balinese
Proposal, L2/05-008, 2005.

[8] R. Gilliam. Unicode Demystified: A Practical
Programmer’s Guide to the Encoding Standard.
Addison-Wesley Professional, 2003.

[9] The Unicode Consortium. The Unicode
Standard, Version 4.0. Addison-Wesley
Professional, 2003

[10] Wikipedia. The Free Encyclopedia. Desember
2005

[11] <http://anubis.dkuug.dk/JTC1/SC2/WG2/
Bali_Government_n2916.pdf>.

[12] <http://www.babadbali.com/aksarabali>.
[13] <http://www.en.wikipedia.org>.

http://anubis.dkuug.dk/JTC1/SC2/WG2/
http://www.babadbali.com/aksarabali
http://www.en.wikipedia.org

