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Abstract

"Delay" has been considered as one of destabilizing factors in economic dynamics since the
seminal work of Kalecki (1935).Dynamic macroeconomic is concerned with explaining growth
and �uctuations. This paper shows how various dynamics involving cyclic �uctuations can
emerge in the standard neoclassical growth model when two distinct delays, a delay in produc-
tion and a delay in depreciation, are explicitly taken into account. We �rst con�rm that the
production delay has a stabilizing e¤ect and the depreciation delay has a destabilizing e¤ect in
a one-delay model. We then analytically derive the conditions for which stability is lost and the
bifurcates to a cycle via Hopf bifurcation. The Cobb-Douglas production function is adopted
to illustrate the analytical result numerically. It is found that stability loss and gain repeatedly
occur in the two delay model. This implies that the delay is not only a destabilizer but also
a stabilizer. On a technical level, we have a stability switching curves that are obtained by
applying a two delay di¤erential equation.
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1 Introduction

For more than a half-century, the neoclassical growth model of Solow (1956) and Swan (1956)
has been a prototype for analyzing long-run economic growth. It has the general equilibrium
structure although very simple and it brings out how an economy can enjoy positive growth rates
in a very clear way. The model is applied to study analytically as well as numerically topics
including multisector growth, cross-country income di¤erence, nonlinear population growth, the
empirics of economics growth, etc. On the other hand, business cycles that are the main concern of
macroeconomics are often observed in a real economy, however, the neoclassical model makes only
limited contributions to explain such cyclic dynamics since its steady state is locally asymptotically
stable, implying that its dynamics is monotonic or oscillatory convergent.
So far, there are several turning points at which its basic structure is modi�ed so as to give rise to

cyclical �uctuations. Among others, Day (1982) incorporates the two opposite e¤ects of increasing
capital stock into the neoclassical model, one is the positive e¤ect that is an essential source of
economic growth and the other is the negative e¤ects caused by environmental distortion of high
economic growth such as pollutions. It is then demonstrated in a discrete-time framework that
persistent irregular �uctuations including chaos can be generated when nonlinearities due to the
two e¤ects get stronger. It is thus con�rmed that a strong nonlinearity can be a source of cyclical
behavior. Since the seminal work of Kalecki (1935), it has been conjectured that a production delay
could be a source of economic �uctuations. Kydland and Prescott (1982) construct the equilibrium
growth model and empirically con�rm that a production delay is crucial for explaining aggregate
�uctuation. Recently, Zak (1999) and Szydlowski and Krawiec (2004) introduce the Kaleckian
production delay into the growth model and show an emergence of a cycle via a Hopf bifurcation.
Matsumoto and Szidarovszky (2011) reconsider Day�s discrete time model in a continuous-time
framework with the production delay. The birth of chaotic dynamics through alá period-doubling
cascade is numerically veri�ed. It conveys a new result that nonlinearities and production delays
are responsible for the birth of chaotic dynamics in a continuous-time framework.
More recently, Bianca et al. (2013) extend analysis to the case in which the neoclassical model

has two distinct delays, one refers to the time when capital is used for production and the other
to the necessary time for the capital to be depreciated. By applying the normal theory and center
manifold argument, they demonstrate the existence, the direction and stability of a Hopf bifurcation.
They have taken some important steps to a¢ rm the active roles of the delays. Further, their results
can be improved more if we can construct analytical conditions for which the stationary point of
the two delays growth model becomes stable or unstable. The main purpose of this study is to
recon�rm and extend their results in more systematic way by applying the mathematical method
developed by Gu et al. (2005) to deal with two delay models, through the use of the stability
switching curves. We will look more carefully not only the production delay but also the delay in
depreciation as sources for macroeconomic �uctuations.
The rest of the paper is organized as follows. Section 2 builds a one-delay growth model to discuss

the Kaleckian production delay. Section 3 derives the complete form of the stability switching curve
under two delays and determines the direction of crossing the imaginary axis. Section 4 con�rms
the analytical results numerically in our own example and reexamines two other examples provided
by Bianca et at. (2013) in our way. Finally, concluding remarks are given in Section 4.
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2 One delay growth model

In the literature, there are two di¤erent versions of a delay growth model. One displays a Kaleckian
gestation delay in investment inherent in the production process and no delay in depreciation of
the capital. Consequently, its capital stock accumulation is described by

_k(t) = sf(k(t� �))� �k(t): (1)

Here k(t) is the capital stock per capita at time t in continuous time, � > 0 is the delay indicating
that the capital installed at time t�� becomes available at time t, s 2 (0; 1) is a constant saving rate;
� 2 (0; 1] is the depreciation rate and f(k) is well-behaved neoclassical production function implying
that it is continuous, increasing, strictly concave, f(0) = 0 and satis�es Indada�s conditions. The
other characterizes the case in which the capital depreciation starts after the capital becomes
productive,

_k(t) = sf(k(t� �))� �k(t� �): (2)

A lot of e¤orts have been devoted to study how the gestation delay a¤ects dynamics. As will be
seen shortly, the delay in (1) does not a¤ect stability and the delay in (2) can destabilize it when
the length of the delay becomes large enough. Comparing these results easily and reasonably leads
us to mention that the delay in depreciation matters. However, studying e¤ects caused by the
depreciation delay has been limited. To shed light on roles of the depreciation delay in emergence
of macro cyclic oscillations, we move one step forward and consider two di¤erent �xed delays,

_k(t) = sf(k(t� �1))� �k(t� �2) (3)

where we call �1 a gestation delay and �2 a depreciation delay henceforth. In doing so, we can
investgate delay e¤ects caused by a change in �1 or �2.
We interpret the depreciation delay as an information collecting delay with the following reasons.

Capital k(t) represents the durable physical units such as machines, buildings, factories and so on.
Depreciation is thought to be a decrease in the economic value of the capital. Thus the capital will
be depreciated through physical depreciation, obsolescence or changes in demand for its service.
However, in real world, there are some di¢ culties in determining "depreciation" and "value" with
su¢ cient accuracy. It is apparently challenging to measure physical depreciation of the capital while
operating it. It is also di¢ cult to predict future demand �uctuations instantaneously. On the other
hand, the capital value is considered to be the present value of the �ow of services the capital will
generate in future. Hence, to determine the value, it is, at least, necessary to obtain information on
the life of the capital and the scrap value at the end of the life. Again, to obtain the accurate values
of these poses serious challenge. It is often observed that the exactly same two machines may have
di¤erent life time and di¤erent scrap values under the di¤erent operational environments. Since
many diverse factors a¤ect those values, it may take some amount of time to evaluate correctly the
capital value on which depreciation will be determined. Since the factors a¤ecting the length of �1
and �2 are independent and interdependent, it is undetermined in general which has a longer length.
If the depreciation is thought to start after the capital becomes productive, �2 could be longer than
�1: If the depreciation starts before capital is activated, �2 could be shorter. Our consideration
reveals that the depreciation delay plays a positive role a¤ecting economic �uctuations.
A stationary point of (3) is a positive solution of sf(k) � �k = 0, where existence and number

of equilibria depend on properties of function f . To examine stability of an stationary point of (3),
say k�; (3) is linearized at k = k�,

_k(t) = s�[k(t� �1)� k�]� �[k(t� �2)� k�]; (4)
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where � = f 0(k�) and s� < � due to Inada�s conditions. Looking for exponential solutions of
homogeneous version of (4), that is solution of the form k(t) = e�tu with u a constant, then, after
substitution, we obtain the corresponding characteristic equation

�� s�e���1 + �e���2 = 0: (5)

In case of absence of delays, (5) becomes � = s�� � < 0 and thus, the stationary point k� of (3) is
locally asymptotically stable.
Before proceeding to the general case where two delays are positive, we quickly overview the

special case in which only one delay is positive in (5). There are three cases depending on which
variable has a delay, (1) �1 = 0 and �2 > 0, (2) �1 > 0 and �2 = 0 and (3) �1 = �2 = � > 0: For
each of three, we have a corresponding result.

Lemma 1 If �1 = 0 and �2 > 0; then there is a critical value ��2 > 0 such that the stationary state
of equation (4) is locally asymptotically stable for �2 < ��2 and unstable for �2 > 0 where

��2 =
�q

�2 � (�s)2
sin�1

0@
q
�2 � (�s)2

�

1A :
Furthermore, equation (4) undergoes a Hopf bifurcation at k� when �2 = ��2.

Proof. The characteristic equation (5) is reduced to

�� s�+ �e���2 = 0:

Under the assumption of � = i! with ! > 0, separating the real and imaginary parts of the
characteristic equation gives rise to

� cos!� = �s

� sin!� = !:

Squaring both equations and adding them present

!� =

q
�2 � (�s)2 > 0

Substituting !� into the imaginary part, � sin!� = !; and then solving for � yields the critical
value ��2 in the form given above.1 Selecting �2 as the bifurcation parameter, we consider � as
function of �2: � = �(�2). Di¤erentiating the characteristic equation with respect to �2, we obtain

[1� (s�� �) �2]
d�

d�2
= � (s�� �) :

It is immediate to check that i!� is a simple root. In fact, if it were a repeated root, then � = i!
would satisfy both equations

�� s�+ �e���2 = 0 and 1 + �e���2 (��2) = 0
1Substituting !� into the real part presents the same critical value in a di¤erent form.
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implying that 0 = 1� �2(s�� �), which is impossible if � is purely imaginary. Next, we have

sign

�
d (Re�)

d�2

�
�=i!�; �2=��2

= sign

"
Re

�
d�

d�2

��1
�=i!�; �2=��2

#
= sign

"
1

(!�)
2
+ s2�2

#
> 0:

This inequality implies that all roots cross the imaginary axis at i! from left to right as �2 increase,
which completes the proof.

Lemma 2 If �1 > 0 and �2 = 0; then the stationary point of (4) is locally asymptotically stable for
any value of �1 > 0.

Proof. We can prove this Lemma in the same way as Lemma 1. Indeed, the characteristic equation
(5) is reduced to

�+ � � �se��� = 0:

Assume that � = i! with ! > 0 with which the real part and imaginary part of the characteristic
equation are

s� cos!� = �

s� sin!� = �!:
Squaring both sides of each equation and adding them give

!2 = (�s)2 � �2 < 0

where the inequality is due to s� < �: Hence there is no ! satisfying the characteristic equation.
No stability switch occurs.

Lemma 3 If �1 = �2 = � > 0, then there is a critical value �� such that the stationary point is
locally asymptotically stable for � < �� and unstable for � > �� where

�� =
�

2 (� � �s) > 0.

Proof. The characteristic equation (5) is reduced to

�+ (� � s�) e��� = 0:

Assume that � = i! with ! > 0: It is substituted into the above characteristic equation that is
separated to the real part and the imaginary part,

(� � s�) cos!� = 0

(� � s�) sin!� = !:
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Both equations is solved simultaneously to obtain a solution of ! denoted by !�: We then have
!�� = �=2 from the real part and !� = �� s� from the imaginary part. From the second equation
above, we can obtain the value of � for which the characteristic equation has pure imaginary roots,

�� =
�

2 (� � �s) :

Hence we obtain stability for � < �� and instability for � > ��.

Lemma 1 is a new result that the depreciation delay can destabilize the stationary point, which
is locally asymptotically stable otherwise. Lemma 2 is equivalent to Proposition 1 of Bianca et al.
(2013) that the gestation delay is harmless or, it could be said, a stabilizer, meaning that stability
of the stationary state is preserved regardless of values of �1. Lemma 3 has been considered in Zak
(1999)2 and shows that a larger length of the equal delay can make the stationary point unstable. It
is further possible to show that a stationary point of (4) bifurcates to a periodic cycle at the critical
point �� as shown in Lemma 1. In Lemmas 1 and 3, there are in�nitely many solutions for �2 and
� : We show that at all �2 and � ; one eigenvalue changes real prt from negative to positive, and
stability is lost at the smallest critical values of �2 and � :3 These critical values of the delay indicate
that as the lengths of delay change, the stability of the stationary point qualitatively changes. Such
phenomena are referred to as stability switch.
In Figure 1, the stability switching loci of �� and ��2 are illustrated with respect to � as downward-

sloping blue and red curves in which �s is taken to be 1=10: It is seen that the blue curve is located
above the red curve. This di¤erence between �� and ��2 (that is, the striped region) is due to
a stabilizing role of the gestation delay. On the red curve, the depreciation delay in equation
(1) destabilizes the stationary point whereas, in equation (2), the stabilizing e¤ect caused by the
gestation delay dominates the destabilizing e¤ect by the depreciation e¤ect. Thus, equation (2) is
still stable there. Hence Lemmas 1, 2 and 3 lead to the following result.

Theorem 1 A delay neoclassical growth model is always stable when it has only a gestation delay,
�1 and becomes unstable when it has only a depreciation delay and �2 > ��2: It is numerically veri�ed
that the stable region of the equal delay model is larger than that of the model with �2 due to the
stabilizing e¤ect of �1:

2However, his proof is inaccurate. His equations (6) and (7) corresponds to the imaginary and real parts but are
di¤erent from ours although the characteristic equation is the same. "�" in his (6) should be interchanged with "!"
in his (7).

3See Matsumoto and Szidarovszky (2012, 2013) for more rigorous discussions.
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Figure 1. Stability switching curves, ��

and ��2

3 Two Delay Growth Model

We now consider the general case of �1 > 0, �2 > 0 and �1 6= �2; focusing on the stabilizing e¤ect
of �1 and the destabilizing e¤ect of �2. This issue has not been investigated yet and is the main
part of this study. As �1 and �2 change, equation (3) can switch from stability to instability, or vice
versa, only when at least one characteristic root moves to the imaginary axis. Thus, the stability
analysis of (3) requires calculating the characteristic roots � = i! of the characteristic equation
(5). To study the change of stability when �1 and �2 both vary, we will follow the methodology of
Gu et al. (2005) with the use of the stability crossing curves, which are de�ned as the curves that
separate the stable and unstable regions in the (�1; �2) plane. To apply this method, we rewrite
equation (5) as

p(�; �1; �2) = p0(�) + p1(�)e
���1 + p2(�)e

���2 = 0; (6)

where
p0(�) = �; p1(�) = �s�; p2(�) = �:

Next we check the following assumptions on p(�; �1; �2) to exclude some obvious trivial cases:

I) deg[p0(�)] � max fdeg[p1(�)]; deg[p2(�)]g] (existence of a principal term).

II) p0(0) + p1(0) + p2(0) 6= 0 ("0" is not a solution of (6) for any pair (�1; �2)):

III) The polynomials p0(�); p1(�) and p2(�) do not have common roots (in order to simplify the
expressions).

IV) lim
�!1

�����p1(�)p0(�)

����+ ����p2(�)p0(�)

����� < 1 (restriction on di¤erence operator).
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Now, conditions I), II) and IV) hold since deg[p0(�)] = 1 and deg[p1(�)]=deg[p2(�)]] = 0,
p0(0) + p1(0) + p2(0) = �s� + � 6= 0; and the limit of each fraction in absolute value is equal to
zero as �!1, respectively. Finally, condition III) is clearly satis�ed.
A pair (�1; �2) 2 R2+ is said to be a crossing point if p(�; �1; �2) = 0 has at least one solution for

� on the imaginary axis. The set of all crossing points is known as the stability crossing set, and is
denoted by T . An ! > 0 is known as a crossing frequency if there exists at least one pair (�1; �2)
such that p(i!; �1; �2) = 0. The set 
 of all crossing frequencies is called the crossing frequency
set, i.e.,


 = f! > 0 : p(i!; �1; �2) = 0 for some (�1; �2) 2 R2+g
Considering that p0(�) has no nonzero roots on the imaginary axis, the stability analysis of (6)

can be reduced to the analysis of the equation

a(�; �1; �2) = 1 + a1(�)e
���1 + a2(�)e

���2 = 0; (7)

where

a1(�) =
p1(�)

p0(�)
= �s�

�
; a2(�) =

p2(�)

p0(�)
=
�

�
:

The form of equation (7) allows to replace the investigation on crossing the imaginary axis into the
geometric problem of a triangle. Speci�cally, for each given � = i!; ! > 0; the term a(�; �1; �2)
is represented in the complex plane as the sum of three vectors 1; a1(�)e���1 and a2(�)e���2 ;
with magnitudes 1; ja1(i!)j and ja2(i!)j ; respectively, which are independent of �1 and �2: If these
vectors create a triangle (i.e., a(�; �1; �2) = 0), then the characteristic equation has a solution
� = i! for some delays �1 and �2: Since the length of each edge of a triangle cannot exceed the
sum of the lengths of the remaining two edges, we derive that the range of ! to parameterize T
are the solution of the following three inequalities:

ja1(i!)j+ ja2(i!)j � 1; �1 � ja1(i!)j � ja2(i!)j � 1: (8)

Since

ja1(i!)j =
����s�
i!

��� = s�

!
and ja2(i!)j =

���� �i!
���� = �

!
;

the triangle conditions (8) give

s�+ � � !; �! � s�� � � !:

Recalling s�� � < 0; we obtain
�s�+ � � ! � s�+ �: (9)

As a result, we get

 = [�s�+ �; s�+ �] :

For any ! 2 
, the characteristic equation (4) has a pair of purely imaginary roots and it is now
possible to identify solutions (�1; �2) of p(�; �1; �2) = 0 as the following two sets of curves in the
�rst quadrant of the (�1; �2)-region:

C+(m;n) :

8>><>>:
�+1;m = �

+
1;m(!) =

arg[a1(i!)] + (2m� 1)� + �1(!)
!

�+2;n = �
+
2;n(!) =

arg[a2(i!)] + (2n� 1)� � �2(!)
!

(10)

8



and

C�(m;n) :

8>><>>:
��1;m = �

�
1;m(!) =

arg[a1(i!)] + (2m� 1)� � �1(!)
!

��2;n = �
�
2;n(!) =

arg[a2(i!)] + (2n� 1)� + �2(!)
!

(11)

form = m�
0 ;m

�
0 +1;m

�
0 +2; :::; and n = n

�
0 ; n

�
0 +1; n

�
0 +2; :::; where n

+
0 ; n

�
0 ;m

+
0 ;m

�
0 (n

+
0 � n�0 and

m+
0 � m�

0 ) are the smallest possible integers such that the corresponding �
n+0 +
1 ; �

n�0 �
1 ; �

m+
0 +

2 ; �
m�
0 �

2

values are nonnegative.
In the expressions (10) and (11), the terms arg[a1(i!)] and arg[a2(i!)] denote the argument of

a1(i!) and a2(i!); respectively, and are given by

arg[a1(i!)] = arg
h
�s�
i!

i
= arg

hs�
!
i
i
=
�

2

and

arg[a2(i!)] = arg

�
�

i!

�
= arg

�
� �
!
i

�
=
3�

2
;

while �1; �2 2 [0; �] represent the internal angles of the triangle, and are determined by the law of
cosines as follows,

�1(!) = cos
�1

 
1 + ja1(i!)j2 � ja2(i!)j2

2 ja1(i!)j

!
= cos�1

�
!2 + s2�2 � �2

2s�!

�
and

�2(!) = cos
�1

 
1 + ja2(i!)j2 � ja1(i!)j2

2 ja2(i!)j

!
= cos�1

�
!2 � s2�2 + �2

2�!

�
:

The inequalities in (9) yield that the arccosine functions are well-de�ned being

�1 � !2 + s2�2 � �2

2s�!
� 1 and � 1 � !2 � s2�2 + �2

2�!
� 1:

In conclusion, equations (10) and (11) are given by

C+(m;n) :

8>><>>:
�+1;m(!) =

1

!

h
��
2
+ 2m� + cos�1(A)

i
�+2;n(!) =

1

!

h�
2
+ 2n� � cos�1 (B)

i (12)

and

C�(m;n) :

8>><>>:
��1;m(!) =

1

!

h
��
2
+ 2m� � cos�1 (A)

i
��2;n(!) =

1

!

h�
2
+ 2n� + cos�1 (B)

i
;

(13)

where

A = A(!) =
!2 + s2�2 � �2

2s�!
, B = B(!) =

!2 � s2�2 + �2

2�!
> 0:

Furthermore, noticing that cos�1(A); cos�1 (B) 2 [0; �], one has !�+1 ; !�
+
2 2 [��=2; �=2] with

m = n = 0.

9



Theorem 2 Let n be �xed. Then the segments of C+(m;n) and C�(m;n) form a continuous curve
as m increases.

Proof. In order to understand the possible con�gurations of stability crossing curves of our model,
we analyze the behavior of C+(m;n) and C�(m;n) at the initial and end points of 
. Since

�1(�s�+ �) = cos�1(�1) = �; �2(�s�+ �) = cos�1(1) = 0

and
�1(s�+ �) = cos

�1(1) = 0; �2(s�+ �) = cos
�1(1) = 0;

(12) gives that the initial and end points of C+(m;n) are

I+(m;n) =

�
1

�s�+ �

�
3�

2
+ (2m� 1)�

�
;

1

�s�+ �

�
3�

2
+ (2n� 1)�

��
and

E+(m;n) =

�
1

s�+ �

��
2
+ (2m� 1)�

�
;

1

s�+ �

�
3�

2
+ (2n� 1)�

��
:

As well, it follows from (13) that the initial and end points of C�(m;n) are

I�(m;n) =

�
1

�s�+ �

��
2
+ (2m� 1)� � �

�
;

1

�s�+ �

�
3�

2
+ (2n� 1)�

��
and

E�(m;n) =

�
1

s�+ �

��
2
+ (2m� 1)�

�
;

1

s�+ �

�
3�

2
+ (2n� 1)�

��
:

Since I+(m;n) = I�(m + 1; n) and E+(m;n) = E�(m;n); we arrive at the conclusion that the
curves C+(m;n) and C�(m;n) are connected at the endpoint of 
, while C+(m;n) and C�(m+1; n)
are connected at the initial point of 
:

After having determined the stability crossing curves corresponding to 
; we will discuss the
direction in which the solutions of (7) cross the imaginary axis as (�1; �2) deviates from a curve in
T and �nd the directions of crossing as one moves along the curve.
For discussing the direction of crossing, we need some de�nitions. We call the direction of the

stability switch curve with increasing ! the positive direction, while the region on the left hand side,
as we head in the positive direction of the curve, is called the region on the left, denoted by L. The
region on the right hand side is called the region on the right, denoted as R.
Gu et al. (2005) proved (see Proposition 6.1) that if � = i! is a simple solution of equation (7),

as (�1; �2) moves from R to L of the corresponding curve in T ; then a pair of solutions of (7) cross
the imaginary axis to the right if Q > 0, where

Q = Im
h
a1(i!)a2(�i!)ei!(�2��1)

i
; (14)

and the crossing is in the opposite direction if Q < 0:

Theorem 3 As (�1; �2) moves from R to L, we have

1) a stability loss if ! < � � s� on C+(m;n) or if ! > � � s� on C�(m;n);
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2) a stability gain if ! > � � s� on C+(m;n) or if ! < � � s� on C�(m;n):

Proof. In the �rst part of the proof we show by contradiction that the root � = i! is simple.
Suppose � = i! is a root of (7) which is repeated. Then, the derivative of (7) with respect to �
evaluated at � = i! must also be zero, and we have the following two equations(

i! � s�e�i!�1 + �e�i!�2 = 0;

1 + s��1e
�i!�1 � ��2e�i!�2 = 0:

(15)

From (15), we get

e�i!�1 =
1 + i!�2
s�(�2 � �1)

; e�i!�2 =
1 + i!�1
�(�2 � �1)

: (16)

Separating real and imaginary parts in (16), and then comparing, we obtain

sin!�1 = �!�2 cos!�1; sin!�2 = �!�1 cos!�2:

Consequently,
tan!�1 = �!�2; tan!�2 = �!�1: (17)

If we are on C+(m;n); we notice from (12) that, being cos�1(A); cos�1 (B) 2 [0; �], one has that
with m = n = 0; !�+1 ; !�

+
2 2 [��=2; �=2]. Using (17), and recalling that the tangent function is

an odd function, we arrive at the identity

tan!�+1 = tan
�1 !�+1 :

On the other hand, a graphical inspection shows that these two functions do not have nonzero
intersection when !�+1 2 (��=2; �=2): The proof when we are on C�(m;n) is similar. In conclusion,
we have shown that the root � = i! is simple. In this second part of the proof we �nd the conditions
for Q > 0 (stability loss) and for Q < 0 (stability gain). From (14),we have

Q = Im

�
�s��
!2

[cos!(�2 � �1) + i sin!(�2 � �1)]
�
= �s��

!2
sin!(�+2 � �+1 ): (18)

On C+(m;n); it is

!(�+2 � �+1 ) = [2(n�m) + 1]� �
�
cos�1(A) + cos�1(B)

�
: (19)

Therefore, from (18) and (19), using the angle-sum and angle-di¤erence identities for trigonometric
functions, i.e. sin(u� v) = sinu cos v� cosu sin v and cos(u� v) = cosu cos v� sinu sin v; it follows

Q = �s��
!2

sin
�
cos�1(A) + cos�1(B)

�
=
s��

!2

n
�B

p
1�A2 �A

p
1�B2

o
:

On C+(m;n); one has

sign (Q) = sign
�
�B

p
1�A2 �A

p
1�B2

�
.

Since B > 0; and so �B < 0; we see that Q < 0 if A � 0; i.e. if ! �
p
�2 � s2�2: Let A < 0; i.e.

! <
p
�2 � s2�2. Then Q < 0 if B > �A; i.e. if ! > � � s�: Since

p
�2 � s2�2 > � � s�, we have

that Q < 0 if ! > � � s�: As well, we have that Q > 0 for ! < � � s�:
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Similarly, on C�(m;n); one has

!(��2 � ��1 ) = [2(n�m) + 1]� +
�
cos�1(A) + cos�1(B)

�
;

yielding

Q =
s��

!2
sin
�
cos�1(A) + cos�1(B)

�
=
s��

!2

n
B
p
1�A2 +A

p
1�B2

o
:

Hence,

sign (Q) = sign
�
B
p
1�A2 +A

p
1�B2

�
on C�(m;n):

Proceeding as before, we derive Q < 0 if ! < � � s� and Q > 0 if ! > � � s�:

4 Numerical Simulations

We numerically justify the validity of the analytical results obtained in Section 3. To this end, we
adopt the Cobb-Douglas production function,

f(k) = Ak�

with � 2 (0; 1) and A = 1: Since the stationary per capita k� solves s(k�)� = �k�, the marginal
product at the stationary point satis�es the following relation,

� (k�)
��1

=
��

s
(= �)

leading to s� = ��.
In the �rst numerical example, we specify the parameter values as follows:

s = 0:3; � = 0:5 and � = 0:1:

Figure 1(A) shows the stability switching curve in which the red segments are described by C�(m; 0)
form = 1; 2; 3; 4 and the left most blue segment by C+(0; 0) and the other blue segments by C+(m; 0)
for m = 1; 2; 3. Notice that m is a horizontal-shift parameter and n is a vertical-shift parameter.
The curve divides the non-negative (�1; �2) plane into two regions. The stationary point is stable
in the region including the origin4 and unstable in the other region. We immediately observe the
two results given in Proposition 1 and in the �rst half of Theorem 3 of Bianca et al. (2013).

(1) The stationary point k� is always stable for �2 = 0 because it is locally asymptotically stable
for �1 = 0 and no stability switch occurs for any �1 > 0 as the stability switching curve does
not intersect the horizontal axis. These are also shown in Lemma 2.

(2) For �1 = 0; the stationary point is locally asymptotically stable for �2 < �02; loses stability
at �2 = �02 and unstable for �2 > �02 where �

0
2 ' 12:09 is the intersection of the most left

blue curve with the vertical axis as shown in Figure 2(A). Lemma 1 formally proves this
observation.5

4We have already con�rmed that k� is stable in case of no delays (i.e., �1 = �2 = 0).
5The critical value �02 is identical with �

�
2 obtained in Lemma 1. Hence

�02 =
1

�
p
1� �2

sin�1
�q

1� �2
�
=
20�

3
p
3
' 12:09

where �s = �� is used to simplify the form of �02:
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We can obtain more results. First, notice that since the blue curves take U -shaped form, it has
a minimum value denoted by �m2 ' 9:35, which is obtained by di¤erentiating �2;m(!) with respect
to ! and solving the resultant expression being equal to zero.

(3) For �2 < �m2 ; any �1 � 0 is harmless implying that the equilibrium point is locally asymp-
totically stable. The destabilizing e¤ect caused by the depreciation delay is thought to be
dominated by the stabilizing e¤ect by the gestation delay.

(4) The upward sloping solid black line is the locus of �1 = �2 (i.e., diagonal) and passes through
the connecting point of I+0; 0) and I�(1; 0) where

I+0; 0) = I�(1; 0) =

�
�

2(� � �s) ;
�

2(� � �s)

�
:

Notice that the both elements are the same and equivalent to �� obtained in Lemma 3.
For asymmetric pair of (�1; �2) in a small neighborhood around the diagonal, the resultant
dynamics could be similar to that with a pair on the diagonal.

We now turn attention to Figure 1(B) that is an enlargement of the shaded rectangular region
in Figure 1(A). According to Theorem 2, both C+(0; 0) and C�(1; 0) start but in the opposite
direction at the green point where I+(0; 0) = I�(1; 0) holds and both C+(1; 0) and C�(1; 0) �nally
arrive at the yellow point where E+(1; 0) = E�(1; 0) holds. As shown by arrows, the point of
(�1; �2) on the red curve moves from the green point to the yellow point as the value of ! increases.
By the same token, the point on the lower blue curve moves forward to the yellow point and the
point on the upper blue curve moves away from the yellow point as the value of ! increases. As
seen in Figure 1(B), the vertical line standing at ��1 = (�m1 + �

M
1 )=2 crosses the stability switching

curve three time at points a; b and c where �m1 ' 29:8 and �M1 ' 40:57 are the minimum and
maximum values of � along the inverse S-shaped red curve. The �2-value of point a is calculated as
follows. Solving �+1;1(!) = ��1 gives !a ' 0:145 that is, in turn, substituted into ��2;0(!) to determine
�a2 ' 9:56. In the same way, we have !b ' 0:092 and � b2 ' 22:63 at point b and !c ' 0:051 and
� c2 ' 33:14 at point c. At each point, the stability switch occurs according to Theorem 3:

(5-a) Since the lower blue curve is described by C+(1; 0) and passes through point a from right
to left in the positive direction, the R-region is above the curve and the L-region is below.
The speci�ed values of the parameters lead to � � s� = � � �� = 0:05 < !a, the value of !
at point a. Theorem 2 (1) implies that as (�1; �2) moves downward from R to L along the
vertical line passing though point a; the stability is gained.

(5-b) The red curve is described by C�(1; 0). With the positive direction in the neighborhood of
point b, the pair of the delay moves right to left along the downward part of the red curve as
the arrows exhibit. The R-region is above the curve and the L-region is below. Hence, as in
the same way as above, Theorem 2 (1) indicates that the stability is lost when the pair of the
delays moves downward from R to L along the vertical line passing through point b at which
!b > � � s� on C�(1; 0):

(5-c) The positive direction is reversed in the neighborhood of point c so that the R-region is
below the positive sloping part of the red curve and the L-region is above. Theorem 3 1) also
indicates that the stability is lost when the pair of the delay moves upward from R to L along
the vertical line passing thorough point c at which !c > � � s� on C�(1; 0):
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The last results are summarized as follows: when the value of �2 increases along the vertical line
at ��1 2 (�m1 ; �M1 ), the switch from stability to instability occurs at the �rst intersection, the stability
is regained at the second intersection and the stability is lost again at the third intersection. No
stability switch occurs for further increase of �2:

(A) Stability switching curve (B) Enlargement

Figure 2. Stability switching curve

The dynamic results we have obtained so far concern local dynamics. To examine global dy-
namics, we perform numerical simulations. Figure 3 is a bifurcation diagram of two delay model
with respect to �2 along the vertical line at �� in Figure 2(B). It has been proved that the stationary
point loses stability at �a2 and �

c
2 and gains stability at �

b
2 and these theoretical results are numer-

ically con�rmed in Figure 3 where the red curves describe trajectories of k(t) for t 2 [8; 35]: It is
further seen that a Hopf cycle appears just after �2 passes through �a2 and just before �2 arrives at
� c2: It follows from this bifurcation diagram, the trajectories become negative and loses its economic
meaning for most values �2 in the unstable interval [�a2 ; �

b
2]. It can be supposed that the unstable

depreciation delay e¤ect becomes rapidly larger than the stable gestation delay e¤ect. It is also
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observed that an economically meaningful limit cycle appears for �2 larger than � c2:

Figure 3. Bifurcation diagram

We now visit the numerical examples considered by Bianca et al. (2013) and con�rm their
results in our way. We start to examine their �rst and second examples together, both of which
have the same parameter values

s = 0:11; � = 0:1 and � = 0:8

and two sets of the delay combination (�1; �2);

A = (1; 2) and B = (3; 2)

where point A represents a case of �1 < �2 and so does point B a case of �1 > �2. The stability
switching curve is illustrated in Figure 4(A) in which the solid blue and red curves are described
by C+(m; 0) and C�(m; 0) for m = 1; 2. Let us examine dynamics at point A. For �1 = 1; we
can calculate the corresponding value of �2 to be on the stability switching curve by two steps. At
the �rst step we solve �+1;0(!) = 1 to obtain !1 ' 0:744. At the second step this !1 is substituted
into ��1;0(!1) ' 2:013: Hence, this threshold value is slightly larger than 2: Point A is below the
stability switching curve and thus time trajectories under the A-speci�cation converge to the sta-
tionary point. We now turn attention to point B: Without any calculations, it is apparent that
point B is located below the stability switching curve and thus the stationary point is also locally
asymptotically stable under the B-speci�cation. Using the stability switching curve, we can con�rm
that the model with either the A-speci�cation or the B-speci�cation is locally asymptotically stable
without performing numerical simulations. They also numerically show that stability is sensitive
to the selection of the value of �. It is shown that stability under � = 0:1 is lost when the value is
decreased to � = 0:01. We illustrate the stability switching curve under � = 0:01 as the dotted blue
and red curve in Figure 4(A) and �nd that points A and B are above the dotted curve, implying
instability.
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We have two more results. One is that �1 becomes harmless when �2 < �m2 ' 1:751 and
the other is that stability loss and gain can occur repeatedly as the stability switching curve is
wave-shaped. In particular, when the value of �1 is increased along the horizontal line at �2 = 2;
the stability is gained whenever the horizontal line crosses the positive sloping blue curve whereas
the stability is lost whenever the horizontal line crosses the negative sloping red curve. Although
we do not provide a bifurcation diagram obtained under these new parameter speci�cation, it is
con�rmed �rst that a Hopf bifurcation can occur when stability is lost and second that economically
meaningful cycles are obtained only a very small interval of time delay as shown in Figure 3.
In their third example, the parameter values are changed to

s = 0:41; � = 0:8 and � = 0:35

and the combination of delays is selected as

C = (10; 2):

The corresponding stability switching curves are illustrated by the blue curve and blue-red curve
in Figure 4(B). For �1 = 10; the corresponding �2-value of C+(1; 0) is approximately 2:018; slightly
larger than 2: Therefore point C is actually located in the stable region below the stability switching
curve. In consequence, although it takes much longer time to arrive at the equilibrium point, as
point C is very close to the switching curve, the equilibrium point is locally asymptotically stable,
oscillations can occur for a long time. In this example, the multiple stability loss and gain can
occur. In fact, if we increase the value of �2 along the dotted vertical line at �1 = 10; we have three
intersections, stability is lost at the �rst intersection at �2 ' 2:018; regained at crossing point a
with the red curve �a2 ' 6:676 and �nally lost again at crossing point b with the upper blue curve,
� b2 ' 11:868.

(A) s = 0:11; � = 0:1; � = 0:8 (B) s = 0:41; � = 0:8; � = 0:35

Figure 4. Stability switching curves in examples of Bianca et al. (2013)
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5 Concluding Remarks

Stability of the traditional neoclassical model was examined under the assumption that there were
two distinct delays, one is the gestation or production delay and the other is the depreciation
delay. Con�rming that the no delay version was locally asymptotically stable, we demonstrated
analytically and numerically that it could generate qualitatively di¤erent dynamics once one or two
delays were introduced:

(1) In one delay version, the gestation delay has a stabilizing e¤ect and the depreciation delay has
a destabilizing e¤ect, implying that the model with the gestation delay was always locally
asymptotically stable and the stability of the model with the two but equal delays depends
on the relative magnitude of the opposite e¤ects.

(2) In two delays version, stability switching curves were constructed in Theorem 2 and stability
loss and gain on the stability switching were con�rmed in Theorem 3.

(3) In numerical version with two delays, we have several results:

(3-a) the stability switching curve can take a wave-shape, implying multiple occurrence of stability
loss and gain;

(3-b) there is a threshold value of the depreciation delay (i.e., �m2 ), the stationary point is locally
asymptotically stable if �2 < �m2 , regardless of a value of �1;

(3-c) although the existence of a Hopf cycle is con�rmed, it depends on the parameter speci�cation
whether a resultant cycle is economically meaningful.

One possible direction of extending our study is to introduce delays into the optimal growth
model. Asea and Zak (1999) and Zak (1999) present partial results that should be improved. The
other possible direction is to consider a two-sector growth model with multiple delays. Furuno
(1965) shows the existence of a cycle under the Leontief type production function. It is interesting
to examine the same issue under the neoclassical production function and two delays.
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