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Abstract—Since 2016 the fracture of the Larsen–C ice shelf
has been regularly observed in the Eastern Weddell Sea (68◦S,
61◦W, Antarctica). This process led to the final collapse in July
2017, when an area of about 6000 km2 (i. e., about 9–12% of the
whole shelf) was lost. In this study the resulting calved iceberg,
termed as “A–68” from the U. S. National Ice Center, is observed
using multi–frequency and multi–polarization Synthetic Aper-
ture Radar (SAR) satellite platforms that include L–band Alos
PalSAR–2, C–band Sentinel–1 and X–band COSMO–SkyMed. A
large set of SAR scenes were considered, collected in ScanSAR
imaging modes over a time span of about 1 year, to analyze the
iceberg properties and its melting process and drifting.

Index Terms—SAR, polarization, segmentation, iceberg,
Larsen ice shelf

I. INTRODUCTION

The iceberg “A–68”, whose surface area and weight are
about 6000 km2 and one trillion tonnes, respectively, calved
from the Larsen–C ice shelf in the Eastern Weddell Sea (68◦S
61◦W, Antarctica) in July 2017. It is one of the largest icebergs
ever recorded, whose calving reduced the overall size of the
Larsen–C ice shelf by about 9–12% (see Fig. 1).

The fracture of the Larsen–C Ice Shelf and the correspond-
ing origin of the giant tabular iceberg have been continuously
monitored since 2016 with particular interest to the possible
worrisome evolution for climate change, sea level rise, safe
navigation, etc. [1], [2].

In this context, a continuous, updated and effective mon-
itoring of polar regions is ensured by satellite Synthetic
Aperture Radar (SAR) instruments that provide useful imagery
characterized by fine resolution (up to few meters), dense
revisit time (up to few days) and wide area coverage (up
to hundreds kilometers). In addition, the SAR capability
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Fig. 1. Study area that includes the “A–68” iceberg calved from the Larsen–C
ice shelf. Credit to Joshua Stevens (Landsat data are from the U.S. Geological
Survey).

of transmitting microwave radiations allows observing polar
regions almost independently on weather conditions (clouds,
rain cells, etc.) and solar illumination. In this study, the
potential of spaceborne SAR sensors to support the Larsen–
C A–68 iceberg monitoring, i. e., detection and tracking, is
addressed. The analysis is undertaken according to single–
polarization intensity (HH, horizontal transmit/horizontal re-
ceive) and topological parameters used to define a set of linear
functions for iceberg recognition [3], and to dual–polarization
intensity (HH and HV, horizontal transmit/vertical receive) to



evaluate the coherent versus incoherent scattering contribution
[4], [5].

When dealing with iceberg detection, different segmentation
algorithms have been proposed and validated on C– and X–
band SAR imagery that are based on constant false alarm rate
(CFAR), watershed and finite mixture model [6]–[8]. When
dealing with iceberg drift tracking, Global Positioning System
(GPS) buoys deployed on the icebergs can be used [9], [10]. In
addition, when dual–polarization information is available, the
iceberg/clutter contrast can be enhanced to improve segmen-
tation and additional information on the scattering properties
of the icebergs can be inferred [11], [12].

In this study, two different approaches for the Larsen–C
A–68 iceberg monitoring are presented. A first method is
developed that exploits the inherent random nature of the
SAR imagery, i. e., functional methods to regularize the dis-
tribution of the pixel–wise scatterers and, therefore, to imple-
ment automatic segmentation, can be accomplished, according
to the stochastic process theory, by using energy function
representations through the Markov Random Fields (MRFs)
[13]. A second techniques is also proposed that exploits the
power ratio between the coherent and incoherent received
signals, namely the Rice factor (RF), to distinguish regions
resulting in coherent bacskcatter from areas that result in an
incoherent backscattering [4], [5]. The proposed methodology
is implemented according to the following steps: i) speckle
filtering, ii) stochastic segmentation, iii) multi–polarization
evaluation of RF and iv) estimation of the geographic position
of the iceberg centroid and total surface area.

II. METHODOLOGY

In this section, the theoretical rationale that lies at the basis
of the proposed analysis is presented.

A. MRF segmentation

SAR imagery is speckled; hence, a preliminary step consists
of de–speckling. Then, segmentation is undertaken.

Speckle is a random inherent process that represents a
multiplicative noise in SAR imagery [14]. The latter must be
filtered out in order to make image features suitable for the
subsequent segmentation process. In this study, two different
kinds of elements must be integrated, i. e., open–sea and ice–
covered objects. Their different morphological properties are
preserved during the speckle filtering by using the non–linear
algorithm proposed in [15]. The gray–scale morphological
reconstruction of the intensity patterns consists of applying
erosion (E) and dilation (D) operations as follows:

ki+1 = D[ki, b] ∩ f , (1)

where i is the finite index of the number of morphological
operations, f is a mask, b is a flat disk–shaped structuring
element defined by a 3-pixels radius and the image fm ⊂ f is
a marker such that k1 = fm. The erosion of the original image
by b produces the primary marker image, i.e., fm = E[f ,b].
The iterative dilation method described in eq. (1) results in the
final reconstruction Rf (fm) = kN , where N is the number

Fig. 2. Example of the CSK SAR imagery collected on October 9, 2017
over the region of the A–68 iceberg. a) HH–polarized NRCS; b) MRF–based
segmentation output.

of the last dilation operation. As a result, the iterative dilation
by a 8–pixels connectivity matrix removes gray–level features
smaller than b while preserving geometric shapes.

The second step consists of stochastic segmentation. When
dealing with Markovian stochastic segmentation, significantly
uncertainty may be in place due to the fact that a given pixel,
according to the probability distribution classification criteria,
may have attributes that belong to more than one class. In this
study, a fuzzy c–means (FCM) approach is adopted in order
to overcome this issue [16]. The cost function that needs to
be optimized is iteratively implemented by a n–dimensional
set of parameters pj , where n is the number of clusters:

J(P,M) =

m∑
i=1

n∑
j=1

(Mij)
c
ED(xi − pj) , (2)

where xi is the pixel under test within the cluster Cj defined
by a variable Mij belonging to the range 0 – 1 (

∑n
j=1Mij =

1), m is the total number of pixels of the input image, c is the
fuzzy–paramater and ED is the Euclidean distance. No more
than 54 iterations are required to ensure the FCM convergence
when c = n = 2.

The segmentation rule is based on the Bayes decision
P (Wj /X) = P (X ,Wj)/P (X) with P (X ,Wj) = P (X/Wj)
P (Wj), where X is the original image. The term P (X/Wj)
is derived from eq. (2) in order to ensure that the member-
ship variable Mij approaches the modes of the conditional
probability distribution approach, i. e., P (X/Wj , µj) ≈ Mij

where µj is the mean value of the jth cluster. Then, a
contextual segmentation criterion based on the maximum–
likelihood estimator is adopted to obtain a homogeneous fields.



Fig. 3. Alos PalSAR–2 SAR imagery collected on October 27, 2017 over
the region of the A–68 iceberg. a) HH and b) HV–polarized NRCS.

The Bayesian estimation of the fields X and W , assumed to be
realizations of MRFs, follows a Gibb exponential distribution
that results in energy functions given by:

Ŵ = minx[U(W |X)] ≈ minx[U(X|W ) + U(W )] , (3)

where Ŵ is the estimated label field. Hence, by combining
FCM and a MRF–based stochastic relaxation scheme in a
semi–supervised segmentation algorithm where the range of
the label field is the only paramater to be tuned since FCM
provides to the MRF segmentation stage the probability low
abstraction needed to define the radiometric distribution of the
scene elements.

B. Rice factor approach

The RF is given by the power ratio between the coherent and
incoherent received signals [4], [5]. In this study we exploit RF
to distinguish regions resulting in coherent bacskcatter from
areas that result in an incoherent backscattering.

To expedite time processing, the SAR image is partitioned
into NI × NI pixels wide tiles that are used to estimate
incoherent power. Within each tile, a moving local window
is applied to evaluate the coherent power over a NC × NC
pixels region. These two powers are then compared to evaluate
RF:

RF =
〈σo〉2NC

2std[σo]2NI

, (4)

Fig. 4. Rice factor imagery: a) HH channel; b) HV channel.

where σo is the calibrated Normalized Radar Cross Section
(NRCS), 〈·〉 stands for ensemble average operator that, in
this study, is replaced by a boxcar spatial averaging window
whose size is NC and NI for the estimation of the coherent
and incoherent components, respectively. The dimension of
the local window (NC) is set to minimize the unavoidable
decrease of the native image resolution and to allow a better
detection of the small icebergs, while the dimension of the
tiles (NI) is set to get a stable reference background level.

III. EXPERIMENTS

In this section a multi–polarization analysis is undertaken on
a SAR data set collected over the A–68 iceberg area. Scenes
collected by different SAR platforms at different polarizations
and frequencies are considered; i.e.; L–band Alos PalSAR–2 in
dual–polarimetric HH–HV mode, C–band Sentinel–1 in dual–
polarimetric HH–HV/VV–VH mode and X–band COSMO–
SkyMed (CSK) in HH–polarized single–polarization mode.

MRF analysis consists of speckle filtering and segmentation,
aiming at generating a binary output that can be further
processed to extract the geographic position of the centroid
and the area of the iceberg. Although a time series of SAR
imagery has been processed, in this study segmentation results
are only shown for the CSK SAR scene collected on October
9, 2017 over the area of interest. An excerpt of the HH–
polarized NRCS image is shown in Fig. 2 a) while the MRF
segmentation output is shown in Fig. 2 b). By processing the
whole time series consisting of SAR scenes collected from
July 19 up to December 7, 2017, information on the iceberg



position and its area can be discussed against time evolution.
The area of the iceberg is around 5760 km2 at the beginning
of the time series; while it reduces up to 5630 km2 at the end.
However, it was also noted that the area is not a monotonic
function of the time but it exhibits fluctuations that are likely
due to ice fragments that may attach to the main iceberg.
The drifting associated to the iceberg resulted in an Eastbound
displacement of about 28 km.

To analyze value–added information that can be extracted
from dual–polarimetric SAR imagery, RF is estimated from
the dual–polarimetric HH–HV SAR image collected by Alos
PalSAR–2 on October 27, 2017, whose excerpts are shown in
Fig. 3 a) and b), respectively.

It can be noted that the iceberg is well–visible in both
channels. Note also that, although the two channels result in a
different backscattered intensity level with the HH one being
almost everywhere larger than the HV one, similar patterns
can be identified in both channels.

RF is evaluated using both channels and results are shown
in Fig. 4 a) and b). Both RF images clearly show the contours
associated to the icebergs that are characterized by RF values
lower than the iceberg and the mainland. Lower RF values
apply also over the sea area witnessing that a very incoherent
behavior applies. A simple threshold equal to -10 dB has been
empirically set to obtain the binary output shown in Fig. 5.

Fig. 5. Rice factor binary imagery: a) HH channel; b) HV channel.

The latter clearly shows that iceberg’s edge can be straight-

forwardly extracted using simple image processing techniques.

IV. CONCLUSIONS

In this study the Larson–C A–68 iceberg is analyzed using
multi–frequency and multi–polarization SAR data to extract
useful information to monitor the iceberg evolution. Two
segmentation techniques are proposed based on MRF and RF,
respectively. Both the methods succeed to extract iceberg’s
edges.
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