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Resumo 

Este estudo foca nos modelos autorregressivos de heterocedasticidade 

condicional, em especial nos modelos GARCH. A amostra principal usa dados 

do retorno do índice do S&P500 ajustados a divisão e dividendos de 1990 a 2008, 

usando uma janela fora da amostra de 2001 até ao final da amostra. O objetivo 

principal é analisar o desempenho das previsões do modelo num domínio 

tempo-frequência e, em seguida, compará-los com resultados em um cenário de 

domínio de tempo. Para fazer uma análise de domínio tempo-frequência, usamos 

técnicas de wavelets para decompor as séries temporais S&P500 originais em 

diferentes frequências, cada uma delas originalmente configurada no domínio 

do tempo. Em última análise, o objetivo é ver se a decomposição com wavelets 

traz um desempenho aprimorado na previsão/modelagem da volatilidade, 

observando a função de perdas de previsão de Quasi-Verossimilhança (QL), bem 

como os índices médios de perdas de previsão ao quadrado (MSFE). Embora a 

decomposição com wavelets ajude a capturar componentes periódicos ocultos das 

séries temporais originais, os resultados de domínio de frequência em termos de 

função de perda (QL e MSFE) não superam o resultado original do domínio do 

tempo para qualquer frequência dada. No entanto, a maioria das informações 

para a volatilidade futura é capturada em poucas frequências da série temporal 

do S&P500, especialmente, na parte de alta frequência dos espectros, 

representando horizontes de investimento muito curtos. 

 

Palavras-chave: volatilidade, GARCH, decomposição com wavelets, função de 

perdas 
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Abstract 

This research focuses on generalized autoregressive conditional 

heteroskedasticity (GARCH) model. The main sample uses daily split-

adjusted and dividend-adjusted log-return data of the S&P500 index ranging 

from 1990 to 2008, using an out-of-sample window from 2001 until the end of 

the sample. The main goal is to analyze the performance of the model 

forecasts in a time-frequency domain and then to compare them with results 

in a time-domain scenario. To make a time-frequency domain analysis, this 

research uses wavelets techniques to decompose the original S&P500 time 

series into different frequencies brands, each of them originally set in time-

domain. Ultimately, the aim is to see if the wavelet decomposition brings an 

enhanced performance on forecasting/modelling volatility by looking at the 

Quasi-Likelihood forecasting losses (QL) as well as the mean squared 

forecasting losses ratios (MSFE). Although the wavelet decomposition helps 

to capture hidden periodic components of the original time-series, frequency-

domain results in terms of loss function (QL e MSFE) don’t outperform the 

original time-domain result for any given frequency. Nevertheless, most of 

the information for future volatility is captured in few frequencies of the 

S&P500 time-series, specially in the high-frequency part of the spectra, 

representing very short investment horizons.   

 

Keywords: volatility, GARCH, wavelet decomposition, loss function  
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1- Introduction  

Stock market volatility is a statistical measure of the dispersion of returns 

for a given security or market index. It is measured by using the standard 

deviation of logarithmic returns or variance between returns over a given 

period. Usually, the higher the volatility, the higher the potential returns, but 

they come with greater risk. Stock market volatility is thus a market measure 

for economic uncertainty.  

It’s important to understand the dynamics of stock market volatility since 

it’s a topic of major interest to policy makers and market practitioners. In 

particular, policy makers are interest in the determinants of volatility and its 

effects on economy, while market practitioners are interested in analyzing the 

effects of volatility on the pricing and hedging of derivatives position, since 

the price of every derivative security is affected by volatility fluctuations. In 

both cases, forecasting stock market volatility constitutes a fundamental 

instrument to risk management where Value-at-Risk models are the most 

commonly used. Even portfolio management models, such as the CAPM 

(Sharpe, 1964), are based on the “mean variance” theory, and therefore 

considers volatility as a key factor. 

A problem about volatility is that it isn’t directly observed (like returns are), 

and thus needs to be estimated. In fact, we can see this from the Black and 

Scholes (1973) formula, in which volatility is the only unknown 

parameter/variable and needs to be forecasted. It has been pointed out that 

option prices (reflected in implied volatility) should have information about 

future market stock return. At that point in time (1980’s), forecasting volatility 

was easier since almost all options traded had short maturity dates, and for 

that reason volatility was assumed to remain almost constant. However, the 
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derivative market has since then grown exponentially and we can now find 

an enormous number and contracts with different and longer maturity 

periods, making it difficult to accurately price the value of such products, 

since volatility changes over long periods of time. For this reason, proxies are 

generally constructed and used to measure and model volatility. One popular 

approach is to use the daily squared returns (r2) as an ex-post proxy, which 

this study considers to evaluate volatility forecasts accuracy. Although it’s 

considered to be a noisy proxy, it does capture one of volatility key features 

that is, that volatility isn’t constant and varies over time. Another related 

property, is that conditional variance exhibits momentum, and for that reason 

past volatility can be used to explain current volatility (de Pooter, 2007).  

The most widely used model to illustrate and capture the conditional 

variance is the generalized autoregressive conditional heteroskedasticity 

(GARCH) model proposed by Engle (1982), Bollerslev (1986) and Taylor 

(1986).   

This study explores the performance of stock return volatility forecasting 

within the class of autoregressive conditional heteroskedasticity models, 

especially focusing on the GARCH (1,1) model since it’s considered to be the 

state-of-art model in the literature for this purpose. This model is usually 

preferred as it’s a better fit for modeling time series which data exhibits 

heteroskedasticity, volatility clustering, fat-tails distribution and price spikes.  

While most of the literature on modeling and forecasting volatility has been 

only focused in time-domain analyses, this study uses a recent approach that 

focuses in a jointly time-frequency scenario. Particularly, wavelets techniques 

have recently provided great relevance in economic research these past years. 

These techniques are used to deeper analyze volatility’s behavior, which 

information is used with a forecasting purpose.  
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 The aim of this study is to see if we can provide better insight and 

statistically significant improvements on forecasting and modeling volatility 

by using wavelets to decompose our original time series (in this case, the 

S&P500 return index) into different frequencies. 

The remainder of this thesis is organized as follows: Section 2 gives a 

generalized literature review of the standard models used to forecast stock 

return volatility an extends this analysis into the frequency-domain, Section 3 

discusses the data used, Section 4 explains the econometric framework used 

for forecasting volatility, the ex-post volatility proxy used to evaluate those 

forecasts and the frequency decomposition process as well as their evaluation. 

Section 5 reports the results of this research in both time and frequency 

domain. Finally, Section 6 concludes.  
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   2- Literature Review 

2.1- Modelling and Forecasting Volatility 

 

Volatility modeling and forecasting has always been of interest for many 

financial analysis, options and portfolio management since it’s an important 

parameter for pricing financial derivatives. For obvious reasons, it’s not only 

important to know the current value of volatility, but also to evaluate how 

this value will evolve and what its future value is going to be. Forecasting 

volatility has been a much-debated topic over the years, since it’s a 

challenging and complex task to get an accurate prediction of its future values. 

While large positions in volatile assets are undesirable, since volatility reverts 

to a fixed mean and has zero expected return on the long-run, small positions 

can provide valuable hedging, for example, against crisis, lowering prices that 

drive simultaneously both correlations and volatilities up.  

The main models to forecast volatility are time-series models and implied 

volatilities models, which rely on observed option prices. 

Theoretically, the implied volatility from option prices should contain all 

relevant and available information and thus should be a good estimate of 

future realized volatility. However, this isn’t always the case, since there’s a 

risk premium because volatility risk cannot be perfectly hedged [as stated by 

Bollerslev and Zhou (2005)]. Another implication is that implied volatility is 

only available for certain time horizons and limited set of assets. Because of 

this, the most common used models for volatility forecasting are time series 

models, which are the models used in this research, focusing on the class of 

autoregressive conditional heteroskedastic models. 
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In almost all financial time-series the variance isn’t constant and changes 

over time, so models are heteroscedastic and time-series exhibit long-memory 

as well as volatility clustering, portraying periods of low market uncertainty 

followed by periods of high market uncertainty (or vice-versa). For example, 

volatility of S&P500 was extremely low during the years of 2003 to 2007, 

before reaching record-breaking values during the market collision of 2008 

(see Figure A returns and inferred volatility over 4500 days and Figure F for 

the out-of-sample GARCH (1,1) volatility forecasts in the fall of 2008). 

 

Modelling and forecasting volatility has been one of literature’s main 

challenge as it is complicated task to accurately estimate their future values. 

This research relates to the first main stream of literature that focuses on 

standard models used to make volatility forecasts.  

Modeling and forecasting of volatility started when Engle (1982) developed 

the Autoregressive Conditional Heteroskedasticity (ARCH) model. The 

ARCH model, although it was first designed to measure and explain the 

dynamics of inflation uncertainty, was the earliest path-breaking model to 

explain non-linear dynamics and to model the conditional heteroscedasticity 

in volatility. It’s conditional because next period volatility (t+1) is conditional 

on the information set available at the current period (t), and 

heteroskedasticity means that volatility changes over time. One important 

feature of these models is that they assume that the conditional variance is a 

function of the squares of past observations as well as past variances, where 

the error term captures the residual result that’s left unexplained by the 

model. It also assumes that the variance of the current error term is related to 

the size of the previous year’s error terms. The ARCH models attempt to 

model the variance of those error terms and, at the same time, they try to 

correct the problems resulting from heteroskedasticity.  
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The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 

model is an extension of the ARCH model and was introduced by Engle 

(1982), Bollerslev (1986) and Taylor (1986). This is the state-of-art model for 

volatility forecasting [Zakaria and Shamsuddin (2012), Lindbald (2017)].  

Similarly to ARCH models, GARCH models are used to model financial 

markets variables in which volatility varies over time, becoming more volatile 

in periods of financial distress and less volatile in periods of steady economic 

growth, hence exhibiting volatility clustering. 1 The model also uses values of 

past squared observations as well as past variances to model the future 

variances at time t. Typically, the error term in traditional GARCH models is 

assumed to be normally distributed. 

The ARCH and GARCH model have been extensively surveyed 

throughout the years [see e.g. Andersen and Bollerslev (1998), Bollerslev et al. 

(1994), Diebold (2004), Engle and Patton (2001)]. GARCH models are usually 

more preferred for forecasting applications because they describe volatility 

with less parameters, and, more importantly, they are less likely to breach the 

non-negativity constraint of the conditional variance (see sub-section 4.2). 

Hansen and Lunde (2005) compared 330 different ARCH/GARCH models 

to test if any of those could outperform the standard GARCH (1,1) but they 

conclude that it can hardly be beaten. 

GARCH models and their extensions are used to this day since they can 

account for characteristics that are commonly associated with financial time 

series (like excess kurtosis and volatility clustering). 

The most commonly used approach for parameter estimation is by 

maximum likelihood (MLE), also, under the assumption that the standardized 

innovations (residuals) are i.i.d. normally distributed 

                                                 
1 Large volatility changes tend to follow large changes, and small changes tend to follow small changes 
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 In this study we use the GARCH (1,1) model. The first 1 in (1,1) refers to 

how many autoregressive lags (ARCH terms) appear in the equation, while 

the second 1 refers to how many moving average lags are used (GARCH 

terms) 

 

2.2- Forecasting Stock-Return Volatility 

 

This research is also related to another stream of literature that focuses on 

forecasting stock return volatility at different forecasting horizons. The 

volatility of stock returns captures the severity with which the market price 

of the security/stock fluctuates. The more swings it exists in prices, the more 

volatile the market is and thus the more unpredictable the future market stock 

price is going to be. When forecasting stock return volatility, the choice of how 

much data to use in estimation and forecasting as well as the forecasting 

horizon can be an issue if parameters are unstable, since data from distant 

past can bias estimates and thus produce inadequate forecasts.  

The relationship between time-varying volatility and returns has been 

studied by Bollerslev et al. (1988), Bollerslev et al. (1992), Glosten et al. (1993), 

among others. 

When forecasting and modelling stock return volatility, the focus has 

largely been on short-horizon forecast (usually one step-ahead forecasts) 

Engle (1982), Bollerslev (1986), Anderson and Bollerslev (1998), Brownless et 

al. (2011) and Lindbald (2017) show that, for those horizons, the GARCH (1,1) 

model performs well.  

Even though longer horizons forecasts have been less emphasized, Ghysels 

et al (2006) showed that for longer horizons the GARCH-MIDAS model, an 
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extension of the GARCH model, generates better forecasts (forecasting 

advantages become more apparent at monthly horizons). Ghysels et al (2006) 

thus argue that, with GARCH extensions, volatility can be indeed forecastable 

at those horizons, making it a useful tool for risk management. 

  

An extended theoretical overview of various key concepts of volatility 

modeling and forecasting is given by Poon and Granger (2003) and Anderson 

et al. (2006). Anderson et al. (2006) present a variety of procedures for volatility 

modeling and forecasting, based on GARCH, stochastic volatility models2  

and realized volatility modelling. Anderson et al. (2006) extends this 

discussion to the multivariate problem of forecasting conditional covariance’s 

and correlations. They conclude by also giving insight into a topic of 

discussion of recent literature where they defend that the use of high 

frequency measures, data and predictors can significantly improve the 

volatility forecasting performance that will be discussed further. 

 

Although GARCH models are considered to be the state-of-art for 

modelling and forecasting stock return volatility, they also have some flaws. 

First, both ARCH and GARCH models assume that positive and negative 

shocks on stock returns have the same impact in volatility. This, however, isn’t 

true and this asymmetry is considered to be one of the model’s biggest 

limitation. This asymmetry is generally known as the leverage effect: negative 

stock returns significantly increase volatility on the following days whereas 

positive stock returns don’t, or at least, not in the same proportion [Black 

(1976), Nelson (1991); Anderson et al. (2006); de Pooter (2007)]. A plausible 

explanation for this phenomenon is that the asymmetric relationship between 

                                                 
2 Stochastic volatility models are considered as complementary and not competitors of GARCH models since they 
are closely related, see Anderson (1992) that presents formal distinctions between both models 
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the sign of stock returns and volatility is based on financial leverage. For 

example, a decrease in a stock value will increase financial leverage and, as a 

result, volatility goes up.  For that reason, alternative GARCH formulations 

were first proposed by Black (1976). Additionally, literature has developed 

asymmetric models that could adjust for this phenomenon, like the 

Exponential GARCH (EGARCH) model proposed by Nelson (1991) which 

allows asymmetric effects of positive and negative shocks on returns.  

Second, GARCH models tend to perform best under stable market 

conditions. 

Moreover, as shown by Lindbald (2017) including macroeconomic 

variables seems to improve predictions of stock return volatility in recessions. 

Lindbald (2017) uses an asymmetric GJR-GARCH model proposed by Glosten 

et al. (1993), and also adjusts for leverage effect. Although there are periods 

where macroeconomic variables bring some predictability, Lindbald (2017) 

shows there are also periods where the GARCH (1,1) model produces more 

accurate forecasts. 

Asymmetric models can be useful to adjust for this phenomenon, but 

empirical findings remain ambiguous since results aren’t clear cut. In fact, 

some authors defend that asymmetric GARCH models are unable to 

outperform the standard GARCH (1,1) (Van Dijk and Franses 1996) or their 

forecasting results don’t significantly improve compared to GARCH (1,1) 

forecasts (Ramasamy and Munisamy, 2012), while other authors argue that 

they can outperform them, especially in periods of recessions [Poon and 

Granger (2003); Brownlees et al. (2011)]. 

The difference in the empirical results mentioned above could be explained 

by different factors: the choice of the model, the length of the sample or 

frequency used, as well as the forecasting horizon.  
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Another typical limitation of GARCH models is that they often fail to fully 

capture the fat-tailed financial returns problem stated by Bollerslev (1986), 

even after adjusting for heteroskedasticity. This issue is also addressed in 

Brownlees et al. (2011) paper, they replace the simple Gaussian specification 

for a Student t likelihood function, but results aren’t as good as the proposed 

methodology, since it doesn’t bring statistically significant improvements. 

Connected to the fact that short horizon volatility doesn’t appear to violate 

the Gaussian assumption, while at longer horizons more tail events tend to 

exist, this research undertakes one-day ahead volatility forecasts. 

 

In relation to the large literature on volatility forecasting of stock returns, 

Brownlees et al. (2011) explored their performance within the class of 

autoregressive conditional heteroskedasticity (ARCH) models and their 

extensions, demonstrating that the baseline GARCH model is a good 

descriptor of volatility, making it consistent with findings so far. Additionally, 

they evaluate volatility models across different forecasting horizons and asset 

classes.   

Brownlees et al. (2011) use two ex-post proxies for S&P500 future volatility: 

the log squared returns (r2) and the realized volatility (RV) estimator from 

Anderson et al. (2003). 3 Both proxies are unbiased measures of true volatility. 

Brownlees et al. (2011) results are reported by evaluating the model’s volatility 

forecasts using two loss functions, the quasi-likelihood (QL) and the mean 

squared error loss (MSE) functions. Even though better results are presented 

from the QL losses based on RV, Brownlees et al. (2011) defend that by using 

a sufficiently long out-of-sample history, results converge to similar values 

regardless of the proxy’s choice. Although data from distant past could bias 

                                                 
3 Constructed using sums of intra-daily (high-frequency data) squared returns 
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future estimates, this is a clear sign that models perform best when using 

longer data series. They also conclude there was no systematic large gains by 

modifying their base procedure with alternatives considered (by allowing for 

Student t innovations, short, medium or long estimation window). 

 

The second part of 2008, known for being the start of the greatest crisis since 

the Great Depression of 1929, lead financial institutions to create a wide 

variety of “risk aversion” indicators. By computing the equity variance 

premium indicator 4  Bekaert and Hoerova (2014) showed it can be a 

significant predictor of stock returns, while the conditional variance (which 

measures volatility and not stock returns) can’t, although the latter has a 

relatively higher predictive power for unstable financial conditions. The 

financial meltdown triggered in fact a near-record surge in volatility (VIX 

index, known as S&P500 “fear” index, hit highs of 80%), but surprisingly 

Brownlees et al. (2011) results based on one-day-ahead forecasts showed that 

there was no deterioration in the out-of-sample volatility forecasting accuracy 

during the turmoil, and although longer-horizons forecasts exhibit more 

deterioration and are larger in the tail of distribution, they argue that results 

from GARCH remained within a 99% confidence interval.  Brownlees et al. 

(2011) also criticize one of the most widely used risk measures, the Value at 

Risk, since this measure focus on short-term risk although been used to 

measure the long-term risk.  

 

In line with Brownlees et al. (2011) research, this study uses the daily 

squared returns (r2) as an ex-post proxy for future volatility, and evaluates 

the conditional variance forecasts by computing the Quasi-Likelihood loss 

                                                 
4 The difference between the squared VIX index and an estimate of the conditional variance of the stock 
market 
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function advocated by Patton (2009) and the mean square forecasting error 

ratio.  

2.3- Forecasting in Frequency-Domain 

 

The third stream of literature to which this research relates, is the one on 

modelling and forecasting financial and economic variables in a frequency-

domain scenario. 

Literature on forecasting stock market return volatility has mainly been 

focused on time-domain analysis, which is good for investors that tend to 

concentrate on stock market activity over the long horizons. A time-domain 

analysis aggregates the behavior of traders across all horizons, when in fact 

they make their decisions over different investment horizons as pointed out 

by Barunik and Vacha (2015), consistently with the Heterogeneous Market 

Hypothesis: the financial market is composed by participants that work over 

different trading frequencies 

Recent developments on volatility forecasting include models based on 

high frequency volatility measures. As Anderson et al. (2003) point out, using 

volatility estimators to exploit the information contained in high-frequency 

data can bring substantially improvements, since such ex-post measures can 

be directly used for modelling and forecasting volatility dynamics. Engle and 

Gallo (2006), Corsi et al. (2010), Hansen et al. (2010), Mcmillan and Speight 

(2012) also made important contributions in this topic, suggesting that 

volatility can be directly observed when high frequencies data is applied. 

Martens et al. (2004) propose a non-linear model for realized volatilities 

using high-frequency data that incorporates stylized facts of the GARCH 

volatility literature, particularly day-of-the-week effects, leverage effects and 

volatility level effects. They’re in-sample results show that all non-linearities 
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are highly significant and improve the description of the data. For shorter 

horizons up to 10 days, modelling these non-linearities produces superior 

volatility forecasts than a linear ARFI model, making it especially useful for 

short-term risk management. For longer time-horizons Martens et al. (2004) 

defend that incorporating these non-linearities don’t seem to bring benefits at 

all. 

Note that the papers described above only look at data on different 

frequencies (for instance, using intra-daily data instead of daily-data) and not 

on frequency decomposition of an original time series.  

Although there’s an extensive literature on modelling and forecasting 

volatility and some even do use high frequency measures, there’s yet to unveil 

the full potential of making a jointly time-frequency analysis.  

 

In finance, the interest in frequency domain tools has been growing in 

recent years [e.g. Bandi et al. (2016); Barunik and Vacha (2017); Berger (2016) 

Faria and Verona (2018)], complementing a time-domain analysis by 

capturing hidden periodic oscillations and separating the noise of the short-

term component from its trend (long term component). This research is 

related to these papers (and not to the previously papers that use high 

frequency data) since we use the same procedure, extracting the frequencies 

scales properly by pre-processing the original time-series with wavelet 

techniques. The main difference is that this research focuses on forecasting 

volatility at those exact scales that we get from frequency decomposition and 

not using a combination of different scales like Faria and Verona (2018). 

Therefore, the main research question is if frequency decomposition of the 

time-series can bring benefits in terms of modelling and forecasting stock 

return volatility. Ultimately, we evaluate the accuracy of results of the 



 

 

15 

estimation and compare them to the results from the original analysis (time-

domain). 

 

2.4- Frequency Decomposition  

2.4.1- Wavelets 

 

While most of the forecasting models are set in time-domain, wavelet 

transforms helps to make deeper analysis by extracting features from specific 

frequencies, representing the most recent milestone in financial econometrics. 

Since it’s a novel instrument it can be useful in many domains. By pre-

processing data with wavelets, it allows to effectively account for hidden 

periodic components (Capobianco, 2004). Crowley (2007) and Aguiar-

Conraria and Soares (2014) provided reviews of economic and finance 

applications of discrete and continuous wavelets tools. 

Wavelet functions are useful tool for financial modeling and may be used for 

forecasting as well. Recent research have used wavelets with a forecasting 

purpose such as Rua (2011), Faria and Verona (2018), Barunik and Vacha 

(2017) and Berger (2016), and they already show great potential. 

 

Through a wavelet multiresolution analysis, Rua (2011) decomposes time 

series into different time-scale components and fits a model to each scale. Rua 

(2011) proposes a wavelet approach for factor-augmented forecasting to test 

the forecasting ability of GDP growth, where results suggest that forecasting 

performance is enhance when factor-augmented models and wavelets are 

used together.  
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The discrete wavelet transform multiresolution analysis allows to 

decompose the original time series into its several components, each of them 

capturing the oscillations of the original variable within a specific frequency 

interval. Faria and Verona (2018) undertook this methodology, showing that 

the out-of-sample forecast of Equity Risk Premium (ERP) in the U.S. market 

can be significantly improved by considering the frequency-domain 

relationship between the ERP and several potential predictors.   

In their working paper, Faria and Verona (2018) show that the low-

frequency component (trend), of the term spread5 when properly extracted 

from the data, is indeed a very strong equity risk premium out-of-sample 

predictor. It outperforms even the Short Interest Index (see Rapach et al. 

(2016), known for being the strongest predictor for ERP so far. Faria and 

Verona (2018) show that it has a remarkable forecasting power of ERP for 

different forecasting horizons both  in-sample and out-of-sample periods, and 

that, there are significant utility gains when making forecasts using the proper 

frequency of the original time series.  

 

When forecasting volatility in the frequency-domain, literature is very 

scarce and only started to be addressed in recent years, so it can be considered 

to be one of literature’s main gaps. However, first steps already have been 

taken by Barunik and Vacha (2015) and Berger (2016) that used wavelet tools 

with the purpose of studying volatility. 

 

As traders operate over different time horizons6, Barunik and Vacha (2015) 

use wavelets to decompose the integrated volatility into different time-scales, 

with high frequency data and multiple time-frequency decomposed volatility 

                                                 
5 Difference between the US long-term 10-year government bond and the 3-month Treasury bill  
6 The length of time that the investor expects to hold the security/portfolio 
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measures. Their proposed methodology is moreover able to account the 

impact of jumps, using a jump wavelet two scale realized volatility estimator 

to measure exchange volatility in time-frequency domain and then study the 

influence of intra-day investment horizons on daily volatility forecasts. They 

compare their estimator to several most popular estimators (e.g. realized 

variance, bipower variance, among others) and Barunik and Vacha (2015) 

show that the wavelet based estimator proves to bring significant 

improvement in volatility estimation and forecasting. 

A frequency decomposition of analysis of volatility parameters seems to be 

a useful tool for a forecasting purpose. It can also give interesting insights into 

the volatility process. More importantly, by undertaking a frequency-domain 

analysis, Barunik and Vacha revealed that “most of the information for future 

volatility comes from the high-frequency part of the spectra representing very 

short investment horizons” (Barunik and Vacha, 2015, p. 1). 

 

To separate short-run noise from the long-run trends Berger (2016) used 

wavelet decomposition to transform financial return series into its frequencies 

and investigated the relevance of different timescales in the VaR framework, 

showing that the relevant information needed to compute daily VaR is 

described by different time-scales of the original returns series. It also unveils, 

that VaR forecasts are mainly captured by the first scales or frequency brands, 

comprising the short-run information. 

 

The analysis of the conditional volatility forecasts based on different 

timescales achieved through wavelets has not yet been investigated further. 

Similarly to Rua (2011), Faria and Verona (2018) and Barunik and Vacha 

(2017), this research uses wavelets to frequency-decompose the time series of 

S&P500 returns. The aim is to separate the noise of financial returns short-



 

 

18 

term components from its long-run trend and then use the information 

extracted within specific frequencies to forecast volatility. Ultimately, the 

evaluation of those results will show if the wavelet methodology brings any 

benefits to our forecasting procedure. 
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3- Data 

This study uses daily split-adjusted and dividend-adjusted log-return data 

on the S&P500 index from the Center for Research in Security Prices (CRSP) 

DataStream. The sample period ranges from 1990 to 2008, which comprises 

periods of expansions as well as recessions, including the beginning of the 

Great Financial crisis in late 2008. An out-of-sample exercise is more relevant 

to evaluate effective return predictability in real time. So, this research, the 

out-of-sample period starts at 2001 and goes until the end of 2008. 

This out-of-sample period is characterized by episodes of high volatility (for 

example, the recessions from early 2000’s) as well as periods that exhibit low 

volatility levels (mostly, from 2003 to 2007). Furthermore, the data chosen also 

captures volatility forecasts during the triggering of the last great financial 

crisis at September 2008. In the fall of 2008, equity volatility in US reached a 

peak and volatility measures escalated in a matter of hours/days. We can see 

that from the last days (>4500 days) in Figure 1 that plots S&P500 returns 

which exhibit great dispersion during the turmoil and the inferred volatility 

at those days. We can see it more clearly in Figure 4 that plots the OOS S&P500 

returns which took on a wider range of values than usual during the turmoil 

and in Figure 6 the OOS GARCH (1,1) volatility forecasts also increased in the 

fall of 2008. 
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4- Methodology and Forecasting Evaluation   

4.1- Forecasting Procedure 

 

Let {𝑦𝑡}𝑡
𝑇 = 1 denote a time-series of continuously compounded returns 

(including stock-splits and dividends) and 𝐼𝑡  denotes all historical known 

information available at time 𝑡 . The unobserved variance of returns 

conditional on the information available at t is therefore denoted as              

𝜎𝑡+𝑖|𝑡
2 = var [𝑦

𝑡+𝑖
|𝐼𝑡 ]. The variance predictions are obtained from volatility 

models, which are generically represented as: 

                                                  

                                                𝑦𝑡+1 =  𝜖𝑡+1√𝑓𝑡+1                                      (3.1) 

 

where 𝑓𝑡+1 is a measurable function due to the information available 𝐼𝑡 and 

𝜖𝑡+1 is an identically distributed zero mean and unit variance innovation. That 

is, the difference between the observed value of a variable at time t and the 

forecasted value based on information available prior to t, is assumed to 

follow a normal distribution. The parameter 𝑓𝑡+1 is determines the evolution 

of the conditional variance, which is typically a function of historical returns 

as well as unknow parameters to be estimated. This is the parameter that 

volatility models try to predict. 

The forecasting procedure is done as follows. For each day t of the sample, 

we estimate the model parameters by maximizing a Gaussian likelihood using 

all available returns and information ending prior to t. This research uses the 

GARCH (1,1) model to make one-day ahead forecasts, resulting in a daily 

volatility forecast path {𝑓𝑡+𝑖|𝑡}.  
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The out-of-sample forecasts are generated using a sequence of expanding 

windows. We use the initial sample until the end of the year 2000 to make the 

first OOS forecasts. Then, the sample is increased by one observation and thus 

a new OOS forecasts is produced. We make this procedure until the end of 

the full sample. The full OOS period therefore goes from January 2001 to 

December 2008. 

Before estimating our model and starting the forecasting procedure, we 

computed a sample autocorrelation function to see if S&P500 split-adjusted 

and dividend-adjusted returns exhibit serial correlation, this is, if past returns 

gives us any relevant information that would help to predict future returns. 

Looking the top graph at Figure 2, the answer is no since for all the lags they 

are barely statistically significant, underlying that past returns information 

isn’t useful and short-term returns are difficult to predict, which is a well-

known fact. 

 

4.2- GARCH 

 

The GARCH (1,1) model from Engle (1982) and Bollerslev (1986) as said 

before, is seen in literature as the state-of-art model for forecasting volatility. 

It differs from a typical ARCH model by incorporating the squared 

conditional variance as an additional explanatory variable. The GARCH (1,1) 

describes the volatility process as:  

The volatility process described by GARCH models is: 

 

                                           𝑓𝑡+1 =  𝜔 +  𝛼𝑟𝑡
2 +  𝛽𝑓𝑡                                                     (3.2)     
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Where 𝜔 is the model’s constant, 𝛼 is the ARCH parameter and 𝛽 is the 

GARCH parameter. 𝑓𝑡+1 are the next period GARCH volatility forecast that’s 

conditional on the combination of current squared returns (𝑟𝑡
2) as well as 

information available from current period forecasts. 

The key features from this volatility process are its mean reversion (shown 

by the imposed restriction 𝛼 +  𝛽 < 1) and its symmetry, that is, the model 

considers that what influences future volatility is the magnitude of past 

returns, and not their signs. Another main restriction of the GARCH model is 

the non-linear constraint, that is, all the explanatory variables must be positive 

𝜔 > 0;  𝛼 > 0;  𝛽 > 0); which can clearly be seen by the fact that it’s impossible 

to have a negative variance since it consists of squared variables. Note that the 

squared returns of our data are in the ARCH component. 

GARCH model’s parameters coefficients are achieved by maximizing 

likelihood and their values are reported in Table 1. From the values t-statistics 

and comparing them with a normal distribution, we can clearly see that both 

ARCH and GARCH parameters reported in this table have a p-value< 0.01 so 

both parameters are statistically significant (null hypothesis rejected). Key 

variables calculated from our data are summarized in Table 2. Furthermore, 

Figure 1 plots the full sample conditional volatility forecasts (orange line, 

calculated from the squared root of conditional variance) as well as the 

original split-adjusted and dividend-adjusted S&P500 returns (blue line). 

Initially, the model seems to fit good to the data since it tracks well the 

volatility clusters, increasing the conditional volatility when they occur. 

To check if it fits our data correctly, we also compute the standardized 

residuals (returns/conditional volatility) as well the squared standardized 

residuals and their sample autocorrelation function, where both should not 

exhibit serial correlation. From Figure 3, it seems that the standardized 

residuals and squared standardized residuals don’t exhibit serial correlation.  
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4.3- Volatility Proxy 

 

Following most of the literature, this study uses daily squared returns 𝑟2 

as an ex-post proxy for volatility, and can be obtained by squaring the split-

adjusted and dividend-adjusted log returns of S&P500 index. So, for each day, 

we have an ex-post value for true volatility. 

The variance of returns is denoted as follows: 

 

                                               𝜎𝑡
2 = 𝐸(𝑟𝑡

2) − [𝐸(𝑟𝑡)]2                                                  (3.3)                                                                           

 

Which can be seen as the average of the squared returns differences from 

their mean. From the equation above (3.3), we can see why 𝑟2 is considered to 

be a noisy proxy for volatility, since we 𝜎𝑡
2  ≅ E(rt

2)  under the strong 

assumption that [𝐸(𝑟𝑡)]2 ≅ 0. Before high frequency data, many researchers 

resorted to daily squared returns as a volatility proxy. Although being a noisy 

proxy, it’s an unbiased one and it reflects one of volatility key features: 

volatility isn’t constant and varies over time. 

Moreover, and since squared returns are essentially representing our 

variance, we also computed a sample autocorrelation function. As we can see 

from the bottom graph in Figure 2, the squared returns do have serial 

correlation, statistically significant throughout the sample, meaning that past 

squared returns do capture information for future volatility. 

Since the proxy is used for an out-of-sample exercise, Figure 5 plots the 

squared returns values throughout the out-of-sample period. These values 

will be used to evaluate our model’s forecasting accuracy. 
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4.4- Loss Functions and MSFE ratios 

 

 

To evaluate the accuracy of the results of the estimation this research uses 

the out-of-sample volatility forecast losses as suggested by Patton (2009). It’s 

a measure of predictive accuracy, so the smaller the average loss are, the better 

the model/proxy predictive power is. Table 3 summarizes the results and 

reports daily forecasting results for the GARCH model using the loss 

functions 𝐿(𝜎𝑡
2, 𝑓𝑡|𝑡−𝑘). The main loss functions presented in this study is the 

one that’s traditionally used in volatility forecasting literature: the quasi-

likelihood (QL) loss function. Another way to evaluate the results is by 

analyzing our model’s MSFE ratios. This exercise is done in the out-of-sample 

period, since researchers consider to be a more effective measure to evaluate 

predictability.                

 

 

                                   𝑀𝑆𝐹𝐸𝑃𝑀 =  𝑚𝑒𝑎𝑛 [( 𝜎̂𝑡
2)2 − (𝐹𝐶𝑃𝑀)2]                                   (3.4)     

              

                                   𝑀𝑆𝐹𝐸𝐺𝐴𝑅𝐶𝐻 = 𝑚𝑒𝑎𝑛 [( 𝜎̂𝑡
2)2 − (𝑓𝑡|𝑡−𝑘)

2
]                               (3.5) 

 

                                   𝑀𝑆𝐹𝐸 𝑟𝑎𝑡𝑖𝑜:  
𝑀𝑆𝐹𝐸𝐺𝐴𝑅𝐶𝐻

𝑀𝑆𝐹𝐸𝑃𝑀
                                                            (3.6) 

 

                                    𝑄𝐿:
𝜎̂𝑡

2

𝑓𝑡|𝑡−𝑘
− log

𝜎̂𝑡
2

𝑓𝑡|𝑡−𝑘
− 1                                                           (3.7) 

                                        

 

Where 𝜎̂𝑡
2 is an unbiased ex-post proxy of conditional variance [in this case 

the squared returns (𝑟2)], and 𝑓𝑡|𝑡−𝑘 is volatility forecasts from the GARCH 

(1,1) model, based on a 𝑡 − 𝑘 information set (where 𝑘 = 1). 𝑀𝑆𝐹𝐸𝑃𝑀  is the 
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mean squared forecasting error of our prevailing mean variance benchmark, 

mathematically, the mean of the difference of our squared proxy from our 

prevailing mean variance benchmark forecasts in the out-of-sample 

period. The same rational underlies the mean squared forecasting error of our 

GARCH model (𝑀𝑆𝐹𝐸𝐺𝐴𝑅𝐶𝐻), but this time, it is calculated instead from the 

mean of the difference between our squared proxy and (𝑓𝑡|𝑡−𝑘)
2
, the latter 

being the our GARCH (1,1) squared volatility forecasts based on t-k 

information. 

After computing the 𝑀𝑆𝐹𝐸𝑃𝑀 and 𝑀𝑆𝐹𝐸𝐺𝐴𝑅𝐶𝐻, we get the MFSE ratio by 

dividing the mean squared error from the predictive model by the relative to 

the historical prevailing mean benchmark (
𝑀𝑆𝐹𝐸𝐺𝐴𝑅𝐶𝐻

𝑀𝑆𝐹𝐸𝑃𝑀
). 

Brownless et al. (2011) show that while the MSE loss depends on the 

additive forecast error (𝜎̂𝑡
2 − 𝑓𝑡|𝑡−𝑘)

2
 , the QL loss depends on the 

multiplicative forecast error 
𝜎̂𝑡

2

𝑓𝑡|𝑡−𝑘
 . Brownlees et al. (2011) explains that since 

QL loss function depends only on the multiplicative forecast error, the loss 

series is under the null hypothesis that the forecasting model (GARCH) is 

correctly specified. The mean-squared error, which depends on additive 

errors, scales with the square of variance and therefore can contain high levels 

of serial dependence even under the null.7 Brownlees et al. (2011) also states 

that the bias of QL is independent of the volatility level while MSE has a bias 

proportional to the square of the true variance. This means that large MSE 

losses are a consequence of high volatility although not corresponding 

necessarily to a deterioration on the model’s forecasting ability. For these 

reasons, this research calculates the MSFE ratio relative to the prevailing mean 

instead of the MSE loss function. 

                                                 
7 If we divide MSE by 𝜎̂𝑡

4 the resulting quantity will be independent and identically distributed under the 
null that the forecasting model is correctly specified. 
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Figure 7 plots the out-of-sample QL loss values which this research uses to 

evaluate forecasting accuracy, while Table 3 reports the mean QL loss as well 

as the MSFE PM, the MSFE GARCH and the MSFE ratio relative to the 

prevailing mean in the OOS period.  
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5- Frequency-Domain Methodology 

5.1- Wavelets 

We now move to the analysis in the frequency-domain by decomposing the 

original time-series into several different components, each of them 

accounting for properties in that particular frequency brand and defined in 

time-domain. 

To extract the frequencies from the S&P500, we use wavelets filtering 

methods. In line with Rua (2011) and Faria and Verona (2018), the frequency 

decomposition method used is known as maximal overlap discrete wavelets 

transform multiresolution analysis (MODWT MRA). Doing this will help re-

evaluating the squared returns proxy as well the GARCH (1,1) forecasting 

performance by using information of each frequency components time series. 

By applying this method, the original time series of S&P500 index is 

decomposed into: 

 

𝑆&𝑃500(𝑇𝑆,𝑡 ) = 𝑆&𝑃500(𝐷1)𝑡+. . . . . . . +𝑆&𝑃500(𝐷𝑗)
𝑡

  + 𝑆&𝑃500(𝑆𝑗)
𝑡
              (3.9) 

 

Where 𝑆&𝑃500(𝑇𝑆,𝑡 ) is our original time-series of S&P500 index returns 

throughout the full sample, &𝑃500(𝐷𝑗)
𝑡
  , j = 1, 2,…, J are the wavelet details 

or number of multiresolution scales under analysis and 𝑆&𝑃500(𝑆𝑗)𝑡 is the 

wavelet smooth (low-frequency part of the spectra). The original time series 

of the S&P500 index is therefore decomposed into J+1 components 

[𝑆&𝑃500(𝐷1)𝑡 to 𝑆&𝑃500(𝐷𝑗)
𝑡
   and 𝑆&𝑃500(𝑆𝑗)

𝑡
 ] each defined in the time-

domain and representing the fluctuation of the original time series of S&P500 

in a specific daily-frequency brand. For small j, the J wavelet components 

represent the higher frequency components of the original time-series, its 
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short-term dynamics. As J increases, the J wavelet components start 

representing lower frequencies movements of the original time-series, 

representing the long-term dynamics of our original variable. At last, the 

wavelets smooth captures the lowest frequency dynamics and so the original 

time-series trend. In other words, the discrete wavelet multiresolution 

analysis maps the original of S&P500 original time series in the time-domain 

and represents its constituents in a timescale domain. 

Note that if all J+1 frequency-decomposed components are added, then the 

original time-series of S&P500 returns is recovered. 

Considering the choice of J, the number of observations dictates the 

maximum number of frequencies that can be used. 8  

This research performs a J=10 level MODWT MRA to the S&P500 time 

series using the Haar wavelet filter with reflecting boundary conditions 9 . 

Since this research uses daily data, the first components 𝑆&𝑃500(𝐷1)𝑡 

captures oscillations of the S&P500 time series between 2 and 4 days. 

𝑆&𝑃500(𝐷2)𝑡 ; 𝑆&𝑃500(𝐷3)𝑡 ;  𝑆&𝑃500(𝐷4)𝑡 ;  𝑆&𝑃500(𝐷5)𝑡 ;  𝑆&𝑃500(𝐷6)𝑡 ;

 𝑆&𝑃500(𝐷7)𝑡 ;  𝑆&𝑃500(𝐷8)𝑡 ;  𝑆&𝑃500(𝐷9)𝑡  and 𝑆&𝑃500(𝐷10)𝑡 capture 

oscillations of the S&P500 returns between  4-8, 8-16, 16-32, 32-64, 64-128, 128-

256, 256-512, 512-1024 and 1024-2018 days respectively. At last, the smooth 

component, 𝑆&𝑃500(𝑆𝑗)
𝑡
, which can be re-denoted in 𝑆&𝑃500(𝐷11)𝑡 captures 

the trend and oscillations of the S&P500 and volatility forecast with a period 

longer than 2018 days (see Figure 11) 

 

 

                                                 
8 Consider N as the number of observations in the IS period, J must satisfy the next constraint: 𝑁 > 2𝐽. In 
this research there’s 2779 IS observations. 
9 All simulations have been done using MATLAB wavelet toolbox 
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By decomposing the original S&P500 into J+1 frequency we get new 

squared returns within each specific frequency for each day. Because of this, 

our volatility model will make forecasts using the information set available at 

those exact same frequencies as well as our newly squared returns for each 

specific scale. The main difference from our original 𝑓𝑡+1 volatility forecasts of 

GARCH (1,1) model in (3.2) is that 𝑟𝑡
2  is now a frequency decomposed 

variable, so within each day we will have squared returns for all the different 

frequency used. 

By doing so, it allows to evaluate the model’s conditional variance forecasts 

within a specific frequency and we’ll continue to make a daily OOS 

evaluation. 

 So, for each day of the sample we estimate: 

 

                                              𝑓𝑡+1|𝐷𝐽
=  𝜔 +  𝛼𝑟𝑡|𝐷𝐽

2 +  𝛽𝑓𝑡                                        (3.10)     

 

By using these frequencies components, our volatility forecasts will be 

𝑓𝑡+1|𝐷𝑗
  for each day using a specific frequency of the S&P500 time-series. 

So, for each OOS day we will have 𝑓𝑡+1|𝐷1
; 𝑓𝑡+1|𝐷2

; 𝑓𝑡+1|𝐷3
; 𝑓𝑡+1|𝐷4

; 𝑓𝑡+1|𝐷5
; 

𝑓𝑡+1|𝐷6
; 𝑓𝑡+1|𝐷7

; 𝑓𝑡+1|𝐷8
; 𝑓𝑡+1|𝐷9

; 𝑓𝑡+1|𝐷10
 and 𝑓𝑡+1|𝑆𝐽

 where all first ten volatility 

forecasts are the ones based on S&P500 𝐷𝐽  corresponding frequency 

component and 𝑓𝑡+1|𝑆𝐽
 is the volatility forecasts based on the trend component 

of S&P500. We note that, the sum of all those frequency-decomposed 

variances forecasts within a day won’t give the original out-of-sample 

volatility forecasts from our GARCH model for that day. 
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5.2- Forecasting evaluation in the frequency-domain 

 

To evaluate the forecasting ability of our GARCH (1,1) model, we continue 

to use the out-of-sample loss functions as well as the MSFE ratios explained 

in sub-section (4.4). Now, both functions are calculated using the frequency 

decomposed volatility forecasts.  

The daily squared returns (r2) continues to be our ex-post proxy for 

volatility to make comparisons with the results we get from a time-frequency 

domain perspective. For example, the mean out-of-sample QL for oscillations 

between 4 and 8 days is calculated as: 

 

                               QL|D2
:     mean( ∑

𝜎̂𝑡
2

𝑓𝑡+1|𝐷2

2011
𝑡=1 − log

𝜎̂𝑡
2

𝑓𝑡+1|𝐷2

− 1)                             (3.11) 

 

Where 𝜎̂𝑡
2 is the proxy values for volatility covering the OOS period (2001-

2008) and 𝑓𝑡+1|𝐷1
 are GARCH (1,1) volatility forecasts for each out-of-sample 

day, based on the wavelet details being used (in this case, the out-of-sample 

volatility forecasts underlying the information between 4 and 8 days (𝐷2) of 

S&P500 frequency decomposed time-series). The daily QL|D2
 losses are plotted 

in Figure 10. 

 

The same process is done for the MSFE ratios, that is, the  𝑀𝑆𝐹𝐸𝐺𝐴𝑅𝐶𝐻 now 

considers the volatility forecasts given by frequency decomposition  𝑓𝑡+1|𝐷𝐽
.  
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6- Results 

We now evaluate the variance forecasts of the GARCH (1,1) model by 

analyzing the daily out-of-sample QL loss function (see Figure 7) and MSFE 

ratios. Table 3 reports the results of the mean of QL losses and MSFE ratios 

throughout the out-of-sample (2001-2008) period. Those results are based only 

in a time-domain scenario. The mean QL loss of the GARCH (1,1) is quite high, 

which can be explained from the fact that our ex-post proxy captures much of 

the noise and the latter damages the forecasting accuracy. Interestingly, 

results from MSFE ratio are however significantly better. Recall that a MSFE 

ratio under 1 implies that the model produces more accurate volatility 

forecasts than the historical prevailing mean variance benchmark. 

 

After making a time-domain analysis, we extend this research by 

addressing estimations of volatility forecast in a frequency decomposed 

scenario and their respective evaluation. The aim is to see if by de-noising and 

capturing hidden periodic components of the original S&P500 time series, 

brings benefits compared to Brownlees et al. (2011) original forecasts 

evaluation. To evaluate the predictability of a frequency decomposed method, 

we compute both QL losses and MSFE ratios for each specific frequency being 

used. Summarized frequency-decomposed results are reported in Table 4. 

Overall, the best frequency-decomposed result was given with wavelet filter 

haar (also known as db1) using a frequency scale of 4-8 days. 10   This is 

consistent with Barunik an Vacha (2015) and Berger (2016) findings that most 

of the information for future volatility comes from the high-frequency part of 

                                                 
10 This research also considered different type of filtering methods like Daubechies (from d2 to d12) Symlets (from 
sym2 to sym12) and Coiflets (coif 2, coif4, coif5) although none of these presented better results than the reported 
Haar filter 
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the spectra representing very short investment horizons, since the frequency 

𝐷2 represents S&P500 index short term dynamics. Frequencies from 8-16 until 

512-1024 days ( 𝐷3  to 𝐷9 ), were the frequencies that exhibited most 

deterioration in terms of QL losses and MSE ratios, especially the frequency 

32-64 (𝐷5) that reached mean high QL losses of 45,31) making it clear that all 

those frequencies aren’t desirable to use for a forecasting purpose. The last 

frequency 𝐷11  is plotted in Figure 11 and captures the trend of S&P500 

original series. 

It’s clear that for all the frequencies used both QL losses and MSFE ratios 

are higher than the original time-domain analysis. 
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7- Conclusions 

Although wavelet techniques are indeed a useful tool and can be 

successfully used to forecast economic and financial variables summarized 

results from this study demonstrate that there’s no increases in the 

predictability of volatility. We evaluate this predictability by computing both 

QL losses and MSFE ratios for the different frequencies used, and we see that 

for all the frequencies, both of QL losses and MSFE ratios results are higher 

than the original analysis. Hence, the frequency-domain results aren’t better 

than those achieved in a time-domain scenario. Despite this fact, they show 

that volatility forecasting losses are smaller when high frequencies are used. 

In fact, the 4 to 8 days frequency gives the best results since it has the lowest 

QL loss and MSFE ratio from all the frequency brands (see Figure 8, Figure 9 

and Figure 10).  

This research is a first step towards a better understanding of decomposed 

univariate financial time-series. It remains to be tested in future research 

different frequencies combinations and their respective forecasts, since this 

research only focus on each specific frequency brand. It would also be 

interesting to undertake the same methodology using high frequency 

measures to proxy for future volatility, since many authors defend they 

exhibit some potential. 
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9- Tables and Figures  

 

Figure 1-The blue line plots the S&P500 split-adjusted and dividend-adjusted returns throughout our 

full sample period (4790 days), The orange line plots the conditional volatility resulting from our estimated 

GARCH (1,1) model. 
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Figure 2- The upper graph plots the autocorrelation function of the S&P500 split-adjusted and 

dividend-adjusted index return while the lower graph plots the autocorrelation function of the squared 

returns. 
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Figure 3- The upper graph plots the autocorrelation function of the standardized residuals 

(returns/conditional volatility). The lower graph plots the autocorrelation function of the squared 

standardized residuals. 
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Figure 4- The blue line reflects the S&P500 split adjusted and dividend adjusted returns in the OOS 

period (2001-2008). 
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Figure 5- The blue line represents our ex-post volatility proxy (r2) values in the OOS period (2001-2008). 
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Figure 6- The blue line plots the GARCH (1,1) volatility forecasts percentages in the OOS period 

(2001-2008).  
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Figure 7- Daily QL losses, where the blue lines are each value of QL losses achieved from function 

3.8 (using values from Figure 5 and Figure 6) for each out-of-sample day. The mean of these values is 

reported in Table 1.   
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Figure 8- The blue line plots S&P500 OOS returns based on a 𝐷2 frequency brand which is obtained 

from wavelet decomposition. This frequency captures the original time-series short-term behavior (4 to 

8 days). 
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Figure 9- The blue line plots the OOS GARCH (1,1) forecasts based on a S&P500 frequency 4-8 

days (see graph Figure 8). 
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Figure 10- The blue line represents the QL loss OOS values based on our ex-post proxy (r2) as well as 

our GARCH (1,1) forecasts based on 4-8 days (𝐷2) frequency parameters 
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Figure 11- The blue line plots the 𝐷11 frequency which is based on the trend of S&P500 returns obtained 

throught wavelet decomposition. This frequency captures the original time-series long-term behavior 

(>2048 days). 
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Parameter Value Standard Error t-statistic 

Log 
Likelihood 1.5689e+04   

    

GARCH (1) 0.932661*** (0.00452049) 206.319 

    

ARCH (1) 0.0627298*** (0.00399975)  15.6834 

Table 1-  The table above reports our full sample period (1990-2008) GARCH (1,1) parameters. This 

model has a constant. Parameters estimated by maximizing log likelihood as well as t-statistics for each 

one. Next to each coefficient value, in brackets, we report the robust standard error, *** denote significance 

at 1% levels, according to p-values 
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Variable Median Mean Std. Dev. Min Max 

Returns 0,0005285 0,000345 0,011337 -0,089963 0,115129 

Squared Returns 0,000028 0,0001286 0,0004483 4,00E-12 0,0132547 

Conditional Variance 0,0000744 0,0001274 0,0002116 0,0000214 0,0024418 

Conditional Volatility 0,008626 0,0100064 0,0052206 0,0046226 0,0494145 

Standardized 
Residuals 0,0667693 0,0410888 0,9988629 -6,80357 4,2781 

Squared Std. 
Residuals 0,3438263 0,9992072 1,95095 2,62E-08 46,2886 

Table 2- The table above presents the variables summarized statistics from the full sample 

estimation. There are 4790 observations. The conditional volatility is the squared root of the conditional 

variance and standardized residuals is computed dividing returns by conditional volatility. 
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Function Value 

QL  1,452 

MSFE PM 4,08E-07 

MSFE GARCH 3,11E-07 

MSFE ratio 0,763 

Table 3-  This table reports the mean QL loss function value in the OOS period as well as the MSFE 

PM, MSFE GARCH and MSFE ratio explained from (3.4) to (3.8). 
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Haar 
filtering 
 

Original 
 

𝐷1 
 

𝐷2 
 

𝐷3 
 

𝐷4 
 

𝐷5 
 

QL 1,452 1,782 1,649 2,488 8,616 45,318 

              

MSFE ratio 0,763 0,890 0,803 1,013 1,390 1,547 

              

  
𝐷6 

 
𝐷7 

 
𝐷8 

 
𝐷9 

 
𝐷10 

 
𝐷11 

 

QL 2,617 3,674 3,993 2,518 1,806 1,894 

              

MSFE ratio 0,952 0,927 1,185 0,874 0,858 0,877 

Table 4- This table reports QL loss function and MSFE ratios. The first column is the original value of 

the respective function using the OOS period (time-domain analysis). The second column reports results 

within a frequency of 2-4 days, third column reports results within a frequency of 4-8 days, fourth column 

reports results within a frequency of 8-16 days and so on for the different J+1 frequencies until the end of 

the full sample.   

   

           

 

 


