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Abstract 
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This dissertation aims to assess if the output from the KMV-Merton model, the so-called 

distance to default, can contribute to the support vector machines model with the ultimate goal 

of better forecasting the bankruptcy of a company. The considered dataset covers 248 non-

financial U.S. companies between 2000 and 2018. It was found evidence that the distance to 

default contributes, within a given range of variables considered, to a better F1-Score using 

both cross-validation and percentage ratio split. Additionally, the results show that the distance 

to default is a better predictor than a simpler market-based variable such as the debt-to-equity 

ratio. This suggests that the Merton-model setup per se is useful for default prediction. As 

expected, taking the F1-Score as a reference, the results also indicate that using company 

information a year prior to default provides better results than using data two years prior to 

default. Lastly, given the dataset used and the assumptions stated, this study is not conclusive 

regarding which out-of-sample evaluation method offers better results, the percentage ratio 

split, or the stratified K-fold cross-validation.  
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Resumo 

 

Título: Previsão de falência de empresas: Pode o modelo KMV-Merton adicionar valor ás 

previsões da máquina de vetor suporte? 

Autor: Francisco Soares da Cruz Loureiro 

Palavras-chave: Previsão de falência; Machine Learning; Modelos estruturais de crédito; 

Máquinas de Vetor de Suporte. 

 

Esta dissertação tem como objetivo avaliar se o resultado do modelo KMV-Merton, a conhecida 

distância ao incumprimento, pode contribuir para o modelo de máquinas de vetor de suporte 

com o objetivo final de prever melhor a falência de empresas. O conjunto de dados considerado 

abrange 248 empresas não financeiras dos E.U.A entre 2000 e 2018. Encontra-se evidência que 

a distância ao incumprimento contribui, dentro de um determinado grupo de variáveis, para um 

melhor F1-Score utilizando tanto a validação cruzada como a divisão percentual. Além disso, 

os resultados mostram que a distância ao incumprimento é um melhor previsor 

comparativamente  a uma variável de mercado mais simples tal como a dívida sobre o valor de 

mercado do capital próprio. Isso sugere que a configuração do modelo Merton por si só é útil 

para a previsão de falência. Como esperado, considerando o F1-Score como referência, os 

resultados também indicam que o uso de informações da empresa um ano antes da falência 

fornece melhores resultados do que o uso de dados dois anos antes da falência. Por fim, dado o 

conjunto de dados usados e as premissas assumidas, este estudo não é conclusivo em relação a 

qual método de avaliação out-of-sample oferece melhores resultados, a divisão percentual ou a 

validação cruzada. 
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Chapter 1 

1 Introduction 

 

1.1 Context and motivation 

 

Credit risk became a very familiar concept in the last few years, primarily as a result of the 2007 

crisis. One can define it as the risk of one party failing to pay the other party a previously agreed 

amount at a given date. This risk represents a severe threat, particularly to banks, as their 

business model consists of lending money to other parties. Segregating good counterparties 

from bad counterparties is thus essential for bank profitability and solvency. In addition, from 

Basel II onwards, banks may, if authorized by national supervisors, use internal rating models 

in order to estimate the probability of default of their clients. This means that good default 

prediction models are important not only to avoid credit losses but also to perform regulatory 

capital calculations.   

Though increasingly important, the development of models to predict corporate bankruptcy 

has been a critical topic in finance for both practitioners and academics throughout the last 

century. The literature goes back to the beginnings of the 1930s. However, until the 1960s, the 

literature was mainly focused on univariate analysis. In 1968, Altman presented a multivariate 

model that is still very relevant as a criterion to successfully assess the credit risk of a 

corporation. The author proposed a five-factor model to predict the bankruptcy of 

manufacturing companies. This model became widely known as the Altman Z-score. In the 

subsequent years, other discriminant models were developed differing among each other, 

mostly on the number of factors considered. In 1980, Ohlson pioneered the use of logit-based 

models in the bankruptcy prediction field. The author was motivated by fragilities recognized 

in multivariate analysis, such as the lack of interpretability, for instance, of the Altman Z-score. 

Currently these are still the most used default prediction models. 

In parallel to the above referred papers, a new class of models, called structural credit risk 

models, emerged from Black and Scholes (1973) option pricing theory. Differently from 

previous models, which were focused only on default prediction, these models aim to provide 

a way of relating the credit risk of a firm and its capital structure. Robert Merton's 

groundbreaking paper released in 1974 was the first to make use of the Black and Scholes 
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theory. The author perceived that the equity of a firm could be seen as a call option on its assets 

with strike price equal to the face value of debt. Consequently, when the asset value falls below 

this threshold, the call option is not exercised, and the firm is handed over to its debtholders. 

The default probability can thus be seen as the probability of the asset value falling below 

nominal debt value. Building on the Black-Scholes-Merton framework, the KMV corporation, 

developed a model based on Merton´s 1974 paper in the late 1980s. This was entitled as KMV-

Merton model. This model brought two major enhancements over the Merton model. First, 

Merton model assumes that the whole debt of a firm is exclusively constituted by a single zero-

coupon bond. In reality, a firm’s debt structure is not as straightforward as that. In addition, it 

is possible that a firm continues operating despite a negative net worth value. According to 

KMV, an effective approach is considering that the value of debt, which is the strike price of 

the option, equals the sum of current liabilities and half of the long-term liabilities. Secondly, 

the KMV-Merton model does not use a normal distribution when assessing the probability of 

default. Instead, KMV uses a proprietary empirical distribution of default rates. These two 

enhancements have been referred to improve Merton’s model capacity to predict default. Still, 

as structural models are calibrated using stock markets data, the use of these models continues 

mostly constrained to publicly traded firms. This important constrain has prevented the use of 

these models in the retail banking sector.    

In the late 1980s, machine learning methods started being applied in the bankruptcy 

prediction field.  Machine learning is a general term that encompasses a large number of 

techniques ranging from neural networks to random forests and support vector machines. 

Several studies, such as Huang et al. (2004), have demonstrated that these methods have better 

predictive capacity than more traditional statistical methods. As the authors state, the major 

difference is that traditional statistical methods impose structures to models, for instance, 

linearity in regression analysis. On the other hand, machine learning methods allow the model 

to learn the specific data structure without impositions. Support vector machines, which was 

introduced by Vapnik (1998), is one of the most recent machine learning techniques. The aim 

of this model is finding a hyperplane capable of maximizing the distance between two decision 

classes. This principle can thus be applied in order to separate bankrupt from non-bankrupt 

companies.  
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1.2 Goals and document structure 

 

The main objective of this dissertation is to check whether one of the major outputs of the 

Merton model, the distance to default, can add value to the SVM framework. With this purpose, 

accounting and market data are gathered both from bankrupted firms and non-bankrupted firms 

during the period that ranges between 2000 and 2018. This dissertation also covers three 

additional questions:  

• Is the distance to default a better contributor to the SVM model as opposed to a 

simpler market-related variable, such as debt-to-market equity ratio? 

• Does cross-validation provide better results as opposed to the traditional 80:20 

split? 

• What are the differences in the prediction results using instances1 of companies who 

went bankrupt a year prior to the default event compared to using instances of the 

same companies but two-year prior?   

 

Regarding the document structure, the next chapter discusses the main literature on 

bankruptcy prediction giving a historical perspective on the evolution of the field.  In Chapter 

3, it will be explained and debated the models which are going to be employed. In Chapter 4, 

an explanation of how the used datasets were constructed is provided and some statistical 

analyses are presented. Chapter 5 describes how the models will be estimated and explains the 

several metrics used in the assessment. Chapter 6 presents and analyzes the obtained results as 

well as answering the research questions. Finally, Chapter 7 concludes this report. 

  

 
1 Hereafter, each company data regarding a certain year will be labeled as an instance. 
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Chapter 2 

2 Literature Review 

 

2.1 Initial Studies on credit risk prediction 

 

The initial studies on bankruptcy prediction were univariate analysis, which aimed to ascertain 

which ratio could better forecast the future financial position of a firm. One of these frontline 

studies was conducted by Merwin (1942). The author decided to analyze small manufacturers. 

In order to do so, Merwin collected data from one thousand companies, whose assets in 1926 

amounted to less than $250.000 from five different industries. Using data from 1926 till 1936, 

the author compared the mean ratios of non-bankrupt firms with those who filed for bankruptcy. 

This study culminated in two main conclusions. First, the financial characteristics of companies 

that eventually went bankrupt start to differ from the most successful ones four to five years 

before the bankruptcy event occurs. Second, three ratios were found to be particularly powerful 

indicators of possible business failure: net working capital to total assets, current assets to 

current liabilities and net worth to total debt.  

Following the same line of thought, Beaver (1966) selected seventy-nine failed firms and 

seventy-nine non-failed firms from thirty-eight different industries and gathered data from 1954 

to 1964. The author computed thirty ratios from the financial statements and proceeded to 

examine and test the individual ratio predictive ability to correctly classify non-bankrupt and 

bankrupt companies. From this study, it was concluded that failed firms tend to incur in more 

debt compared to the non-failed ones. The author also found that the two ratios with better 

predictability were net income to total debt and net income to sales. Beaver´s paper section 

regarding suggestions for future research provided great insights for what would happen next 

as the author suggested a multi-ratio analysis. This analysis, instead of testing the predictive 

ability of each ratio as its own, would consider several different ratios together. 

In accordance with the abovementioned research, Altman (1968) develop a multivariate 

study using a sample of thirty-three non-failed manufacturing firms and thirty-three failed 

manufacturing firms. The author prosecutes a multiple discriminant analysis in order to predict 

the bankruptcy of a firm. Altman starts from a list of twenty-two different ratios and ends up 

selecting the five with the higher predictive ability of a bankruptcy event. These five ratios are:   
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working capital to total assets, retained earnings to total assets, earnings before interest and 

taxes to total assets, market value of equity to book value of total debt, and sales to total assets. 

The output of this model is known as the Altman Z-score. Firms with a Z-score superior to 2.99 

are predicted as safe from bankruptcy while those who present a value below 1.81 are classified 

as vulnerable. The author labels the zone between these two areas as the “gray area,” and no 

conclusions can be taken while in this range. The Altman Z-score displayed a 95% accuracy in 

predicting the default of a certain firm one year prior to the event. Nonetheless, the predictive 

ability decreases as the number of years to the bankruptcy event increases. 

Ohlson (1980) recognizes some fragilities on multivariate discriminant analyses leading 

him to build a conditional logic model. The vulnerabilities identified are mainly concerned with 

statistical requirements imposed by these models, difficult interpretation of the output scores, 

and the fact that failed and non-failed firms are matched by criteria such as size and industry, 

which the author refers to as “somewhat arbitrary”. Ohlson´s score is the result of nine 

independent variables that he argued to have predictability power but gave no theoretical 

justification for its selection. The period selected by the author in his analysis ranged between 

1970 and 1976 in which he observed one hundred and five failed firms and two thousand non-

failed firms that have been trading on US stock exchange for a minimum of three years. He 

proceeded with the estimation of three different models applying a logistic regression with 

different cut-off points. The models aimed to predict bankruptcy within one year, within two 

years and between one and two years, respectively. The results indicate that the size, the 

financial structure of the firm, and current liquidity ratio are vital variables in order to ascertain 

a possible bankruptcy event. 

Although the majority of multivariate analysis performed well, certain criticisms can be 

made. Altman and Saunders (1996) pinpoint three main concerns. First, these models are based 

on book value accounting data, which neglects the continuous nature of the borrower’s 

conditions. Second, modeling real-world conditions assuming linear relations is most likely a 

mistake. Finally, these credit-scoring bankruptcy prediction models are barely linked to a 

theoretical model. 
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2.2 The Black-Scholes-Merton model and its applications 

 

A more prominent alternative emerged with the work of Black and Scholes (1973) and Merton 

(1974). The Black and Scholes model is an option pricing model based on the premise that it 

should not be possible to make profits by creating portfolios of either long or short positions in 

options and their underlying stock. According to this model and in order to calculate the price 

of an option, the required inputs are - the strike price, the current stock price, the time to 

expiration, and the volatility. Merton (1974) makes use of this framework, assuming that the 

capital structure of the firm is constituted by equity and by a zero-coupon bond. The asset value 

is, within this framework, considered to be the sum of debt and equity. It also assumes that asset 

value follows a geometric Brownian motion process. Intuitively, the idea is that the asset value 

in the next moment in time is similar to the previous asset value plus some independent random 

change. Under this model, Merton reckons that debtholders are shorting a put option on the 

assets of the firm. Using the put-call parity, equity can be seen as a call option on the firm´s 

assets with strike price equal to the face value of debt. If the firm´s asset value is less than the 

face value of debt at maturity, equity holders will deliver the firm to the bondholders. 

Contrarily, if the firm´s asset value at maturity is higher than the face value of debt, equity 

holders will not default.  

Black and Cox (1976) extended this view. The authors considered in their model that 

default may occur whenever the asset value falls below a specific threshold even before debt 

maturity. The explanation lies in the fact that bondholders, within this framework, have the 

right to exercise a safety covenant, allowing them to liquidate the firm. 

Agarwal and Taffler (2008) point out the benefits of using the Black-Scholes-Merton 

framework as opposed to the accounting ratio-based models. First, these models have a 

reasonable theoretical framework behind them. Second, and according to the efficient market 

theory, market prices should manifest all the information contained in and out of the accounting 

statements. Third, market-related variables are not likely to be influenced by firm accounting 

policies. Fourth, stock prices are expected to express future expected cashflows hence more 

pertinent in order to make predictions. Lastly, the output is neither time or sample dependent.  

Although this model was a huge breakthrough, many of the assumptions are disregarded 

in practical implementation. KMV-Merton model, firstly developed by KMV corporation and 

later acquired by Moody´s in the late 1980s, is built on the application of financial derivatives 

theory based on Merton´s (1974) framework. The purpose of the model is to provide an 
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assessment of how likely a company is to default.  According to Crosbie et al. (2003), the market 

value of the firm´s assets, asset risk, and leverage are the three main root factors that are vital 

to ascertain the probability of default. According to the authors, the risk of default will be higher 

whenever the market value of assets approximates to the level of the book value of liabilities. 

This means that the probability of default will depend positively on the asset volatility and the 

value of liabilities and negatively on the market value of corporate assets. A default event will 

ultimately occur when the market value of assets is not enough to repay the liabilities.  

In order to apply the KMV-Merton model, two unknowns must be quantified, which are 

the firm´s asset value and asset volatility. In order to calculate these and under Merton´s 

framework, one possible approach is solving a system of two nonlinear simultaneous equations. 

A second alternative consists of using an iterative approach that imposes constant asset 

volatility during the estimation process. Any increases in equity volatility are then attributed to 

leverage variations. Hence, in periods of analysis where leverage drastically changes, the 

authors recommend the use of the latter.  

 

2.3 Machine learning 

 

Murphy et al. (2019) define machine learning as: 

 

“…an evolving branch of computational algorithms that are designed to 

emulate human intelligence by learning from the surrounding environment.” 

 

Over the past decades, machine learning has gained a notorious interest in a range of 

different fields. As Mitchell et al. (2015) state, the use of machine learning has been adopted in 

a variety of important areas such as in health care, manufacturing, education, marketing, 

financial modeling and policing. However, it was during the 1990s that machine learning first 

major real-world application was presented to us as the spam filter emerged.  

According to Géron (2019), machine learning tasks are typically classified into three broad 

categories: supervised learning, unsupervised learning, and reinforcement learning. The first 

relies on data that is labeled. The second is commonly used for problems involving clustering 

tasks, whereas the data is unlabeled. Last but not least, reinforcement learning, which can be 

described as a learning tool in which an agent observes the surrounding environment, select and 

perform actions. Consequently, rewards or penalties are given. Hence, the agent needs to choose 

the best strategy in order to maximize rewards. Within each of these categories, there are several 
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machine learning techniques that can be used depending on what problem one is facing. The 

most acknowledged models within machine learning are K-nearest neighbors, support vector 

machines, decision trees, random forests, and lastly, neural networks, which are all integrated 

into the category of supervised learning algorithms. 

One of the first machine learning techniques applied to predict bankruptcy was neural 

networks, which was inspired by the way human brain functions. Neural networks are an 

attempt to simulate the human´s biological neural networks. The most basic form of these 

models can be summarized in three steps. First, every input value is multiplied by a certain 

weight. Second, the weighted input values are summed with a bias term. Finally, the obtained 

result from the second step is passed through an activation function. Odom et al. (1990) decided 

to compare the predictive ability of neural networks and the multivariate discriminant analysis 

in predicting bankruptcy. The sample of companies selected was composed of sixty-five firms 

that went bankrupt and sixty-four non-bankrupt firms from 1975 to 1982. The authors 

considered as input values the same variables that Altman considered in his work in 1968. This 

study’s results demonstrated that neural networks performed better than the multivariate 

discriminant analysis in all three training sample proportions considered. More recently, Zhang 

et al. (1999) compared neural networks to logistic regressions. Typically, when testing models, 

it is common to divide data into a training sample and a test sample. The first is used so the 

model can learn as opposed to the second, which is used to evaluate how well can the model 

predict. The authors considered that by doing the traditional percentage division on the data, 

they would be introducing bias in model selection and evaluation. In other words, the features 

of the test sample may be significantly different from those in the training sample. This process 

is thus not recommended for small samples. Instead, as an alternative, the authors decide to use 

a method called cross-validation, which consists of partitioning the data in several subsets. 

These subsets are then used to train and test the data in multiple ways. Two cross-validations 

methods were considered. The first method, which was named as “small test set” consisted of 

dividing the data into five equal parts, called folds, and make use of four of those to train the 

model. The testing is conducted on the remaining fold. Subsequently, the authors consecutively 

perform this task until every one of the five folds has been used as a testing sample. In the end, 

the authors do an average of the results obtained. The second method, called “large test set” 

consists of using the whole dataset to train and then test on each of the five cases. Six variables 

were selected, the five from Altman paper from 1968 plus the ratio of current assets to current 

liabilities. Their justification was grounded on the belief that this ratio has a direct influence on 

the probability of a firm entering a default situation. The results demonstrated clear superiority 
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of neural networks in contrast to the logistic regression method. The accuracy of neural 

networks for the small test set and large test set was respectively 80.46 % and 86.64% compared 

to the 78.18% and 78.65% achieved by the logistic regression method. 

Within the various machine learning techniques, decision trees learning algorithms are one 

of the most popular machine learning techniques mainly because of its intuitive understanding. 

Decision trees can be one of two types, classification or regression trees. The first is used when 

one is interested in predicting whose class a particular instance belongs. The second is used 

when the target variable, which one wants to predict, is a real number.  Within this model 

framework, instances are categorized through a tree. The instances aimed to be evaluated, 

starting at the root node, will face, throughout the tree, at every node, a specific test regarding 

a particular attribute. Each branch resulting from a node outputs a possible value for that 

attribute. The final classification of a specific instance is accomplished when a leaf is reached 

with no more branches. Gepp et al. (2015) aimed at predicting financial distress using decision 

trees algorithm and logistic regression. The results demonstrated a clear superiority, regarding 

the accuracy metric, of the decision tree model over the logistic regression 

Another widely known, although relatively recent, machine learning technique is support 

vector machines. This technique is mostly applied in binary classification tasks, and the main 

principle behind it is constructing a hyperplane that maximizes the distance between elements 

of different data classes. Min et al. (2005) applied this method to a sample of 1888 companies 

in which 944 went bankrupt. The authors employed a grid-search technique using 5-fold cross-

validation in order to obtain the optimal parameters linked to a kernel function. Even though 

the authors recognized the existence of three main kernel functions, the decision was to employ 

the radial basis function based on previous studies that found that the latter provide overall 

better results. In order to make an out of sample analysis, the authors divided the data in a 

traditional 80:20, which means that they made use of 80 % of the data for training and the 

remaining 20% for testing. The support vector machine model proposed by the authors was 

then compared to other methodologies such as neural networks and logistic regression. The 

results revealed a clear superiority of the support vector machines method with an accuracy of 

88.01% in the training sample and 83.07% in the test sample.  
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Chapter 3 

3 Models 

 
 

3.1 KMV-Merton Model  

 

The KMV-Merton model emerged in the late 1980s, grounded on Merton´s (1974) seminal 

bond pricing model. The model rapidly became famous for its capacity to use forward-looking 

market information for default prediction. In this section, I will start by presenting Merton’s 

model, and then I will explain what is different in Merton-KMV model.  

Consider a firm with a pre-specified liquidation date T financed by equity and a single class 

of zero-coupon bond that must be paid at time T. Following Merton's (1974), one can recognize 

equity as a call option on the firm´s assets with strike price equal to the face value of debt. Now 

assume that the market value of the firm´s assets follows a stochastic process known as the 

geometric Brownian motion: 

 

𝑑𝑉𝐴 = 𝜇𝑉𝐴𝑑𝑡 +  𝜎𝐴𝑉𝐴𝑑𝑧 (1), 

 

where: 

𝑑𝑉𝐴  is the change in asset value, 

𝜇, 𝜎𝐴 are respectively, the firm´s asset drift rate and asset volatility, 

𝑑𝑧 is a Wiener process. 

 

Within this framework, the market value of the assets evolves stochastically due to a 

predictable component, the drift rate, as well as due to the occurrence of unexpected shocks, 

whose size is determined by the volatility term. 

Solving equation (1), one can determine the asset value at maturity as: 

 

𝑙𝑛𝑉𝐴
𝑇 = 𝑙𝑛 𝑉𝐴 + (𝜇 −

𝜎𝐴
2

2
)𝑇 + 𝜎𝐴√𝑇𝜀 (2), 

 

where 𝜀 is a standard normal random variable.  



Models 

17 | P a g e  

 

From the above equation, it is clear that the market value of assets is log-normally 

distributed.  

In this model, the probability of default is the probability that the call option ends up out 

of the money. Hence, the probability of default can be written as: 

 

𝑃𝑟𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = Pr(𝑉𝐴
𝑇 ≤ 𝑋𝑇  | 𝑉𝐴

0 =  𝑉𝐴) = Pr (𝑙𝑛𝑉𝐴
𝑇 ≤ 𝑙𝑛𝑋𝑇| 𝑉𝐴

0 =  𝑉𝐴) (3), 

 

where 𝑋𝑇 is the firm nominal debt. 

Substituting equation (2) above on equation (3): 

 

𝑃𝑟𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = Pr (𝑙𝑛 𝑉𝐴 + (𝜇 −
𝜎𝐴

2

2
)𝑇 + 𝜎𝐴√𝑇 ≤ 𝑋𝑡) (4). 

 

Rearranging one obtains: 

 

𝑃𝑟𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = Pr (−
𝑙𝑛

 𝑉𝐴
𝑋𝑡

+(𝜇−
𝜎𝐴
2

2
)𝑇

𝜎𝐴√𝑇
≥ 𝜀)    (5), 

 

where the symmetric of the term within brackets is usually called the distance to default. Since 

the error follows a Normal distribution, one can write: 

 

𝑃𝑟𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = N (− 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑡𝑜 − 𝑑𝑒𝑓𝑎𝑢𝑙𝑡)   (6). 

 

Distance to default can be understood as the number of standard deviations the asset value 

is expected to be away from the default barrier at time T. For instance, considering that the asset 

value today equals 200, the drift rate is 20% and the asset volatility is 25% and T equals 1, the 

value of the asset at maturity can be obtained by: 

 

𝑉𝐴
𝑇 = 𝑉𝐴 × 𝑒(𝜇−

𝜎𝐴
2

2
)𝑇 + 𝜎𝐴√𝑇𝜀          (7), 

 

Hence, in this specific scenario, the expected asset value at maturity equals 236.8. If one 

calculates the expected value of ln (
𝑉𝐴

𝑇

𝑋
), considering X =100, the value obtained equals 86.2%. 

The last step consists of standardizing. To do so, one has to divide by asset volatility. The result 
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obtained is roughly equal to 3.4, meaning that the expected value of the assets at maturity is 3.4 

standard deviations away from the default barrier. 

In a practical implementation of the Merton model, one needs to estimate the market value 

of assets and the volatility of asset returns. Fortunately given the parallel with the Black and 

Scholes (1973) model, one can use its European call option formula to state equity value: 

 

𝐸 = 𝑉𝐴𝑁(𝑑1) − 𝑒−𝑟(𝑇−𝑡)𝑋𝑁(𝑑2) (8), 

 

where 

𝐸 is the market value of the equity, 

𝑑1 =
ln(

𝑉𝐴
𝑋

)+(𝑟+
𝜎𝐴
2

2
)(𝑇−𝑡)

𝜎√𝑇−𝑡
   and, 

𝑑2 = 𝑑1 − 𝜎𝐴√𝑇 − 𝑡 . 

 

The d1 formula is very similar to the distance to default. However, instead of the expected 

asset return, μ, one has r, which represents the risk-free rate. For all traded firms for which 

equity value is known, this formula can be used to extract the implied market value of assets 

and return volatility.  

KMV-Merton has two main advantages over Merton’s model. First, Merton oversimplifies 

the capital structure of a company by considering that a company solely has a zero-coupon bond 

as liabilities. Hence, a company defaults if, at maturity, the value of the assets is below the 

nominal value of debt. Instead, KMV-Merton, considers that a company only defaults if the 

market value of the assets is below a certain barrier at maturity, known as the default point. 

Grounded on empirical studies, KMV found that companies usually default when their asset 

value at a pre-specified maturity lies between current liabilities and long-term liabilities. 

Second, KMV obtains a non-parametric relationship between the distance to default and the 

probability of defaulting by constructing their own distribution based on historical data. While 

in Merton’s model, the distance to default is evaluated on the Normal distribution, in the KMV-

Merton model it is evaluated on this proprietary distribution. As this proprietary distribution 

encompasses many historical downturns, it seems to incorporate scenarios of significant 

changes in a company´s market value. As result, differently from the Normal distribution used 

in Merton’s model, the KMV distribution gives non-negligible probabilities of default for 

relatively high distances to default. In addition, the KMV distribution does not lead to 

abnormally high default probabilities when the distance to default is very low.   
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Figure 3.1 summarizes the six variables that are responsible for the determination of the 

probability of default over a specific horizon. Those are the current asset value (1), the 

distribution of the asset value at the horizon (2), the volatility of asset returns (3), the default 

point (4), the expected growth rate in the asset value (5) and finally the horizon itself (6). As 

one can observe, the probability of default is the probability that the asset value at maturity is 

below the default point, which is constant within this framework 

 

 

 

 

 

 

 

 

 

 

 

3.2 Support vector machines (SVM) 

 

Support vector machines is a machine learning technique that falls into the category of 

supervised learning models. This means that it relies on labeled input data in order to learn a 

function that gives estimates of the output of an unlabeled data point. This method is quite 

flexible since it can be used for both regression and classification. For the sake of this paper, I 

will be concerned with the explanation of SVM regarding classification2.  

Figure 3.1 is useful to explain the main idea behind SVM (Géron (2019)). In this figure, 

the objective is to separate two classes, both flower species, Iris-Versicolor and Iris-Setosa. 

However, one can realize that the left graph decision boundaries are not sufficiently reliable for 

two reasons. First, the dashed green line does not even correctly separate the classes in the 

training set. Second, the purple and red lines, although properly separate the two classes, most 

probably will not predict new instances with the desirable accuracy. On the other hand, the right 

graph shows what SVM does. It identifies a hyperplane that maximizes the margin between the 

 
2 The spam filter is an example of it. The model learns from past emails and will classify new instances either as 

spam or no spam. 

Crosbie et al. (2003) 

Figure 3-1 – Key variables in determining the probability of default 
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two classes. As one can perceive, support vectors, which are the data-points that lie closest to 

the decision surface, are used to define the hyperplane. Thus, all other points are not employed 

in order to define the boundary between the two classes. In other words, support vectors are the 

elements of the training data, which, if eliminated, would cause a change in the position of the 

SVM hyperplane.   

Hence, SVM can be used to find the optimal hyperplane that separates the companies in 

our dataset into two groups, bankrupt and non-bankrupt. 

 

 

Figure 3-2 - Géron 2019 - example SVM 

 

3.2.1 Linearly Separable Data - Binary Classification 

 

According to Min et al. (2005), the SVM algorithm can be described along the following lines. 

Taking as input vectors 𝑥𝑖 = (𝑥𝑖
1, … , 𝑥𝑖

𝑛)𝑇 and as target labels 𝑦𝑖 ∈ {−1,+1}, one can formulate 

the support vector machine classifier as following: 

 

{
𝒘𝑻 ⋅ 𝑥𝑖 + 𝑏 ≥ 1, 𝑖𝑓   𝑦𝑖 = +1

𝒘𝑻 ⋅ 𝑥𝑖 + 𝑏 ≤ 1, 𝑖𝑓   𝑦𝑖 = −1
                            (9), 

 

where 𝒘 represents the weight vector, and 𝑏 represents the bias term. The dimension of 𝒘 will 

be the same as the number of features used in order to classify our analyzed firms as bankrupt 

or non-bankrupt. 

 

Alternatively, the SVM classifier can be presented as: 

 

𝑦𝑖[𝒘
𝑻 ⋅ 𝑥𝑖 + 𝑏] ≥ 1,       𝑖 = 1,… ,𝑁       (10), 

 

When [𝒘𝑇 ⋅ 𝑥𝑖 + 𝑏] 𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒,⇒ 𝑦𝑖  𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 ⇒ 𝑦𝑖[𝒘
𝑇 ⋅ 𝑥𝑖 + 𝑏] 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 .  

Géron (2019) 
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The dashed lines in the right panel of Figure 0.3, which are constructed solely based on the 

support vectors, specifically satisfy the following formulation: 

 

[𝒘𝑇 ⋅ 𝑥𝑖 + 𝑏] = + 1,       𝑖 = 1,… ,𝑁 ⇒ 𝐷𝑎𝑠ℎ𝑒𝑑 𝑙𝑖𝑛𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 (11), 

[𝒘𝑇 ⋅ 𝑥𝑖 + 𝑏] = − 1,     𝑖 = 1, … , 𝑁 ⇒ 𝐷𝑎𝑠ℎ𝑒𝑑 𝑙𝑖𝑛𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 (12), 

 

When applying the SVM, the weights are chosen in order to maximize the margin, which 

represents the distance between the two dashed lines. It can be demonstrated that the margin 

width is equal to: 

 

𝑤𝑖𝑑𝑡ℎ = (𝑥+ − 𝑥−)  ⋅
�⃗⃗� 

∥𝑤∥
=

1−𝑏−(−𝑏−1)

∥𝑤∥
=

2

∥𝑤∥
       (13), 

 

In order to maximize the width, one has to minimize  ∥ 𝑤 ∥ . For mathematical convenience 

and equivalently one can simply minimize  
1

2
 ∥ 𝑤 ∥2.  

 

min (
1

2
 ∥ 𝑤 ∥2)          (14), 

 

Constrained to: 

 

𝑦𝑖[𝒘
𝑻 ⋅ 𝑥𝑖 + 𝑏] = 1,       𝑖 = 1,… ,𝑁           (15), 

 

In order to solve this minimization problem, one can employ the Lagrange multiplier 

method. 

 

𝐿𝑃 =
1

2
 ∥ 𝑤 ∥2− ∑ 𝛼𝑖

𝐿
𝑖=1 [𝑦𝑖(𝒘

𝑻 ⋅ 𝑥𝑖 + 𝑏) − 1],       𝑖 = 1, … , 𝑁           

=
1

2
 ∥ 𝑤 ∥2− ∑ 𝛼𝑖𝑦𝑖

𝐿
𝑖=1 (𝒘𝑻 ⋅ 𝑥𝑖 + 𝑏) + ∑ 𝛼𝑖

𝐿
𝑖=1 ,       𝑖 = 1, … , 𝑁          

           

(16), 

The next step consists of finding the values of 𝒘 and 𝑏, which minimize the above equation: 

 

dLP

d𝐰
= 0 ⇒ 𝐰 = ∑αiyixi

L

i=1

,    i = 1,… , N (17), 
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dLP

db
= 0 ⇒ ∑ αiyi

L

i=1

= 0,      i = 1,… ,N (18), 

By substituting (17) and (18) in (16), one can write: 

 

𝐿𝐷 = ∑ 𝛼𝑖
𝐿
𝑖=1 −

1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖

𝐿
𝑖,𝑗=1 ⋅ 𝑥𝑗,  𝛼𝑖 ≥ 0  ∀𝑖, ∑ 𝛼𝑖𝑦𝑖

𝐿
𝑖=1 = 0   (19), 

 

𝐿𝐷 is known as the dual form of the primary form, 𝐿𝑃. In order to solve equation (22), one 

has to identify the vector 𝛼, which maximizes the abovementioned function. Thus, one can 

make use of a quadratic programming solver. Thereafter, once the value of 𝛼 is obtained, one 

can calculate the 𝒘. Ultimately, the bias term, 𝑏, can be computed as follows: 

 

𝑏 = 𝑦𝑆 − ∑ 𝛼𝑚𝑚 ∈ 𝑆 𝑦𝑚𝑥𝑚 ⋅ 𝑥𝑆   (20), 

 

where S is used to denote the indices of the support vectors. 

 

It is now possible to classify a new instance of data. In order to do so, and given an unknown 

point, 𝑢, one has to determine the sign of the following equation: 

 

𝒘𝑻 ⋅ 𝑢 + 𝑏 ⇔ (∑ 𝛼𝑖𝑦𝑖𝑥𝑖
𝐿
𝑖=1 ⋅ 𝑢) + 𝑏, 𝑖 = 1,… ,𝑁      (21), 

  

3.2.2 Soft Margin Classification – Binary Classification 

 

In real-world situations, the majority of the problems endorsed by academics and practitioners 

do not have a linear structure. For the purpose of extending the SVM methodology to process 

data that is not fully linearly separable, the constraints imposed by equation (10) are relaxed. 

Hence, a new term, 𝜀𝑖 , is introduced in the equation. Another reason to introduce this new term 

besides the one abovementioned is the fact that the SVM technique is susceptible to be affected 

by outliers. This new formulation is known as soft margin classification since, within this 

scenario, the strict imposition of instances to be off the boundaries is disregarded. Therefore, 

one can present it as: 
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{
𝐰T ⋅ xi + b ≥ 1 − εi,   for  yi = +1

𝐰T ⋅ xi + b ≤ 1 + εi,   for yi = −1
εi ≥ 0

 (22), 

 

where 𝜀𝑖  is a positive slack variable, which allows observations to end up on the wrong side of 

the margin. 

Hence, the minimization problem can be stated as: 

 

𝑚𝑖𝑛 (
1

2
 ∥ w ∥2) + C ∑εi

L

i=1

 (23), 

 

s.t. 

{
yi[𝐰

T ⋅ xi + b] = 1 − εi,    i = 1, … , N       
εi ≥ 0,     i = 1,… ,N       

 (24), 

 

The primal and dual form of the Lagrange multiplier can be written respectively as: 

 

LP =
1

2
 ∥ w ∥2+ C∑ εi

L

i=1

− ∑ αiyi

L

i=1

(𝐰T ⋅ xi + b) + ∑ αi

L

i=1

 (25), 

LD = ∑ αi

L

i=1

−
1

2
∑ αiαjyiyjxi

L

i,j=1

⋅ xj,  0 ≤ αi ≤ C  ∀i, ∑αiyi

L

i=1

= 0 (26), 

 

The final result will be equal to (21) but now the 𝛼𝑖 are determined by (26). 

 

This new term C can be understood as a hyperparameter that aims to keep the margin as 

large as possible but, at the same time, limiting margin violations. A smaller value of C 

conduces to a wider margin, but more violations will be incurred. As opposed, a higher C will 

lead to fewer margin violations. Nonetheless, the margin will be smaller.  
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3.2.3 Non-Linearly Separable Data - Binary Classification  

 

Linear SVM classifiers are usually referred to be very efficient. However, it occurs that many 

datasets are not linearly separable. For instance, the data presented in the left graph in Figure 

3.2 is not linearly separable. Nonetheless, one can solve the problem by adding further 

dimensions where it is possible to separate the data linearly. The right graph achieves the goal 

by inserting a new feature, 𝑥2 = (𝑥1)
2 . 

 

 

 

 

 

 

 

 

Figure 3-3 – Géron 2019 – Linearly separate non-linear data 

Although adding polynomial features is a simple exercise, a very high polynomial degree 

will make the model slow. However, there is a mathematical methodology to solve this 

problem. This is known as the kernel trick. This method gives similar results as if one added 

many features but without actually having to add them. Thus, if one can´t define a hyperplane 

by linear equations, the data should be mapped into a higher dimensional space by making use 

of some nonlinear mapping function 𝜙. Following Gerón (2019) example, if one wants to apply 

a 2nd-degree polynomial transformation to a two-dimensional set, it will follow as: 

 

ϕ(𝐱) = ϕ((
x1

x2
)) = (

x1
2

√2x1x2
x2
2

)       (27), 

 

This new vector is now in a three-dimensional space. In case one wants to apply this 

transformation to two-dimensional vectors and compute the dot product, this can be presented 

as: 

ϕ(𝐚)Tϕ(𝐛) = (

a1
2

√2a1a2
a2
2

)

T

(

b1
2

√2b1b2
b2

2

) = (𝐚T𝐛)2 (28), 

Géron (2019) 
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A kernel is a function which is able to calculate the dot product 𝜙(𝒂)𝑇𝜙(𝒃) by using the 

original 𝒂 and 𝒃 vectors without needing to know the transformation 𝜙. Géron (2019) states 

Mercer´s theorem which says that under several conditions known as Mercer´s conditions, there 

is a function 𝜙 that maps 𝒂 and 𝒃 into a different space such that 𝐾(𝒂, 𝒃) = 𝜙(𝒂)𝑇𝜙(𝒃). 

Consequently, even without knowing what is the 𝜙 one can make use of the kernel function. 

 

Therefore, the new formulation is presented as: 

yi[𝐰
T ⋅ ϕ(𝐱𝐢) + b] = 1 − εi,       i = 1, … , N        

(29), 

 

Moreover, the dual form of the Lagrange multiplier can now be written as: 

 

LD = ∑ αi

L

i=1

−
1

2
∑ αiαjyiyjK(𝐱𝐢, 𝐱𝐣)

L

i,j=1

,     0 ≤ αi ≤ C   ,∑ αiyi

L

i=1

 (30), 

 

Same as before, for a new instance, one has to obtain the sign of: 

 

𝐰T ⋅ K(𝐱𝐢 , 𝐱𝐣) + b,      ∀i  , ∀j      (31), 

 

Several kernel functions may be used. According to Géron (2019), the most widely 

employed are the followings: 

 

Linear: 𝐾(𝒂, 𝒃) = 𝒂𝑇𝒃   

Polynomial: 𝐾(𝒂, 𝒃) = (𝛾𝒂𝑇𝒃 + 𝒓)𝑑   

Radial basis: 𝐾(𝒂, 𝒃) = 𝑒(−𝛾‖𝒂−𝒃‖2) 

 

 Figure 3.3 is relevant in order to understand the gamma factor in the radial basis function 

kernel. As one can perceive, from all the figures, the top left figure represents a situation where 

the data is underfitting the most, meaning that the model may not be capturing the main trends. 

Therefore, one may want to increase the gamma value. Contrarily, if the model is overfitting, 

meaning that it may not generalize well for new instances, as in the bottom left figure, one 

should reduce its value. Therefore, gamma acts as a regularization parameter. 
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Figure 3-4 – Géron 2019 – Example of gamma and C factors 

 

In summary, a low gamma will lead to less accuracy or, in other words, higher variance, 

although the results will be less biased.  Therefore, choosing the optimum parameters is a vital 

task in this process. The relations abovementioned are summarized in Table 3.1. 

 

 

 

 

 

Table 3-1 – Summary table – C and gamma factors 

 

 

 

 

 

 

 High Gamma Low Gamma High C Low C 

Variance Low High High Low 

Bias High Low Low High 

Géron (2019) 
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Chapter 4 

4 Data and Setup  

 

4.1 Datasets 

 
 

The main objective of this dissertation is to assess if the KMV-Merton main output, the distance 

to default, can be a valuable default predictor within the SVM model. In order to do so, two 

distinct datasets are constructed. The fact that the KMV-Merton Model can only be applied to 

listed companies restricted significantly this study as compared to a typical application of SVM, 

which relies only on accounting data. Hence, the first goal is to retrieve a data set that can be 

used with the purpose of applying the KMV-Merton model successfully.  

The data was retrieved from CRSP, and CRSP/Compustat Merged, provided by Wharton 

Research Data Services, from 2000 to 2018. The considered databases were crucial to obtain 

both accounting and market data and to identify the companies which ultimately defaulted. 

Companies whose field “Research Company Reason for Deletion” presented the values 2 

(Bankruptcy) or 3 (Liquidation) were considered as bankrupt in the year after the last available 

accounting information. Moreover, only companies present in at least two years were 

considered so that one could predict the bankruptcy event one and two years prior. Additionally, 

only companies that had complete data regarding short and long-term liabilities were 

considered. Regarding the field “Global Industry Code”, all the companies whose code was 

equal to 40 (i.e. “Financials”), were eliminated. Lastly, for the sake of uniformity, only 

companies whose accountability data was referred to the last day of the year were considered. 

The final number of bankrupt companies was 124, contrastingly to the 3053 non-bankrupt 

companies. This is a highly imbalanced panel for two reasons. 3 First, the number of non-

bankrupt firms is significantly higher than the number of bankrupt firms. Second, even if it was 

the same, the number of non-bankrupt instances would be significantly higher than the number 

of bankrupt instances because in most time moments bankrupt firms appear as non-bankrupt. 

In what concerns bankrupt companies, for the majority of the analysis, solely the data regarding 

 
3 Imagining the data contained 3053 non-bankrupt companies and 124 bankrupt firms. This would mean that it 

would have 3053 multiplied by 18 years (54954) instances of non-bankrupt companies and only 124 instances of 

bankrupt companies.  
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the year prior default or the two-years prior default will be used. In furtherance of proportionate 

a better, however, far from perfect balance in terms of bankrupt and non-bankrupt instances, 

124 companies were randomly selected from the 3053 non-bankrupt companies. In the end, 248 

companies were considered. 

As one can observe in Figure 4.1, the years of 2002, 2008, and 2009 were the years with 

more bankruptcies. Though the recent financial crisis had severe consequences in global 

economic activity, which led to a significant increase in the number of corporate defaults in 

2008 and 2009, it is somehow surprising that the overall number of defaults in the sample is 

not very different from the one in 2002. 

 

 

 

 

 

 

 

 

 

 

Figure 4-1- Number of bankruptcies along the years 

The three most common sectors in the considered dataset are: “Health Care”, “Information 

and Technology”, and “Industrials” (Figure 4.2). Furthermore, one can notice that the three 

sectors displaying the highest number of bankruptcies are : “Consumer Discretionary”, “Health 

Care” and “Information and Technology”. 

 

 

 

 

 

 

 

 

 

Figure 4-2 – Number of bankrupt and non-bankrupt companies by sectors (Global Industry Classification Sector) 
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Concerning the application of SVM, a second dataset was constructed with the same 

companies and timeframe as the one used for the Merton Model. Following Min et al. (2005) 

rationale, several financial ratios are going to be used in order to predict the bankruptcy of a 

company. Whenever a ratio could not be computed for a particular company, its value was 

considered to be equal to the sector average.  The ratios selected were based on Gissel et al. 

(2007). The authors reviewed the vast majority of bankruptcy prediction literature and provided 

a list of 42 ratios that were considered in five or more of the studies. From these, eleven ratios 

were selected. In order to obtain those, the needed variables were collected from 

CRSP/Compustat Merged dataset, and afterward, the ratios were calculated as in Table 4.1. For 

the sake of inferencing, whether the distance to default from KMV-Merton can add value vis-

à-vis a simple market-related ratio, the debt-to-market equity was added to the dataset.  

Table 4-1 – Selected variables - SVM model 

 

From the primary dataset, three sub-datasets were constructed. The first one, named df1, 

considers companies that defaulted in one-year time. The second dataset, df2, considers 

companies that defaulted in a two-years horizon. The third dataset, df3, contains the data 

regarding the companies which did not default.  

 
4 Total Debt 
5 Income Before Extraordinary Items 

Variables Type 

Current Assets / Total Assets (1) Liquidity 

Current Assets / Current Liabilities (2) Liquidity 

Cash / Total Asset (3) Liquidity 

Working Capital / Total Assets (4) Liquidity 

Ln (Total Assets) (5) Size 

Debt / Total Assets (6) Leverage 

Debt4/Market Equity (7) Leverage 

Sales / Total Assets (8) Efficiency 

EBIT / Total Assets (9) Profitability 

Earnings 5/ Total Assets (10) Profitability 

Earnings / Stockholder Equity (11) Profitability 

Retained Earnings / Total Assets (12) Profitability 
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Figures 4.3-4.5 provide summary statistics regarding the ratios which are going to be 

employed in the SVM model. The variables (9), (10), (11), and (12), all profitability indicators, 

display lower average values for companies who went bankrupt as opposed to non-bankrupt 

companies. Regarding variable (7), a leverage indicator, bankrupt companies exhibit a higher 

average value and lower standard deviation. Concerning the ratio sales-to-total assets (8), non-

bankrupt companies demonstrate higher average value. In what concerns the liquidity ratios, 

unexpectedly, bankrupt companies display higher average values in variables (1) and (2). This 

suggests that risky firms, knowing that they may not be able to borrow when faced by a negative 

shock, prefer to hold more liquid assets than more solid firms. As one would expect, bankrupt 

companies’ profitability indicators, a year prior to default, display average lower values when 

compared to the dataset which considers all the instances of bankrupt companies, Figure 4.4. 

Although liquidity indicators variables (1), (2) and (3) exhibit higher average values for 

bankrupt companies a year prior to default comparatively to those presented in Figure 4.4, the 

percentile 25 for every single liquidity indicator is lower. Regarding leverage indicators, 

bankrupt companies a year prior default demonstrate higher average values when compared to 

the dataset which considers all instances of the bankrupt companies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3 – Summary statistics – Non-bankrupt companies 

(1) (2) (3) (4) (5) (6)

Average 0.44 3.13 0.16 0.25 6.22 0.24

Standard deviation 0.28 3.30 0.20 0.30 2.37 0.27

Skewness 0.24 4.39 1.93 -2.51 0.05 3.21

Excess Kurtosis -1.05 33.89 3.64 41.95 -0.66 28.08

Jarque-Bera 76 70173 1609 102187 25 47482

Percentile 25 0.17 1.33 0.02 0.04 4.51 0.00

Median 0.42 2.31 0.08 0.21 6.26 0.19

Percentile 75 0.66 3.65 0.23 0.43 7.83 0.37

(7) (8) (9) (10) (11) (12)

Average 0.77 0.93 0.10 0.04 0.46 -1.19

Standard deviation 3.59 1.34 1.22 1.26 7.00 4.40

Skewness 16.15 6.30 9.04 8.02 3.78 -5.89

Excess Kurtosis 334.80 59.22 102.76 93.09 97.25 44.89

Jarque-Bera 6476937 209882 623233 510837 544702 123339

Percentile 25 0.00 0.29 -0.03 -0.06 -0.09 -0.59

Median 0.13 0.61 0.06 0.03 0.07 0.00

Percentile 75 0.53 1.10 0.12 0.08 0.16 0.26

Variables for non-bankrupt companies
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4.2 Data tools  

 

With the purpose of applying the support vector machines technique, and to facilitate the 

calculation of the distance to default of the 248 companies, Python, which is a programming 

language, will be utilized. Python offers several libraries that provide built-in functions to ease 

the work of data scientists.  

In this paper, the main libraries which are going to be employed are: 

 

• Imblearn  

• Matplotlib 

• Numpy 

• Pandas 

• Scipy

• Sklearn 

Figure 4-5– Summary statistics – bankrupt companies a year prior default 

Figure 4-4 – Summary statistics – bankrupt companies 

(1) (2) (3) (4) (5) (6)

Average 0.47 5.38 0.16 0.23 5.17 0.31

Standard deviation 0.30 23.06 0.21 0.41 1.59 0.51

Skewness 0.24 20.71 1.72 -2.43 -0.07 7.44

Excess Kurtosis -1.13 487.54 2.32 23.07 -0.04 94.26

Jarque-Bera 42 6723517 484 15611 1 255727

Percentile 25 0.21 1.02 0.02 0.00 4.18 0.01

Median 0.44 1.79 0.07 0.16 5.15 0.17

Percentile 75 0.71 3.98 0.22 0.46 6.32 0.46

(7) (8) (9) (10) (11) (12)

Average 4.12 0.81 -0.12 -0.20 0.19 -1.83

Standard deviation 29.56 0.81 0.47 0.57 7.89 6.92

Skewness 14.10 1.82 -4.24 -4.01 22.22 -11.24

Excess Kurtosis 222.26 5.31 41.63 29.51 543.06 172.43

Jarque-Bera 1409613 1164 50685 26259 8337496 849123

Percentile 25 0.01 0.20 -0.17 -0.27 -0.40 -1.07

Median 0.20 0.59 -0.01 -0.06 -0.06 -0.27

Percentile 75 1.18 1.20 0.06 0.02 0.11 0.03

Variables for bankrupt companies

(1) (2) (3) (4) (5) (6)

Average 0.49 10.03 0.17 0.11 4.87 0.47

Standard deviation 0.33 51.33 0.24 0.66 1.73 0.90

Skewness 0.19 10.08 1.70 -2.76 -0.10 6.00

Excess Kurtosis -1.35 106.91 1.96 14.57 -0.02 46.45

Jarque-Bera 10 61149 80 1255 0 11891

Percentile 25 0.20 0.81 0.01 -0.06 3.74 0.00

Median 0.44 1.47 0.07 0.11 4.85 0.25

Percentile 75 0.82 3.63 0.21 0.43 6.05 0.58

(7) (8) (9) (10) (11) (12)

Average 16.03 0.79 -0.30 -0.47 1.54 -4.59

Standard deviation 67.00 0.95 0.64 0.82 18.09 14.13

Skewness 6.15 2.38 -4.57 -3.75 9.99 -6.35

Excess Kurtosis 40.81 8.29 30.92 18.09 106.26 48.03

Jarque-Bera 9389 473 5372 1982 60398 12754

Percentile 25 0.00 0.11 -0.35 -0.64 -1.09 -3.34

Median 0.73 0.45 -0.07 -0.19 -0.12 -0.65

Percentile 75 3.83 1.26 0.01 -0.02 0.11 0.00

Variables for bankrupt companies (Year prior bankruptcy)
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Chapter 5 
 

5 Model Estimation 

 
 

5.1 KMV- Merton Model 

 

In order to calculate the distance to default, there are two unknowns that must be calculated: 

the asset value and asset volatility. Several approaches have been proposed in the literature. In 

this dissertation, I follow Loeffler et al. (2011) where these unknowns are calibrated by 

exploiting an iterative approach. Compared to the system of equations method, this approach 

has been shown to lead to more stable results and to be more consistent with the model 

assumptions as asset volatility is kept constant within every year.  

I will start by writing the Black-Scholes-Merton formula in a slightly different way: 

 

VA
T =

VE
T + e−rTX𝐾𝑀𝑉N(d2)

N(d1)
 (32), 

 

where X𝐾𝑀𝑉= Total Liabilities of the firm. 

 

 

The objective of the method is to compute a time series of 𝑉𝐴
𝑇 and a single asset volatility 

parameter based on a time-series of equity values. The formula above will be used with that 

purpose for all the trading days of the past year. This means that roughly 260 equations will be 

obtained.  The method works as follows. First, one calculates the market value of assets using 

equation (32) and assuming a reasonable starting value for asset volatility.6 Once a time-series 

of 𝑉𝐴
𝑇 is obtained one can compute asset volatility as the standard deviation of the logarithmic 

asset returns. This asset volatility is then used in a second iteration in order to obtain a new 

time-series for 𝑉𝐴
𝑇. This process will continue successively until the procedure converges. The 

process stops whenever the sum of squared differences between consecutive asset values fall 

below 10−4 . 
 

 
6 This method is considered to work well for reasonable asset volatility proxies. However, Loeffler et al. (2011) 

suggest to compute the asset volatility as the standard deviation of the logarithmic asset returns, with assets 

computed as the sum of the market value of equity and book value of the total liabilities. 
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In the classic Merton model, the default point is just corporate nominal liabilities. In KMV-

Merton model, however, one has to define what is the default point. According to Crosbie et al. 

(2003), the default point will generally lie somewhere in between short-term liabilities and total 

liabilities. As a widely used approach, it will be considered to be as: 

 

𝐷𝑒𝑓𝑎𝑢𝑙𝑡 𝑃𝑜𝑖𝑛𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 +
1

2
 𝑙𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 . 

 

The drift rate, 𝜇, in the physical distance to default formula, will be calculated in the same 

way Loeffler (2011) did: 

 

𝐷𝑟𝑖𝑓𝑡 𝑅𝑎𝑡𝑒 = 𝑙𝑛 (1 + (𝑟𝑖𝑠𝑘 − 𝑓𝑟𝑒𝑒 + 𝐵𝑒𝑡𝑎 × (𝐸𝑥𝑐𝑒𝑠𝑠 𝑀𝑎𝑟𝑘𝑒𝑡 𝑅𝑒𝑡𝑢𝑟𝑛))), 

 

where the annual risk-free (US treasury 10-year bond rate) and the excess market return were 

obtained from the Damoranan website 7 while the asset´s betas were calculated by regressing 

the excess return of the asset value on the excess return of the S&P 500. 

 
 

5.2 Support Vector Machine 

 
 

With the purpose of evaluating the SVM model regarding the prediction of bankruptcy events, 

two different out-of-sample evaluation methods will be employed. The first method, which for 

future reference, is labeled as “percentage ratio split”, consists of dividing the dataset, 

accordingly to a percentage ratio, into a training sample and a test sample. The latter is used to 

evaluate the model, which was created using the first sample. Therefore, as in Min et al. (2005), 

the data will be split in an 80:20 ratio, which means 80% of the data will be used to train, and 

the remaining 20% will be utilized for testing. The second considered approach is known as 

stratified K-fold cross-validation and it is referred hereafter as “cross validation”. This method 

consists of dividing the data in K folds of equal size. However, it creates these by preserving 

the percentage of samples for each class: bankrupt and non-bankrupt. Then, one successively 

tests each subset using the remaining folds as the training environment. Figure 5.1 exemplifies 

a 5-Fold cross-validation. 

 

 
7 http://pages.stern.nyu.edu/~adamodar/ 
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An identified problem in the used dataset is concerned with the imbalancement of the data, 

meaning that the number of instances regarding a bankrupt incident is lower when compared 

with the opposite event. Therefore, the SVM model will struggle to learn, in both out-of-sample 

methods employed, since it is not being provided with enough relevant data.  

Chawla et al. (2002) proposed a methodology called Synthetic Minority Over-sampling 

(SMOTE) that helps tackle this problem. SMOTE is an approach in which the minority class is 

oversampled by generating synthetic examples. For each minority sample, one can create new 

synthetic examples at some distance from them but towards one of their neighbors. This 

methodology makes use of another supervised machine learning classification technique known 

as K-nearest neighbors. Imagine one wants to classify a given point in one of two classes. The 

method works in two steps. First, the K-nearest points to the one mentioned are obtained. 

Second, one assesses the majority of votes of its K-neighbors. For the sake of finding the K-

nearest points, one can calculate the Euclidian distance between the point of interest and all the 

others.  

Another common requirement when working with machine learning models is features 

standardization. This is important in the sense that some variables may have different 

magnitudes. Consequently, the model will wrongly give more importance to those. Therefore, 

the variables are standardized by subtracting the mean and diving by the standard deviation. 

As explained in chapter 3, several kernels may be utilized when applying SVM. However, 

similar to Min et al. (2005), in this dissertation, solely the radial basis function will be 

employed. The relation is expected not to be linear, so the linear kernel was disregarded. The 

polynomial kernel was not considered because it is usually referred as more time consuming 

without leading to better results. Also, variables 𝐶 and 𝛾 may be optimized. To do so, and as in 

Min et al. (2005), one can apply a technique called grid-search, which makes use of the K-fold 

cross-validation method previously explained. Hence, several possibilities of the vector (𝐶 , 𝛾) 

will be tested, and the one which achieves higher accuracy in the cross-validation will be 

selected.  

1
st

 Estimation

2
nd

 Estimation

3
rd

 Estimation

4
th

 Estimation

5
th

 Estimation

Train subset

Train subset

Train subset Train subset

Train subset

Train subset

Train subset Test subset

Test subset

Test subset Train subset

Test subset

Test subset

Figure 5-1 – 5-Fold cross-validation - example 
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In summary, one will follow the subsequent steps for both percentage ratio split and 

stratified K-fold cross-validation methods. First, SMOTE is applied in order to attain a better 

data balance. Second, the variables are then standardized following the procedure above 

explained. Third, the vector (𝐶 , 𝛾) is optimized by applying the grid-search technique. Finally, 

and after the preprocessing of the data, SVM is employed.  

 

5.3 Metrics 

 

Table 5.1 represents a confusion matrix, which is frequently used to describe the performance 

of a given classifier. Whenever one predicts that a company goes bankrupt (1) and the company 

actually goes bankrupt (1), one labels it as a “True Positive” (TP). In case one predicts that the 

company will not go bankrupt (0), but it actually goes bankrupt (1), it is called a “False 

Negative” (FN). In the event, a company is predicted to go bankrupt (1), but it doesn´t (0), one 

labels it as a “False Positive” (FP). The last scenario regards a case where one forecasts that a 

company will not go bankrupt (0) and in fact, it does not (0). This is labeled as a “True 

Negative” (TN). 

 

  Actual Values 

P
r
e
d

ic
ti

o
n

 

 Positive (1) Negative (0) 

Positive (1) True Positive (TP) False Positive (FP) 

Negative (0) False Negative (FN) True Negative (TN) 

Table 5-1 – Confusion matrix - example 

Several performance metrics can be computed based on this matrix. These are now 

presented.  

 

Accuracy, shown in equation (33), is a metric that reveals how often a classifier is correct.  

 

Accuracy =
(TP + TN)

(TP + FP + FN + TN)
 (33). 
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Accuracy is a very important indicator. However, one should not merely consider this 

indicator, and the reason can be easily illustrated. For instance, in a case where the dataset is 

imbalanced, meaning that it has substantially more instances of one class compared to the other 

if one predicts that the instances solely belong to the majority class, then a very high accuracy 

is accomplished. However, the model never predicts well the minority class. 

 

Misclassification Rate, represented in equation (34) tells how often a classifier makes the 

wrong decision. Nevertheless, it shares the same mentioned weakness identified in the accuracy 

metric. 

 

Misclassification Rate =
(FP + FN)

(TP + FP + FN + TN)
= 1 − Accuracy (34). 

 

The true positive rate, also called sensivity or recall, tells how often one predicts that the 

event is positive among all the positive events, and in fact, it is. This is presented in equation 

(35). 

 

True Positive Rate | Sensivity | Recall =
TP

(FN + TP)
 (35). 

 

The false positive rate, exhibited in equation (36), measures among the negative instances, 

the percentage incorrectly classified as positive. 

 

False Positive Rate =
FP

(TN + FP)
 (36), 

 

The true negative rate, also called specificity, shown in equation (37), enlights one 

regarding the percentage of cases where one predicts that the event is negative from all the 

negative instances: 

 

True Negative Rate | Specificity =
TN

(FP + TN)
 (37). 

 

Precision, as in equation (38), measures among all the predicted positive records, those 

which are in fact, positive: 
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Precision =
TP

(FP + TP)
 (38). 

 

The F-score, shown in equation (39), measures the model overall accuracy. It calculates 

the harmonic mean of precision and recall, giving them the same weight. Hence, it takes into 

consideration both false positives and false negatives. 

 

F − score = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

precision + recall
 (39). 

 

Last but not least, the Precision-Recall (PR) curve, exemplified in Figure 5.2, assesses the 

performance of the employed model as the threshold changes by mapping the tradeoff between 

precision and recall. In cases where data is highly imbalanced, PR curves are preferable when 

compared with other binary classification tools (Boyd et al. (2013)). A common practice relies 

on computing the area under the curve (PR AUC) and use it as a performance measure8. 

 

 

 
 

 

 

 

 

 
8 The most acknowledge diagnostic tool in binary classification is the Receiver Operating Characteristic (ROC) 

curve, which plots the true positive rates and the false positive rate. However, it is not the most adequate measure 

when dealing with highly imbalanced datasets. 

Gerón (2019) 

Figure 5-2 – Precision-Recall curve - example 
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Chapter 6 

6 Results 

 
 

6.1 KMV-Merton model 

 

Regarding the obtained variables from the KMV-Merton model, Table 6.1, summarizes the 

evolution of the median values throughout the years. As one would expect, the years of 2008 

and 2009 demonstrated a decrease in the one-year median distance to default comparatively to 

the previous years. This is certaintly a consequence of the subprime financial crisis. These years 

were characterized by high asset volatility. Also, the years of 2001 and 2002 displayed a low 

one-year median distance to default. These years are encompassed in a period acknowledged 

as the “dot-com crash”, which is known for the plummet of the stock prices as part of a 

correction that began since the beginning of the millennium. Similarly, this period portrayed 

high asset volatility. 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, and by analyzing Table 6.2, one can observe that “Health Care”, “Consumer 

Discretionary”, and “Information and technology” sectors displayed a lower one-year median 

distance to default, higher equity volatility, and were the sectors with most bankruptcies. 

 

 

 

One-year distance to default Total Liabilities/Total Assets Drift rate Asset volatility Equity Volatility Bankruptcies

2000 2.67 48% 0.05 43% 82% 0

2001 3.03 51% 0.05 51% 84% 0

2002 3.36 51% 0.04 39% 72% 19

2003 5.17 48% 0.05 31% 55% 11

2004 5.68 43% 0.05 32% 47% 8

2005 6.37 52% 0.05 28% 42% 7

2006 6.05 50% 0.05 28% 42% 3

2007 5.51 46% 0.05 31% 46% 4

2008 2.48 46% 0.05 48% 85% 13

2009 3.58 49% 0.05 39% 72% 26

2010 5.67 47% 0.05 27% 47% 6

2011 5.34 51% 0.05 32% 53% 5

2012 6.19 50% 0.03 27% 46% 5

2013 6.71 43% 0.04 26% 38% 7

2014 6.25 47% 0.03 27% 43% 4

2015 6.47 48% 0.03 31% 41% 5

2016 5.61 50% 0.03 28% 49% 1

2017 5.55 50% 0.03 25% 39% 0

2018 4.96 53% 0.04 28% 47% 0

Median

Table 6-1 – KMV Merton model results by year 
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Moreover, one can observe from Figure 6.1 that the one-year median distance to default 

varies along the years in some sectors more than others. The sectors with higher standard 

deviation through the years are the “Real Estate”, “Utilities” and “Communication Services”. 

Also, one can observe a vigorous fall of the one-year median distance to default in the years of 

2008 and 2009 when compared with the previous years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.3 presents the main outputs from the KMV Merton model by dataset. Based on this 

table one can observe that the set of companies one-year prior to the event, df1, displayed a 

lower one-year median distance to default, higher median equity volatility, and were 

expressively more levered comparatively to the df2 dataset.  Additionally, and as expected, one 

can notice that df3, when compared with the other two datasets, presents lower median asset 

volatility, higher one-year median distance to default, lower median leverage ratio, and lower 

median equity volatility. 

 

One-year distance to default Total Liabilities/Total Assets Drift rate Asset volatility Equity Volatility Bankruptcies

Industrials 4.92 58% 0.05 25% 51% 15

Information and Technology 3.24 38% 0.05 44% 63% 26

Communication Services 5.19 59% 0.05 24% 53% 1

Real Estate 11.62 47% 0.06 17% 22% 0

Health Care 3.89 29% 0.04 56% 65% 21

Energy 5.75 59% 0.04 28% 49% 14

Consumer Staples 4.91 43% 0.04 34% 52% 3

Consumer Discretionary 4.34 52% 0.05 29% 54% 22

Materials 6.65 49% 0.04 23% 47% 7

Utilities 13.81 67% 0.07 7% 24% 1

Not attributed 18.53 4% 0.03 15% 34% 14

Median

Table 6-2 – KMV Merton model results by sector 

Figure 6-1 – One-year median distance to default by year and by sector 
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6.2 Support Vector Machines 

 

This section presents all results from the application of SVM to my dataset. The variables 

considered are all the ratios presented in Table 4.1, including the distance to default obtained 

from the KMV-Merton model. Four different cases are considered. The first and second cases 

are concerned with the application of the SVM model using the percentage ratio split while the 

third and the fourth are concerned with the application of the stratified K-fold cross-validation 

technique. The first differs from the second, and the third differs from the fourth in the sense 

that the first and the third cases make use of instances of the companies a year prior to default 

while the second and fourth cases use the instances of companies two-years prior default. Each 

of the considered cases incorporates the same sample of the non-bankrupt companies data, df3. 

Within each of these cases, my main question is to understand whether the distance to default 

is able to add value as compared to a simpler market-related variable such as debt-to-market 

equity. In order to answer this question, one has to choose a performance measure among the 

ones presented in section 5.3. It is relatively obvious that entering a deal with a counter-party 

that will default is worse than not entering a deal with a healthy counter-party. However, this 

rationale will lead banks to give no credit. Although attaining good accuracy is imperative, as 

the datasets considered are imbalanced, one should also focus the attention on other metrics.  

Both recall and precision seem to be especially important as one wants to achieve a high number 

of true positives.  However, if the model always predicts that a company will fail, it will display 

a high recall. This occurs because recall is concerned with the percentage of bankrupt events 

that were correctly identified from all the actual cases. However, banks that use this model 

would never lend money. Therefore precision, which evaluates the percentage of correctly 

identified bankruptcies among all the predicted ones, should also be considered.  F1-Score takes 

both recall and precision into consideration. Hence, F1-Score is going to be assumed as the core 

metric in the subsequent analysis as it considers both precision and recall.   

Asset volatility Equity volatility Drift rate One-year distance to default Total Liabilities/Total Assets

df1 38.9% 91.1% 0.04 1.93 69.6%

df2 39.7% 76.8% 0.05 2.88 49.5%

df3 29.9% 46.4% 0.04 5.70 48.6%

Median

Table 6-3 – KMV Merton Model results for df1, df2 and df3 
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6.2.1 Percentage Ratio Split 

 

Case 1: 

 

In this first case, df1 and df3 are concatenated. This new dataset contains 1508 instances, 124 

from df1 and 1384 from df3. As the dataset was split following an 80:20 ratio, the test 

environment contains only 302 instances. 

 

The following parameters are employed in the grid search methodology: 

 

(𝐾𝑒𝑟𝑛𝑒𝑙, 𝐶, 𝛾) = (𝑅𝐵𝐹9, 10,1) 

 

Table 6.4 presents the obtained confusion matrix and Table 6.5 presents the main measures 

presented in section 5.3. 

 

 Predict No Bankruptcy Predict Bankruptcy 

Actual No Bankruptcy 262 15 

Actual Bankruptcy 16 9 

Table 6-4  - Confusion Matrix - All variables – Case 1 

  

As one can observe from Table 6.5, the model presented an accuracy of nearly 90%. 

However, precision and recall metrics are not as attractive as one would want.  

 

 

 

 

 

 

 

 

 

 

 
9 Radial Basis Function 

Accuracy 89.70%

Precision 37.50%

Recall 36.00%

Misclassification Rate 10.30%

F1 Score 36.70%

Metrics

Table 6-5 – Metrics – All variables – Case 1 
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The area under the PR curve (Figure 6.2) displays a value of 0.42. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.6 presents the results obtained in different scenarios by changing the variables 

employed. Hereafter the tables are assumed to be read from left to right and starting in “Panel 

A” to ending in “Panel B”. For instance, if one refers to the first column, one means “Panel A” 

first column. As well as if one refers to the last column, it is referring to “Panel B” last column.  

Table 6.6 first column displays a scenario where all the variables are utilized to predict 

bankruptcy (baseline model), similarly to what was presented above. The following two 

columns represent a situation where only a single variable is used (either debt/market equity or 

the distance to default). The remaining columns were constructed by removing the variable 

indicated from the baseline model.  

From the abovementioned table one can take two important conclusions. First, market-

related variables clearly add value. In the scenario where both market-related variables, distance 

to default, and debt-to-market equity are removed, the model seems to underperform, regarding 

all the considered metrics, compared to both the scenarios where individually the variables are 

excluded. Second, based on the two columns before the last, one can conclude that the distance 

to default adds more value to the baseline model than the debt-to-market equity. In the scenario 

where the distance-to-default is removed from the model, the F1-score decreases 3 percentual 

points vis-à-vis the baseline model. In addition, recall decreases by 4 percentual points, 

precision falls by almost 1.2 percentual points and the PR AUC falls by 3 percentual points. 

This contrasts with the one obtained when debt-to-market equity is excluded. In this case, the 

F1-score actually increased 4 percentual points, while the PR AUC persisted roughly the same. 

Figure 6-2 – PR Curve – All variables – Case 1 
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This suggests that the debt-to-market equity is not a close substitute of the distance to default 

and that the model itself adds value. In line with this result, the second and third columns also 

show that the distance to default per se leads to an F1-score significantly higher than the debt-

to-market equity ratio.  

Overall the best-performing model, both in terms of the F1-score and the PR AUC, is the 

one obtained when liquidity variables are removed. This might be explained as 4 liquidity 

indicators are being employed, and probably the marginal contribution of each one of these is 

just creating “noise”. Additionally, as seen in chapter 4, companies that default in a year-time 

display higher values in what concerns liquidity ratios. In this particular case, the best scenario, 

following the initial assumption, is when working capital to total assets is removed as the F1-

score presents the highest value. 
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Table 6-6 – SVM results – Case 1 

Panel A All variables Debt/Market Equity
Distance to 

Default

Current Assets / Total 

Assets

Current Assets / 

Current Liabilities

EBIT / Total 

Assets

Working Capital 

/ Total Assets

Debt / Total 

Assets

Accuracy 90% 85% 77% 91% 91% 89% 91% 90%

Recall 36% 36% 68% 40% 44% 32% 52% 40%

Precision 38% 24% 22% 48% 44% 35% 48% 40%

F1-Score 37% 29% 33% 43% 44% 33% 50% 40%

PR AUC 42% 30% 24% 46% 40% 42% 48% 44%

Kernel RBF RBF RBF RBF RBF RBF RBF RBF

C 10                                    100                          1                    100                          10                             100                 1 000               100               

gamma 1                                      1                             10                  1                              1                               1                    1                     1                   

Panel B Cash / Total Asset Sales / Total Assets
Ln (Total 

Assets)

Retained Earnings / 

Total Assets

Earnings / Stockholder 

Equity

 Earnings / 

Total Assets

Debt/Market 

Equity

Distance to 

Default

Accuracy 91% 90% 89% 90% 90% 90% 90% 90%

Recall 40% 40% 44% 32% 40% 36% 40% 32%

Precision 43% 40% 35% 36% 40% 39% 42% 36%

F1-Score 42% 40% 39% 34% 40% 37% 41% 34%

PR AUC 43% 43% 34% 35% 42% 44% 42% 39%

Kernel RBF RBF RBF RBF RBF RBF RBF RBF

C 10                                    100                          10                  10                            100                           100                 100                  10                 

gamma 1                                      1                             1                    1                              1                               1                    1                     1                   

All variables minus

32%

RBF

1000

1

All variables minus

Distance to Default & 

Debt/Market Equity

89%

24%

29%

26%
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Case 2: 

 

This case represents the situation where df2 is concatenated with df3. In other words, the data 

employed in this case regards those of non-bankrupt companies and the instances of companies 

two years prior to the default. The data similarly to case 1, was divided following an 80:20 ratio. 

The grid search methodology outputted the following vector: 

 

(𝐾𝑒𝑟𝑛𝑒𝑙, 𝐶, 𝛾) = (𝑅𝐵𝐹, 100,1) 

 

The confusion matrix, metrics, and PR curve are presented, respectively, in Figures 6.3, 

6.4, and 6.5 The baseline model exhibits a high accuracy, but not so good precision and recall. 

As one can observe from the confusion matrix, from the 25 bankruptcy events presented in the 

test data, only 10 were correctly identified. In this case, the PR AUC equals approximately 0.4. 

 

 Predict No Bankruptcy Predict Bankruptcy 

Actual No Bankruptcy 265 12 

Actual Bankruptcy 15 10 

Figure 6-3 - Confusion Matrix - All variables – Case 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-4– Metrics – All variables – Case 2 

Figure 6-5 – PR Curve – All variables – Case 2 

Accuracy 91.10%

Precision 45.50%

Recall 40.00%

Misclassification Rate 8.90%

F1 Score 42.60%

Metrics
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Overall the results obtained are very similar to the ones presented in case 1. Similar to case 

1, the model seems to underperform, regarding all the considered metrics, compared to both the 

cases where individually the variables debt-to-market equity and distance to default were 

excluded. Therefore, adding a market-related variable seems to be pertinent. Moreover, distance 

to default seems again to be a better contributor when compared to debt-to-market equity by 

assessing the differences between the F1-score between the last three columns. When the 

distance to default is removed from the baseline model, the F1-score value decreases nearly 8 

percentual points, while only 5 percentual points when the debt-to-market equity ratio is 

excluded. In addition, the PR AUC decreased in the scenario where debt-to-market equity is 

excluded as opposing to the scenario where the distance to default variable is removed. Again, 

when employed solely, the distance to default presents a better performance than the debt-to-

market equity ratio as it is clear from the higher F1-score.    

In general, the model that performs better according to the F1-score metric seems to be 

when retained earnings-to-total assets is removed. The explanation might be again related to 

the fact that 4 profitability ratios are being used, and this variable might be just adding “noise”. 

However, another possible explanation might be related to the fact that two-years prior to 

default, this ratio does not differ that much from the non-bankrupt dataset. The average value 

for this ratio for the df1 is -4.59, for the df2 is -2.11 and for the df3 is -1.19, which is 

corroborative with the given explanation. 

By analyzing the baseline model and when compared to the first case, one observes that 

the F1-Score and accuracy metrics displayed higher values despite presenting a lower PR AUC. 

However, if one considers all the sub scenarios presented, then, generally, using the one-year 

prior to default instances is preferable than using the two-years prior to default instances. In 9 

of the 17 scenarios considered, the F1-score displays a higher value for case 1. Furthermore, 

one can observe that in 12 of the 17 considered scenarios, the PR AUC for case 1 outperforms 

case 2.



47 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

Table 6-7– SVM results – Case 2 

Panel A All variables Debt/Market Equity
Distance to 

Default

Current Assets / Total 

Assets

Current Assets / 

Current Liabilities

EBIT / Total 

Assets

Working Capital 

/ Total Assets

Debt / Total 

Assets

Accuracy 91% 83% 69% 91% 91% 90% 91% 91%

Recall 40% 20% 68% 40% 48% 40% 36% 40%

Precision 45% 14% 16% 43% 44% 42% 45% 43%

F1-Score 43% 17% 26% 42% 46% 41% 40% 42%

PR AUC 40% 15% 15% 49% 47% 45% 45% 39%

Kernel RBF RBF RBF RBF RBF RBF RBF RBF

C 100                                  1                             10                  10                            100                           10                   100                  100               

gamma 1                                      1                             10                  1                              1                               1                    1                     1                   

Panel B Cash / Total Asset Sales / Total Assets
Ln (Total 

Assets)

Retained Earnings / 

Total Assets

Earnings / Stockholder 

Equity

 Earnings / 

Total Assets

Debt/Market 

Equity

Distance to 

Default

Accuracy 90% 91% 86% 91% 90% 90% 90% 90%

Recall 28% 40% 44% 52% 40% 32% 36% 32%

Precision 35% 43% 28% 46% 40% 40% 39% 38%

F1-Score 31% 42% 34% 49% 40% 36% 37% 35%

PR AUC 32% 35% 29% 48% 42% 34% 36% 40%

Kernel RBF RBF RBF RBF RBF RBF RBF RBF

C 1 000                                1 000                       100                100                          10                             100                 1 000               1 000            

gamma 1                                      1                             1                    1                              1                               1                    1                     1                   

100

1

All variables minus

All variables minus

24%

27%

26%

27%

RBF

Distance to Default & 

Debt/Market Equity

88%
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6.2.2 Cross-Validation 

 

Case 3: 

 

Similarly to case 1, df1 will be concatenated with df3. However, instead of the percentage ratio 

split, the stratified 5-fold cross-validation method will be employed. As explained in section 

5.2, for each fold, a grid search optimization will be applied. Six different specifications are 

considered.  These are: all the variables, all variables minus distance to default, all variables 

minus debt-to-market equity, all variables minus distance to default and debt-to-market equity, 

only distance to default and finally, only debt-to-market equity. 

Table 6.8 presents the various model specifications abovementioned. Similar to cases 1 and 

2, the exclusion of both the distance to default and the debt-to-market equity leads to a reduction 

in all performance indicators. The reduction, in this case, is however significantly lower than 

the ones shown in the previous cases. Moreover, distance to default seems, once again, to be 

preferable when compared to debt-to-market equity by analyzing the F1-score of the last three 

columns.   

Similarly to cases 1 and 2, the distance to default is shown to be a better predictor than the 

debt-to-equity ratio when assessed against the baseline model. For instance, the average F1-

score declined 6 percentual points when the distance to default is removed. Contrarily, when 

debt-to-market equity is removed, the F1-score actually increased. This indicates that the 

distance to default variable contribution seems to outperform the debt-to-market equity variable 

when inserted within a given framework of variables. Finally, and differently from cases 1 and 

2, it is not clear in this case that the distance to default is a better predictor than the debt-to-

market equity ratio when solely employed. Table 6.8 shows that the distance to default, when 

solely employed and compared to the debt-to-market equity variable, demonstrates higher PR 

AUC, but lower F1-score. Hence, debt-to-market equity seems to be preferable individually. 

 

  

 

  

 Table 6-8 – SVM results – Case 3 – Average of the K-folds 

Metrics All variables
Debt/Market 

Equity
Distance to Default

Debt/Market 

Equity
Distance to Default

Accuracy 90% 87% 73% 90% 88%

Recall 44% 35% 72% 50% 40%

Precision 38% 29% 19% 40% 31%

F1-Score 41% 32% 30% 44% 35%

PR AUC 40% 26% 29% 37% 33%

All variables minus

Distance to Default 

& Debt/Market 

89%

43%

35%

39%

36%
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Case 4: 
 

Last but not least, case 4, similarly to case 2, concatenates df2 with df3 but instead makes use 

of the stratified 5-fold cross-validation technique. 

Identically to the already analyzed cases, by removing both market-related variables, the 

F1-score decreased. In this specific case by 8 percentual points. Opposingly to the already 

considered cases, by comparing the F1-score of the last three columns, one can realize that 

adding distance to default is not as attractive as adding the debt-to-market equity variable. 

However, one may still conclude that adding a market-related variable seems to be relevant. 

Once again, by excluding the variable distance to default, both recall and F1-score metrics 

decrease, comparatively to the baseline model. In this case, debt-to-market equity seems to 

outperform distance to default. When debt-to-market equity variable is removed, the F1-score 

decreased 3 percentual points while when distance to default was excluded, it only fell by 2 

percentual points. Finally, and differently from case 3, the distance to default seems to 

outperform the debt-to-market equity ratio when solely employed. Table 6.9 demonstrates that 

the distance to default comparatively to the debt-to-market equity exhibits a similar PR AUC 

but a higher F1-score when individually considered.  

Lastly, by comparing both cases 3 and 4, one can observe that case 3, for all the considered 

scenarios, displayed a higher F1-score and a higher PR AUC.  Hence, using the instances a year 

prior to default seems to be preferable.
 

 

 

 
 

Heretofore, the discussion on which out-of-sample method performed better has not been 

emphasized. Figures 6.6 and 6.7 are informative regarding this particular question. The first 

mentioned figure regards the comparison of both methodologies in the cases which consider 

both df1 and df3. As one can perceive, in 5 of the 6 scenarios, the stratified K-fold cross-

validation seems to achieve better results in what concerns the F1-score. However, the 

percentage ratio split method demonstrates higher values in 4 of the 6 scenarios regarding the 

PR AUC. The accuracy results are very similar in both methodologies. Nevertheless, as the F1-

Table 6-9 – SVM results – Case 4 – Average of the K-folds 

Metrics All variables
Debt/Market 

Equity
Distance to Default

Debt/Market 

Equity
Distance to Default

Accuracy 89% 84% 63% 89% 90%

Recall 32% 21% 73% 29% 28%

Precision 33% 17% 15% 35% 43%

F1-Score 32% 18% 25% 29% 30%

PR AUC 30% 18% 18% 30% 32%

All variables minus

28%

Distance to Default 

& Debt/Market 

91%

22%

42%

24%
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score was considered the key metric in the analyzes, it seems that the performance of the 

stratified K-fold cross-validation employed was superior. 

 

 

 

 

 

 

 

 

 

 

Regarding cases 2 and 4, presented in Figure 6.7, one can observe that contrarily to the 

analyzed situation above, the stratified K-fold cross-validation seems not to be preferable when 

compared to the percentage ratio split method concerning the F1-score as in 5 of the 6 scenarios 

it displays lower values. In what respects the PR AUC, in 3 scenarios, one of the methodologies 

is superior, while in the remaining 3 scenarios, the other out-of-sample method performs better. 

All things considered, the percentage ratio split method, accordingly to the initial assumption, 

exhibits better results.  

 

 

 

 

 

 

 

 

 

 

Table 6.10 summarizes the abovementioned presented results. Four conclusions are worth 

noting. First, the distance to default has shown to be an important variable within the given 

framework variables, since, in all the four cases, it contributed to overall better results.  

Second, distance to default, when assessed against the debt-to-market equity variable, in 

both case 1 and case 2, performed better individually, contributed more to the framework which 

Figure 6-6 – Cross Validation - Percentage Ratio split – Case 1 vs Case 3 

Figure 6-7– Cross Validation - Percentage Ratio split – Case 2 vs Case 4 
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considered all the variables and was also preferable when assessed against the case where both 

market-related variables were excluded. Regarding case 3, the distance to default outperformed 

the debt-to-market equity variable when assessed against the baseline model. Moreover, in the 

scenario where both market-related variables were excluded, distance to default was again 

superior as it contributed to a higher F1-score. However, individually, the debt-to-market equity 

displayed a higher F1-Score. Oppositely, case 4 demonstrates that individually the distance to 

default performs better despite contributing less when assessed against the baseline model. In 

the scenario where both market-related variables were excluded, debt-to-market equity was also 

preferable when compared to the distance to default variable as it enhanced more the F1-score. 

All things considered, distance to default seems to be more valuable than the debt-to-market 

equity when utilized in the SVM model.  

Third, cross-validation delivered better results when one considers instances one-year prior 

default. However, when one considers instances two-years prior default, the 80:20 split 

outperforms. Hence, by considering both cases, no conclusions can be taken about whether one 

is preferable to the other.  

Lastly, the results obtained using the one-year prior to default instances, are generally 

superior to those which make use of the two-years prior to default instances. 

 

 

 

 

 

 

 

 

 

Improved Did not Improve Yes No

4 0 1 1

Yes No Yes No

2 0 9 3

One-year prior default > Two-years prior default Distance to default > Debt/Market Equity

Distance to default Cross-Validation > 80:20 Split

Table 6-10 – Summary results 
Description: First, in all the four considered cases, distance to default improved the overall performance of the metrics. Second, 

K-fold cross-validation displayed better results comparatively to the 80:20 split while using the instances a year prior to 

default. The opposite happens when using the instances two-years prior to default. Third, using the one-year prior default 

instances in both out-of-sample methods demonstrated to be preferable. Lastly, distance to default was considered to be in 9 
out of the 12 analyzed cases to be a better contributor when assessed against debt-to-market equity. For each of the four cases, 

three different components were analyzed: individually, within a given set of variables and by removing both market-related 

variables. 
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Chapter 7 
 

7 Conclusion 

 

This dissertation aims to contribute to the already extense literature on bankruptcy prediction. 

With that purpose, four questions were considered. The first and main question of this empirical 

study is to assess whether the output from the KMV-Merton model, the distance to default 

variable, can contribute to the SVM model with the ultimate goal of better forecasting the 

bankruptcy of a company. Secondly, I am interested in understanding whether the distance to 

default is preferable to the use of a more straightforward market-related variable such as debt-

to-market equity.  In order to answer these two questions, four model specifications were 

considered: excluding the variable distance to default from the baseline model, excluding the 

variable debt-to-market equity from the baseline model, excluding both variables from the 

baseline model and the baseline model itself. By comparing the main performance metrics in 

each of these cases one can have an idea of the marginal contribution of the distance to default 

and debt-to-market equity. Third, this dissertation assesses the performance of two particular 

out-of-sample evaluation methods, notably, the percentage ratio split and the stratified K-fold 

cross-validation technique. The fourth and last proposed question regards whether using the 

instances one-year prior to default is preferable to the use of the instances of the companies 

two-years prior to the default event. In order to assess that, four different cases were 

constructed. The first case, which was evaluated following a percentage ratio split, used the 

instances of companies a year prior-to default. The second case, which also followed the same 

out-of-sample methodology, used the instances two-years prior default. The third and the fourth 

cases followed the same rationale but instead employed the stratified K-fold cross-validation 

technique. 

 The dataset used to answer these questions considered 248 non-financial companies from 

the United States and covers the period between 2000 and 2018. This dataset was mainly 

composed of companies from the “Health Care”, “Information and Technology”, and 

“Industrials” sectors.  

The obtained results were overall very elucidatory. It was found evidence that when 

applying the SVM model, the distance to default variable is relevant when considered within a 

given framework of variables. Also, the distance to default variable is a better contributor when 
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compared to the more simplistic market-related variable. Moreover, in three of the four cases 

considered, adding a market-related variable improved both the F1-score and the PR AUC. 

These conclusions are of major relevance, enriching the current literature on bankruptcy 

prediction associated with the use of the SVM. 

Regarding the third abovementioned question, this study is not conclusive in what concerns 

which out-of-sample evaluation method offers better results; the percentage ratio split, or the 

stratified K-fold cross-validation. Notwithstanding, as Zhang et al. (1999) stated, by 

considering the traditional percentage division on the data, one may probably be introducing 

bias in the model as the features of the test sample will possibly significantly differ from those 

in the training sample.  

 Lastly, one can conclude that the cases, which considered the instances of companies a 

year prior to default, seem to exhibit overall better results in what regards the F1-score when 

compared with the cases which made use of the instances of the companies' two-years prior to 

default.  

Notwithstanding, this study has some limitations. First, one has assumed, in order to answer 

the questions, a given set of variables. However, if other different variables were chosen, the 

results could slightly diverge from the ones obtained. Second, the dataset only considers US 

firms, so one can´t make extrapolations regarding other geographical areas. Third, as in chapter 

4, one has assumed that a company is bankrupt in the year after the last available accounting 

information, which in a few cases, may not be accurate. Finally, the last identified limitation 

regards the using of the SMOTE. Since different results are obtained depending on the synthetic 

examples outputted by this technique, one possible solution to minimize this drawback could 

be achieved by testing the model several times and then average the results. 
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8 Appendix 

 

 

 

 

 

 

 

 Case 3  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

Metrics Average

Accuracy 0.89 0.89 0.90 0.91 0.89 0.90

Recall 0.44 0.36 0.36 0.68 0.38 0.44

Precision 0.37 0.36 0.38 0.47 0.33 0.38

F1-Score 0.40 0.36 0.37 0.56 0.35 0.41

PR AUC 0.32 0.39 0.35 0.55 0.37 0.40

Kernel RBF RBF RBF RBF RBF

C 1000.00 10.00 10.00 1000.00 1000.00

gamma 0.10 1.00 1.00 0.10 1.00

All variables

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

Metrics Average

Accuracy 0.89 0.87 0.86 0.88 0.88 0.88

Recall 0.44 0.28 0.36 0.60 0.33 0.40

Precision 0.38 0.26 0.26 0.36 0.30 0.31

F1-Score 0.41 0.27 0.31 0.45 0.31 0.35

PR AUC 0.31 0.31 0.32 0.45 0.26 0.33

Kernel RBF RBF RBF RBF RBF

C 1000.00 10.00 1000.00 1000.00 1000.00

gamma 0.10 1.00 0.10 0.10 0.10

All variables minus Distance to Default

Skewness Kurtosis

One-year distance to default 13.54 205.34

Total Liabilities/Total Assets 8.48 165.33

Drift rate 12.42 199.78

Asset volatility 18.58 434.79

Equity Volatility 3.40 30.55

Appendix 1– Statistics (Skewness/Kurtosis) - all the data 

Appendix 2– Case 3 – K-Fold estimation – All variables 

Appendix 3- Case 3 – K-Fold estimation – All variables minus Distance to default 
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Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

Metrics Average

Accuracy 0.91 0.90 0.85 0.91 0.90 0.90

Recall 0.52 0.40 0.40 0.68 0.50 0.50

Precision 0.46 0.40 0.26 0.49 0.40 0.40

F1-Score 0.49 0.40 0.31 0.57 0.44 0.44

PR AUC 0.45 0.33 0.22 0.49 0.37 0.37

Kernel RBF RBF RBF RBF RBF

C 10.00 1000.00 100.00 10.00 1000.00

gamma 1.00 1.00 0.10 1.00 0.10

All variables minus Debt/Market Equity

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

Metrics Average

Accuracy 0.89 0.88 0.89 0.86 0.84 0.87

Recall 0.24 0.36 0.40 0.44 0.33 0.35

Precision 0.32 0.30 0.37 0.28 0.21 0.29

F1-Score 0.27 0.33 0.38 0.34 0.25 0.32

PR AUC 0.17 0.22 0.37 0.31 0.21 0.26

Kernel RBF RBF RBF RBF RBF

C 1.00 1000.00 10.00 100.00 1.00

gamma 1.00 10.00 1.00 10.00 10.00

Debt/Market Equity

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

Metrics Average

Accuracy 0.72 0.76 0.70 0.70 0.75 0.73

Recall 0.72 0.68 0.84 0.68 0.67 0.72

Precision 0.19 0.21 0.20 0.17 0.19 0.19

F1-Score 0.30 0.32 0.32 0.27 0.30 0.30

PR AUC 0.35 0.19 0.34 0.36 0.21 0.29

Kernel RBF RBF RBF RBF RBF

C 10.00 10.00 1000.00 1000.00 1000.00

gamma 10.00 10.00 1.00 1.00 1.00

Distance to Default

Appendix 4 – Case 3 – K-Fold estimation – All variables minus debt-to-market equity 

Appendix 5 – Case 3 – K-Fold estimation – debt-to-market equity 

Appendix 6 – Case 3 – K-Fold estimation – Distance to default 
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Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

Metrics Average

Accuracy 0.90 0.89 0.87 0.90 0.89 0.89

Recall 0.44 0.36 0.40 0.68 0.29 0.43

Precision 0.41 0.35 0.30 0.43 0.29 0.35

F1-Score 0.42 0.35 0.34 0.52 0.29 0.39

PR AUC 0.41 0.32 0.29 0.46 0.33 0.36

Kernel RBF RBF RBF RBF RBF

C 100.00 10.00 1000.00 1000.00 1000.00

gamma 1.00 1.00 0.10 0.10 0.10

All variables minus Distance to Default & Debt/Market equity

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

Metrics Average

Accuracy 0.89 0.89 0.87 0.88 0.91 0.89

Recall 0.44 0.24 0.24 0.28 0.38 0.32

Precision 0.38 0.32 0.23 0.28 0.45 0.33

F1-Score 0.41 0.27 0.24 0.28 0.41 0.32

PR AUC 0.40 0.24 0.28 0.25 0.34 0.30

Kernel RBF RBF RBF RBF RBF

C 10.00 10.00 10.00 1000.00 10.00

gamma 1.00 1.00 1.00 0.10 1.00

All variables

Appendix 7 – Case 3 – K-Fold estimation – All variables minus debt-to-market equity & distance to default 

Appendix 8 – Case 3- K-Fold Estimation – PR for each fold 

Appendix 9 – Case 4 – K-Fold estimation – All variables 
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Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

Metrics Average

Accuracy 0.89 0.89 0.92 0.88 0.92 0.90

Recall 0.48 0.20 0.08 0.36 0.29 0.28

Precision 0.36 0.29 0.67 0.32 0.50 0.43

F1-Score 0.41 0.24 0.14 0.34 0.37 0.30

PR AUC 0.42 0.19 0.25 0.34 0.39 0.32

Kernel RBF RBF RBF RBF RBF

C 10.00 10.00 10.00 1.00 10.00

gamma 1.00 1.00 10.00 1.00 1.00

All variables minus Distance to Default

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

Metrics Average

Accuracy 0.88 0.87 0.92 0.87 0.91 0.89

Recall 0.52 0.20 0.08 0.32 0.33 0.29

Precision 0.34 0.21 0.50 0.27 0.44 0.35

F1-Score 0.41 0.20 0.14 0.29 0.38 0.29

PR AUC 0.42 0.23 0.29 0.26 0.31 0.30

Kernel RBF RBF RBF RBF RBF

C 10.00 10.00 10.00 1000.00 100.00

gamma 1.00 1.00 10.00 0.10 1.00

All variables minus Debt/Market Equity

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

Metrics Average

Accuracy 0.86 0.83 0.82 0.80 0.90 0.84

Recall 0.16 0.08 0.24 0.32 0.25 0.21

Precision 0.15 0.06 0.15 0.16 0.32 0.17

F1-Score 0.16 0.07 0.18 0.21 0.28 0.18

PR AUC 0.18 0.14 0.11 0.16 0.24 0.18

Kernel RBF RBF RBF RBF RBF

C 1000.00 0.10 1.00 0.10 1000.00

gamma 0.10 10.00 10.00 10.00 0.10

Debt/Market Equity

Appendix 10 - Case 4 – K-Fold estimation – All variables minus Distance to default 

Appendix 11– Case 4 – K-Fold estimation – All variables minus debt-to-market equity 

Appendix 12 – Case 4 – K-Fold estimation – debt-to-market equity 
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Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

Metrics Average

Accuracy 0.61 0.60 0.69 0.61 0.64 0.63

Recall 0.84 0.72 0.68 0.60 0.83 0.73

Precision 0.16 0.14 0.17 0.12 0.16 0.15

F1-Score 0.26 0.23 0.27 0.20 0.27 0.25

PR AUC 0.33 0.14 0.15 0.13 0.15 0.18

Kernel RBF RBF RBF RBF RBF

C 1.00 100.00 100.00 1.00 10.00

gamma 10.00 10.00 10.00 10.00 10.00

Distance to Default

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

Metrics Average

Accuracy 0.88 0.91 0.92 0.92 0.90 0.91

Recall 0.56 0.08 0.08 0.12 0.25 0.22

Precision 0.35 0.40 0.50 0.50 0.35 0.42

F1-Score 0.43 0.13 0.14 0.19 0.29 0.24

PR AUC 0.38 0.23 0.28 0.25 0.27 0.28

Kernel RBF RBF RBF RBF RBF

C 10.00 10.00 10.00 10.00 10.00

gamma 1.00 10.00 10.00 10.00 10.00

Distance to Default & Debt/Market equity

Appendix 13 – Case 4 – K-Fold estimation – Distance to default 

Appendix 14 – Case 4 – K-Fold estimation – All variables minus debt-to-market equity & distance to default 

Appendix 15 – Case 4- K-Fold Estimation – PR for each fold 
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