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1. Introduction 

 

In regard to spatial regression models where the units subject to analysis are of 

territorial type, a problem of fundamental importance, often ignored, is that the 

observations may be dependent which entails that the value of a variable in an 

elementary territorial unit is determined by those observed in neighbouring 

localities. When this situation occurs, the phenomenon is spatially autocorrelated 

(or spatially dependent). The presence of spatial autocorrelation is a problem 

because the traditional regression models are based on the hypothesis of 

independence among observations in the different localities of the territory 

analysed. Hence, when this hypothesis is violated, the estimates of the regression 

model parameters are bias and/or inefficient. The spatial dependence occurs in two 

different forms. In the first case, it affects only the error term in the regression 

model and is mostly considered to be a nuisance which needs to be eliminated. In 

this case, the spatial error autocorrelation does not cause ordinary least squares 

(OLS) estimates to be biased, but it alters their efficiency. In the second case, the 

value of the dependent variable in a generic unit is affected by those of the 

neighbours units.  In this case, OLS estimates are bias and no longer consistent. 

The spatial econometrics that deals with treatment of spatial autocorrelation in 

regression models has developed various techniques to solve this problem. Among 

them, the most popular approaches used are the Spatial Filtering Model (Fisher and 

Griffith 2008; Griffith 2009; Chun and Griffith 2011), the Spatial Autoregressive 

Model and Spatial Error Model (LeSage 1997a; Anselin 1988; LeSage and Pace 

2008). While in literature exists a voluminous series of empirical analysis to assess 

the utility of these methods for cross-section and panel data a scant attention was 

paid for interactions or flows data. In this last context, the spatial autocorrelation 

analysis is exacerbated because contrary to classical panel data where the sample 

involves n spatial unit, with each unit being an observation, the interaction spatial 

data involve n
2
 origin-destination pairs.  
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Limiting the attention to the interaction data, this paper, by means of a real 

phenomenon, outline and compare the three methods previously quoted in order to 

identify their shared characteristics and those specific to each of them. It should be 

pointed that the literature, excluding same studies, see for example Fisher and 

Griffith (2008), is not particularly rich in analyses of this type. Consequently, it is 

interesting furnish a contribution which explores the potentialities of these 

methods, even if in a limited situation like the one considered by this study. 

Moreover, given the particular area of inquiry, the analysis makes no claim to 

being exhaustive, and the results are to be considered preliminary. 

 

2. The methods for modelling the spatial autocorrelation 

 

In this section, the three techniques to consider the spatial autocorrelation in the 

interaction models previously quoted, are briefly exposed. 

Suppose we have a set of n spatial unit and let F an nxn square matrix whose 

generic entry fij (i,j=1,.., n) is the interaction (flow) whose origin is the i-th unit 

whose destination is the j-th unit.  

We restrict the discussion in the context of gravity models which are considered 

one of the most important spatial interaction model (Everett and Keller, 2002).  

The interaction between two generic units depends by three type of explicative 

variables (covariates). Those that characterize the origin unit of flow (push), those 

that characterize the destination unit of flow (pull) and finally the covariates that 

measure the separation between the origin and destination units. Using matrix 

notation: 

f=α1+XO⊗1β
O

+1⊗XDβD
+dγ+ε   (1) 

where: f is the vector whose elements are the logarithmic of the flows observed; 1 

is the n(n-1)x1unit vector; XO and XD are two n(n-1)xk matrices containing 

respectively the logarithmic of the covariates relating to the origin spatial unit and 

destination spatial unit of the flows; d is the vector whose elements are the 

logarithmic of the distance between two generic spatial unit;  is the vector of the 

residual variable. Finally,  is the Kronecker product.  

Referring to Fisher and Griffith (2008) and LeSage and Pace (2008) for details, 

the interaction phenomena may exhibit various types of autocorrelation. 

Autocorrelation at the origin: given a generic flow fij, also the units contiguous to 

the i-th unit have similar flows to the j-th unit. Autocorrelation at the destination: 

given a generic flow fij, the i-th unit has flows similar with respect to the units 

bordering on the j-th unit. Autocorrelation at both the origin and the destination: 

which simultaneously concerns the two previous formulations. 
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If the autocorrelation occurs in the dependent variable in order to capture the 

first type of the autocorrelation, that at the origin, it is possible to consider the 

following model named Origin Spatial autoregressive model (also O-SAR): 

f= α1+WOf+XOβO+XDβD+γd+ε  (2) 

Where WO=IC
*
 and C

*
 is the C matrix standardized by row (C is the nxn 

matrix of the first-order contiguities). In this case, the vector WOf is such that the 

generic element is the mean flow from the units contiguous to i-th unit to the j-th 

unit, and it represents the interaction that would be observed between the two units 

on the hypothesis of an autocorrelation at the origin. 

As regards the second type of autocorrelation, it is sufficient considers in the (2) 

the following WD matrix instead of WO: 

WD=C
*
I  (3 

In this case, the generic element of the vector WDf is a mean of the flows from 

the i-th unit to the units contiguous with the j-th element. The corresponding spatial 

model (4) that reflects the destination-based dependence is named Destination-

SAR (also: D-SAR). Finally, by multiplying WO and WD (i.e. WOD=WOWD), it is 

possible to consider, the third type of autocorrelation. In this last case, the spatial 

model is the Origin-Destination-SAR (also: OD-SAR). 

On the other hand, if the dependence occurs in the error term of the (2), 

depending on the type of dependence, one of the following model can be utilized: 

f= α1+ XOβO+XDβD+γd+ε    =Wj +u and uN(0;
2
I)  (4) 

If j=O then the model is the Origin Spatial Error Model (O-SEM). For j=D we 

have the Destination Spatial Error Model (D-SEM). Finally, if j=OD we have the 

Origin-Destination Spatial Error Model (OD-SEM). 

The previous three types of autocorrelation can be jointly considered in a 

regression model. Restricting, but not limiting the attention to SAR models we can 

take account the following specifications: 

 f=OWOf+DWDf+ODWODf+Xβ+; 

 f= OWOf+DWDf+Xβ+; 

 f= (WO+WD)f+Xβ+; 

 f=(WO+WD+WOD)f +Xβ+; 

An alternative methodology is the spatial filtering method (FS). See for 

example Griffith (2003) for details. It presumes that the spatial dependence in the 

dependent variable is due to one or more spatially autocorrelated not directly 
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observable variables. As surrogates for the latter the method considers the Moran’s 

I autocorrelation index: 

I= 
n(n-1)

1
'
Wj1

f
'(I-11'

1

n(n-1)
)Wj(I-11

' 1

n(n-1)
)f

f
'(I-11' 1

n(n-1)
)(I-11' 1

n(n-1)
)f

   (5) 

Referring to De Jong et al. (1984) for details, if emin and emax respectively 

denote the highest and smallest eigenvalues of Wj, the following inequality holds: 

eminI
n(n-1)

1
'
Wj1

⁄ ≤emax  (6) 

Moreover, these extreme eigenvalues also coincide with those of the following 

matrix: 

(I-11'
1

n(n-1)
)Wj (I-11

' 1

n(n-1)
) (7) 

As Griffith (2009), reported the eigenvector associated with the largest 

eigenvalue of (7) is the one possessing the highest autocorrelation, and it is 

orthogonal to the other eigenvectors. Likewise, the eigenvector associated with the 

second largest eigenvalue is the one possessing the second highest autocorrelation. 

The remaining eigenvectors can be considered in similar fashion. 

The set of all the eigenvectors of (7) can be regarded as distinct and 

uncorrelated spatial maps, each exhibiting a certain degree of autocorrelation 

coincident with the corresponding eigenvalue. These spatial configurations are 

therefore likened to proxy variables depicting all the possible forms of 

autocorrelation which, starting from matrix Wj, are latent in the variable subject to 

analysis. The spatial filtering method uses these artificial indicators as surrogates 

for the unobservable variables that cause the spatial autocorrelation. For empirical 

purposes, it is not reasonable to add the full set of eigenvectors as spatial proxy 

variables to the model (1), but only the dominant eigenvectors. The latter may be 

chosen in various way. For example in a stepwise procedure regressing the 

dependent variable f on the set of the eigenvectors and using the conventional R
2
 

maximization criterion. As a consequence, the regression model with spatial 

filtering can be formalized in the following way, where A is the matrix of the 

dominant eigenvectors of (7): 

f=α1+XO⊗1β
O

+1⊗XDβD
+dγ +A+  (8) 

Whereas the regression model with spatial filtering does not require particular 

techniques except for the usual least squares method, in the cases of the SAR and 

SEM it is necessary to use iterative procedures such as that developed by LeSage 

(1997). 
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3. Data and experimentation results 

 

To compare the methods previously exposed, the migration flows for change 

of residence between the twenty Italian regions collected by the ISTAT for the year 

2006 were used and analysed by a gravity model. 

In according with the literature, the version applied this paper considers not 

only the classic determinants of migration (i.e., the size of populations and the 

distance between places), but also the effects attributable to a set of push and pull 

variables explaining the economic and demographic differences between the Italian 

regions. To this regard, we consider 17 indicators (see Appendix). As a preliminary 

examination of the indexes showed the presence of correlations that rendered them 

unsuitable for use in a regression model, they have been synthesized by means of 

factor analysis   

The results of this analysis are set out in extreme synthesis in Appendix. The 

high and positive coefficients of correlation between the first factor and all the 

variables of economic nature suggest identification of this factor as a complex 

index of the economic structure, while the close correlations of the second factor 

with the remaining indexes suggest its identification as a complex index of the 

demographic structure. Them, the following 18 models were considered:  

Table 1 – Models considered in the analysis. 

SAR1: SAR2: SAR3: 

f=Xβ+WOf+ f=Xβ+WDf+ f=Xβ+WODf+ 

SAR4: SAR5: SAR6: 

f=Xβ+(WO+WD)f+ f=Xβ+(WO+WD+WOD)f+ f=Xβ+(OWO+DWD)f+ 
SAR7: SAR8:  

f=Xβ+(OWO+DWD+ODWOD)f+ f=Xβ+(OWO+DWD+ODWOD)f+  

SEM1: SEM2: SEM3: 

f=Xβ+  and =WO+u f=Xβ+  and =WD+u f=Xβ+ and =WOD+u 

SEM4: SEM5:  

f=Xβ+ =(WO+WD)+u f=Xβ+  =(WO+WD+WOD)+u  

SF1: SF2: SF3: 

f=Xβ+A1r + f=Xβ+A2r + f=Xβ+A3r + 

SF4: SF5:  

f=Xβ+A4r + f=Xβ+A5r +  

where, Xβ=β0+β1pi+β2pj+β3d+β4f1i+β5f1j+β6f2i+β7f2j, and: f is the vector that 

contain the annual flows between two generic regions; pi and pj the vectors that 

contains the logarithmic amounts of the populations resident respectively in the 

origin and destination of the flows; d the vector that contain the logarithmic 

geographical distances between two regions; f1i, f1j and f2i, f2j the vectors that 

contains the values of first two factors extracted by the factor analysis in the 

regions of the origin and destination of the flows; Aj (for j=1,..,5) are the matrices 

of the predominant eigenvectors respectively of the WO, WD, WOD, (WO+WD) and 
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(WO+WD+WOD) matrices. In this enquiry, the predominant eigenvectors were 

chosen in a stepwise procedure, regressing, the observed logarithmic of flows on 

the set of the eigenvectors of the previously W matrices, using the conventional R
2
 

as the maximisation criterion. Finally,  and u two residual vectors. 

It should be noted that, given the nature of the dependent variable (count data), 

the linear regression model was chosen instead of the Poisson regression model, 

because: the data showed the presence of the well-known problem of 

overdispersion. the investigation was intended to be explanatory, not predictive, the 

mean flow take a value such that as Baltagi (2011) and Lejenne (2010) reported, 

the Poisson variable can be well approximated by the normal variable. Finally, the 

use of this model is in full accordance with the literature. See: Black (1992), Egger 

(2005), Lewer and Van den Berg (2008), Griffith (2009), Kim and Koen (2010), 

Mayda (2010), Ludo (2012) and LeSage and Agnan (2015). 

A preliminary analysis was conducted with the goal to verifying the presence 

of spatial correlation in the data. To this regard in the following Table 2 are set out 

the results of the non-spatial interaction model (i.e. f=Xβ). 

Table 2 – Results of classical log gravity model. 

Parameters Estimates p-value 

Intercept -21.06 <.001 

pi 0.96 <.001 

pj 0.98 <.001 

d -0.41 <.001 

f1i -0.11 <.001 

f1j 0.15 <.001 

f2i -0.09 0.013 

f2j 0.003 0.934 

Statistics Value  

F-Fisher of the model 292.34 <.001 

R2  0.84  

Breush-Pagan test of heteroscedasticity 17.69 0.01 

Kolmogorov test of normality 0.046 0.05 

Statistics Value p-value 

Moran (using WO) 9.54 <.001 

Moran (using WD) 9.63 <.001 

Moran (using WOD) 10.02 <.001 

As is possible to shows the estimates of the constant and the parameters 

associated with the population size of the regions, as well as the parameter relative 

to the distance, were highly significant. The estimates of the parameters associated 

with the economic factor in the regions of origin and in the destination regions of 

flows (f1i and f1j respectively) were also significant. When we looked at the 
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demographic factor of the places of origin (f2i) and of the places of destination 

(f2j), the estimates of the associated parameters were found to have been non-

significant especially for the f2j factor. Finally, the tests of Breush-Pagan, 

Kolmogorov-Smirnov, and the Moran Index showed that the regression residuals 

were respectively: homoscedastic, normally distributed and spatially correlated at 

the origin and the destination of flows. Consequently, the previously spatial 

interaction models were considered and estimated. In Appendix are set out the 

results of this analysis. 

First to be noted a particular coincidence in the estimation of the parameters of 

the various models. However, the estimates are more stable in the various spatial 

filtering and spatial error models respect to the spatial autoregressive models. 

Relating the economic factor, to be noted that this always has a negative effect in 

the origin regions of the flows (f1i). It should be noted that this factor is always 

significant in the spatial filtering models and in some spatial autoregressive 

models, while it is never significant in the spatial error models. In the destination 

regions (f1j), this factor is significant only in the spatial filtering models.  

Similar considerations apply to the demographic factor, which in the spatial 

filtering models, always has a negative estimate in the origin regions of  flows (f2i) 

and a positive estimate in the destination ones (f2j). On the contrary, in the 

remaining models, f2j has a negative estimate. However, the effect of the 

demographic factor is not uniform in the various models. This complex variable is 

never significant in the destination regions, whilst in the origin regions of the 

flows, it is generally significant. 

To recapitulate, it emerges quite clearly that the three approaches considered 

and the various types of autocorrelation, do not exhibit either among themselves, 

substantial differences in the estimates and signs of the parameters. All the models 

verifies the hypothesis of normal distribution, the SAR models and SEM, generates 

heteroscedastic residuals. All the models considered are able to capture the effects 

of the spatial autocorrelation present but the Moran test of autocorrelation shows 

that the residuals of some SAR models (SAR1, SAR2, SAR4 and SAR5) are still 

correlated, while those of the SEM and the SF models are still uncorrelated. 

The Root Mean Square Error (RMSE) has values between 0.38 (SEM 3) and 

0.63 (SAR 7) and the Spatial Filtering models are those with the lowest value in the 

index considered. They are followed by the Spatial Error Models (SEM) and then 

by the SAR models. Moreover, the SAR models that involves separately more than 

one weight matrix (SAR6, SAR7 and SAR8) have a more goodness of fit respect 

the models that involves a single weight matrix (SAR1, SAR2 and SAR3) and 

respect those involving cumulative weight matrices (SAR4 and SAR5). On the 

contrary, the SEM do not shows substantial differences between the various 

alternatives considered. Finally, the spatial filtering models that involves more than 
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one weight matrix (SF4 and SF5) have a more goodness of feet. Particularly, the 

SF4 is the model with the highest goodness of fit. 

 

4. Conclusions 

 

Spatial interaction models of the gravity type are widely used to model origin 

destination flows. This, model is misspecified if the residuals are spatially 

correlated. This problem arises when the observations are dependent over the 

space. To solve the problem same methods were proposed in literature. The most 

popular approaches are the Spatial Filtering Model, the Spatial Autoregressive 

Model and Spatial Error Model. Using real data based on entries and cancellation 

for change of residence between the twenty Italian regions, corresponding to the 

second level of the Nomenclature of Territorial Units for Statistics (NUTS 2) this 

enquiry has illustrated and compared the previously three methods. As is obvious 

the results of the inquiry lay no claim to exhaustiveness indeed, they are to be 

regarded as only preliminary but they seem very interesting. 

The most important results obtained highlights that the three approach do not 

exhibit substantial differences in the estimation of the parameters and in the 

goodness of fit with the reality. 

Consequently, from this point of view the choice of one or other method is 

indifferent. On the contrary, analysing the regression residuals, substantial 

differences are clear. If on the one hand the three approaches generates normally 

distributed and homoscedastic residuals on the other hand, the residuals of the 

SAR, in several situations are heteroscedastic and still correlated. The analysis was 

repeated also for the years 1995 to 2005. The results perfectly coincides with those 

of the present study.  
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Appendix 
 

Table 3  Factorial analysis results. 

 Factor 1 Factor 2 

Variance explained 0.60 0.19 

Correlations between the variables and the first two factors. 

Variables Factor 1 Factor 2 

Employment rate 0.946 0.002 

Per capita added value  0.420 0.409 

Per person employed added value  0.965 -0.174 

GDP per capita 0.895 -0.366 

GDP per person employed 0.965 -0.198 

% of employed in industry 0.862 -0.416 

% of employed in agriculture -0.836 0.055 

% of employed in other activities 0.816 -0.240 

Consumption per capita -0.853 0.215 

Income per capita 0.674 -0.607 

Units of labour per inhabitant 0.935 0.014 

Size of unit of labour 0.275 0.793 

Age dependency ratio -0.930 -0.186 

Index of turnover in the active population 0.589 0.707 

% of persons aged 65 and over 0.514 0.796 

Old-age dependency ratio -0.010 -0.465 

Index of active population structure 0.854 0.340 

 

Table 4  Results of the SAR Models. 

 
SAR 1:  

rWO 

SAR2:  

rWD 

SAR3:  

rWOD 

SAR4: 

(WO+WD) 

SAR5: 

(WO+WD+WOD) 

SAR6: 

OWO+DWD 
Var. Estimates 

Int. -20.52* -20.39* -23.88* -19.38*  -24.16*  -20.80* 

pi 0.67* 1.08* 1.02* 0.80*  0.98*  0.97*  
pj 1.08* 0.65* 1.03* 0.80*  0.99*  0.93*  

d -0.36* -0.36* -0.39* -0.36*  -0.36*  -0.46*  

f1i -0.06 -0.13* -0.10* -0.04  -0.08*  -0.11*  
f1j 0.06 0.11* 0.11* 0.09*  0.08  0.14*  

f2i -0.07 -0.08* -0.08 -0.12*  -0.10*  -0.09*  

f2j -0.01 -0.02 -0.01 -0.06  -0.03  -0.01  
r 0.31* 0.35* 0.18* 0.47*  0.38*   

rO      0.06  

rD      0.01  

Statistics Value 

B-P  19.39 22.09 19.21 21.63* 20.83* 5.88 

K-N 0.041 0.04 0.04 0.04 0.03 0.04 

log lik -341.18 -337.30 -360.44 -333.22 -348.65 -942.97 

RMSE 0.58 0.58 0.62 0.57 0.60 0.62 
Moran 3.43* 3.14* 6.28* 8.26* 0.17* 0.83 

Legend: B-P= Breush-Pagan test of heteroscedasticity; K-N= Kolmogorov test of normality; log-

lik=Log-likelihood; Moran=Moran test of autocorrelation on residuals; RMSE=Root Mean Square 
Errors; AIC=Akaike Information Criterium; * p-value<0.01. 
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Table 5  Results of the SEM. Year 2006. 

 
SEM1:  

λWO 

SEM2:  

λWD 

SEM3:  

λWOD 

SEM4: 

λ (WO+WD) 

SEM5: 

λ (WO+WD+WOD) 
Var. Estimates 

Int. -20.34* -20.14* -20.08* -19.50*  -19.79*  

pi 0.96* 0.94* 0.94* 0.96*  0.95*  

pj 0.95* 0.96* 0.94* 0.94*  0.94*  

d -0.65* -0.70* -0.60* -1.01*  -0.73*  

f1i -0.04 -0.06 0.004 -0.01  0.01  

f1j 0.12* 0.22* 0.17* 0.17  0.15  

f2i -0.11 -0.11* -0.11* -0.11  -0.11*  

f2j -0.05 -0.03 -0.06 -0.05  -0.07  

λ 0.53* 0.59* 0.64* 0.91*  0.87*  

Statistics Value 

B-P 22.27* 24.43* 23.25* 34.39* 23.09* 

K-N 0.06 0.04 0.04 0.04 0.05 

log lik -318.84 -311.23 -335.04 -255.81 -294.15 
RMSE 0.53 0.52 0.57 0.43 0.51 

Moran -0.69 -0.56 -3.42* 0.01 -0.003 

Legend: B-P= Breush-Pagan test of heteroscedasticity; K-N= Kolmogorov test of normality; 
log-lik=Log-likelihood; Moran=Moran test of autocorrelation on residuals; RMSE=Root 

Mean Square Errors; AIC=Akaike Information Criterium; * p-value<0.01. 

 

Table 6  Results of the Spatial Filtering Models. Year 2006 

 SF1: WO SF2: WD SF3:WOD SF4: WO+WD SF5: WO+WD+WOD 

Var. Estimates 

Int. -21.06*  -21.06*  -21.06*  -21.06*  -21.06*  

pi 0.96*  0.96*  0.96*  0.96*  0.96*  
pj 0.98*  0.98*  0.98*  0.98*  0.98*  

d -0.41*  -0.41*  -0.41*  -0.41*  -0.41*  

f1i -0.11*  -0.11*  -0.11*  -0.11*  -0.11*  
f1j 0.15*  0.15*  0.15*  0.15*  0.15*  

f2i -0.09*  -0.09*  -0.09*  -0.09*  -0.09*  

f2j 0.00  0.00  0.00  0.003  0.003  

Dominant eigenvectors 
 a3 1.40*  a11 -2.03*  a4 3.34*  a1 -1.14*  a1 -1.15*  

 a8 1.96*  a18 -1.28*  a5 2.96*  a2 0.97*  a4 3.56*  

 a11 1.85*  a22 -1.32*  a14 -3.04*  a4 3.76*  a5 -2.62*  
 a15 1.67*  a27 -3.38*  a18 -4.58*  a8 3.38*  a7 2.08*  

 a27 2.50*  a38 -1.52*    a9 -1.23*  a9 1.30*  

 a35 1.28*  a44 -1.69*    a12 -1.54*  a10 -1.46*  

 a37 -1.34*  a45 1.71*    a14 -2.94*  a14 -3.72*  

 a38 2.45*  a49 1.76*    a18 2.85*  a17 -2.59*  

 a44 1.46*  a51 -1.52*    a20 0.88*  a18 3.71*  

 a45 -2.24*  a55 -1.31*    a23 3.76*  a28 2.31*  
 a49 1.30*  a57 -1.42*    a26 2.45*  a39 -2.22*  

 a51 1.56*  a60 -1.21*    a28 1.46*    

 a55 1.26*  a62 -1.34*    a33 -1.11*    
 a57 -1.75*  a70 -2.36*    a37 1.45*    

 a73 2.07*  a71 1.38*    a42 -1.981*    

 a88 1.53*  a72 1.79*    a52 1.05*    
   a73 2.52*    a59 -1.28*    
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   a75 -1.92*    a87 -1.48*    

   a77 1.39*    a107 1.60*    

   a85 -1.22*    a120 1.66*    
   a93 1.33*        

Statistics Value 

F-Fisher 90.85*  105.4*  291.20* 183.7* 233.8* 

R2   0.91        0.92        0.89 0.94 0.92 

B-P 67.64      42.84    48.84* 64.37* 23.41 

K-N    0.03        0.03        0.05 0.05 0.04 

log-lik    -243.42  -222.17  -288.78 -172.04 -238.31 

Moran     1.61        1.63        0.54 -0.018 -0.02 

RMSE   0.46        0.43        0.52 0.38 0.45 

Legend: B-P= Breush-Pagan test of heteroscedasticity; K-N= Kolmogorov test of 

normality; log-lik=Log-likelihood; Moran=Moran test of autocorrelation on residuals; 

RMSE=Root Mean Square Errors; AIC=Akaike Information Criterium; * p-value<0.01. 
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SUMMARY 

An analysis of methods for the treatment of autocorrelation in spatial 

interaction models 
 

Using real data, this paper sets out the results of an analysis of the methods developed in 

the literature for the treatment of spatial autocorrelation in the spatial interactions models. 

In particular, the inquiry compares the autoregressive method (SAR), the method with 

autoregressive errors (SEM), and the spatial filtering method (SF). The results shows a 

substantial uniform behaviour among the considered approaches but the residuals of the 

SAR in same situations remains spatial correlated. 
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