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This work proposes a real-time monitoring tool aimed to support clinicians for remote assessing exercise
performances during home-based rehabilitation. The study relies on clinician indications to define kine-
matic features, that describe five motor tasks (i.e., the lateral tilt of the trunk, lifting of the arms, trunk
rotation, pelvis rotation, squatting) usually adopted in the rehabilitation program for axial disorders.
These features are extracted by the Kinect v2 skeleton tracking system and elaborated to return disaggre-
gated scores, representing a measure of subjects performance. A bell-shaped function is used to rank the
patient performances and to provide the scores. The proposed rehabilitation tool has been tested on 28
healthy subjects and on 29 patients suffering from different neurological and orthopedic diseases. The
reliability of the study has been performed through a cross-sectional controlled design methodology,
comparing algorithm scores with respect to blinded judgment provided by clinicians through filling a
specific questionnaire. The use of task-specific features and the comparison between the clinical evalua-
tion and the score provided by the instrumental approach constitute the novelty of the study. The pro-
posed methodology is reliable for measuring subject’s performance and able to discriminate between
the pathological and healthy condition.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Telerehabilitation may offer an opportunity for an individual-
ized rehabilitation program and is based on regular monitoring
of the patient’s progresses respect to the treatment aim and sub-
ject’s expectation (Hailey et al., 2011; Steel et al., 2011).

Themost of the available telerehabilitation tools failed toprovide
a functional monitoring of the motion during exercise execution,
such as a physiotherapist does during the ambulatory training. Dif-
ferently from the wearable-based sensors, markerless-based tech-
nologies provide attractive solutions for the users who are free
from wearing active markers, attached to the body (Saini et al.,
2012). Human motion assessment approaches are generally sup-
ported by statistical machine learning methods that compare a
motion sequence, correctly performed and a priori recorded, with
the observation sequence (template based methodologies).
However, the use of template based approaches does not always
allow to:

� target specific clinical features of subjects with motor and cog-
nitive disabilities;

� provide a motion assessment with specific and clear functional
feedback (e.g., ‘‘Is the primary goal of the exercise satisfied?”).

In this paper, clinicians identify some motion key descriptors
(i.e., kinematic features) which represent a set of rules (e.g. relative
angles and distance, position, velocity), that describes a specific
task usually employed in a rehabilitation program. Such set defines
the ‘‘motion sample” in terms of motor-functional targets and pos-
tural constraints. These features are extracted by the Kinect v2
skeleton tracking system and processed by a set of bell-shaped
functions properly designed during the training stage in order to
provide disaggregated scores. The reliability assessment has been
performed through a cross-sectional controlled design study, com-
paring algorithm scores with respect to blinded judgment provided
by clinicians.
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2. Related works

In the last years, many research projects focused on developing
affordable, acceptable and reliable telerehabilitation applications,
wearable and vision sensors based (Daponte et al., 2014; Arpaia
et al., 2014; van Diest et al., 2013, 2014; Kutlu et al., 2016;
Metcalf et al., 2013; Palacios-Navarro et al., 2015; Chang et al.,
2013; Su et al., 2014; González-Ortega et al., 2014; Zhou and Hu,
2008; Kizony et al., 2017; Lange et al., 2012). In this scenario,
Microsoft Kinect, based on Red-Green-Blue Depth (RGB-D) camera,
is used at home as unobtrusive, markerless and low-cost assistive
technology for human action recognition (Wang et al., 2014;
Chaaraoui et al., 2014; Lee et al., 2015), fall detection (Stone and
Skubic, 2015), gait measurement (Erik and Marjorie, 2013) and
for supporting patients and physiotherapists in the rehabilitation
program (van Diest et al., 2013, 2014; Morrison et al., 2016). It
has been integrated into a telerehabilitation system to provide
physiotherapy program for upper (Kutlu et al., 2016; Metcalf
et al., 2013) and lower limbs (Palacios-Navarro et al., 2015;
Seamon et al., 2016) in subjects with neurological or orthopedics
disorders (Chang et al., 2013; Su et al., 2014) and for cognitive
training (González-Ortega et al., 2014). The accuracy of Microsoft
Kinect was analyzed with respect to movement artefacts
(Gonzalez-Jorge et al., 2015) or to gold standard systems during
different motor tasks such as gait analysis (Xu et al., 2015;
Dolatabadi et al., 2016; Mentiplay et al., 2015; Clark et al., 2013),
static (Xu and McGorry, 2015; Galna et al., 2014; Schmitz et al.,
2014) and dynamic postures (Capecci et al., 2016b; Reither et al.,
2018; Mobini et al., 2014; van Diest et al., 2014; de Albuquerque
et al., 2012; Macpherson et al., 2016).

The motion analysis in a telerehabilitation system, generally, is
based on automated segmentation (Lin and Kulic, 2014), identifica-
tion (Fernandez de Dios et al., 2014) and assessment of movements
employing statistical machine learning or action similarity algo-
rithms. In this context, template based methods are usually
employed to assess the correspondence among trajectories of a ref-
erence exemplar (e.g. physiotherapists) and patients (Zhao et al.,
2014). These reference trajectories can be used to train a statistical
machine learning model (Yang et al., 2012; Capecci et al., 2016a;
Karg et al., 2015; Ozturk et al., 2016; Leightley et al., 2017) or com-
puting a time warping distance (Hu et al., 2015; Zhang et al., 2016;
Su et al., 2014).

Machine learning algorithms, such as neural networks (Yang
et al., 2012), hidden markov model (Karg et al., 2015; Capecci
et al., 2016a) and principal component analysis (Ozturk et al.,
2016) have been used to discriminate between healthy and patho-
logical subjects during different motor tasks, while dynamic time
warping was employed (Su et al., 2014; Zhang et al., 2016) to pro-
duce an index of mobility with respect to an exemplar of the target
movement.
3. Experimental protocol

3.1. Population

Subjects enrolled in the study were 57: 28 healthy subjects
composed the Control group (14 female, range: 22–76, mean �
std: 36.4 � 16.9) while 29 subjects composed the Experimental
group (15 female, 17–76, 58.6 � 13.8). The subjects belonging to
Experimental group suffered from chronic disabilities due to neuro-
logical (i.e., Parkinson’s Disease: 8 female, 51–76, 63.8 � 8.7 and
Cerebral Stroke: 4 female, 17–72, 56.4 � 17.2) and musculoskeletal
disorders (i.e., Backpain: 3 female, 30–72, 49.8 � 16.7) as diag-
nosed by the physicians of the Neurorehabilitation Clinic of the
University Hospital of Ancona (Italy) for disease management.
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Since the Control group served for defining criteria to accurately
describe exercises, their age range was selected in order to match
with the larger part of adulthood and not with respect to the age
range of the Experimental group. None of the subjects enrolled in
the study reported recent traumas, dementia or practiced sports
at a competitive level. The study was conformed to the Helsinki
protocol for clinical trials and was approved by the local ethics
committee. All subjects signed the informed consent form.

3.2. Motor tasks description

Clinicians selected five exercises widely used for physiotherapy
of axial disorders (Kisner and Colby, 2012). Exercises #1–#4
involve upper body movements: lateral tilt of the trunk with the
arms in extension (Fig. 1a), lifting of the arms with trunk extension
(Fig. 1b), trunk rotation on the transverse plane with arms in ele-
vation (Fig. 1c), pelvic rotations on the transverse plane (Fig. 1d).
The Exercise #5 actively involves the lower body with a squatting
movement (Fig. 1e). Subjects were asked to perform the exercises,
except the Exercise #4, holding a bar with both hands. Each exer-
cise was repeated five times consecutively in order to mimic a real
training and obtain an average motor behavior, useful for a reliable
statistical assessment. The starting posture was characterized by
the subject in the upright position with his/her legs slightly apart,
at a distance of about 3 meters in front of the Kinect sensor. The
exercise selection followed clinical and technical reasons. Firstly,
the described exercises are basic motor tasks aimed at improving
axial function acting on proximal joints range of motion and trunk
flexibility. They are part of any motor training in the warm-up
phase and can be performed even by elderly subjects with mild
to moderate disability (Kisner and Colby, 2012; Hutson and
Ward, 2015). The technical reason lies in the choice of exercises
useful to test the assessment tool during gestures involving body
segments (i.e., the arms in Exercises #1, #2, #3, the trunk in Exer-
cise #4 and the legs in Exercise #5) moving in the frontal, sagittal
and transverse planes.
4. Methods

An overview of the proposed approach is depicted in Fig. 2. The
tool encapsulates three different stages: the collaborative design,
the feature extraction, and the movement assessment stage. In
the collaborative design stage, a set of kinematic features and func-
tional rules are identified based on exercise characteristics and
clinician indications. Afterwards, the same features are extracted
from the virtual joints recorded by Kinect v2 (feature extraction
stage). The evaluation of the physical movement is carried out
through a comparison between features related to patients and
those derived from the Control subjects. Hence, a function assigns
a score based on the subject performance (movement assessment
stage).

4.1. Collaborative design stage

For each exercise, clinicians followed the description of motor
tasks indicated by the literature (Kisner and Colby, 2012; Kopper
et al., 2012; Graci et al., 2012; Lander et al., 1986; Robert-
Lachaine et al., 2015) explaining how to perform the exercise prop-
erly. Accordingly, they identified the biomechanics of movements
and postures in order to define features useful for the assessment
of the exercise. The collaborative design procedure aims to identify
the kinematic features which describe the movement in term of
motor-functional targets, postural and temporal constraints.
Hence, they are labelled respectively into primary outcomes
(POs), control factors (CFs) and frequency variability (FV). POs are
or monitoring physical exercises in a visual markerless scenario: A proof of
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Fig. 1. Description of the five exercises, part of any motor training in the warm-up phase, selected for the study: Ex. #1;#2 and #3 are related to upper body, in particular
arm movement on the three spatial axial planes, Ex. #4 stresses the trunk, while Ex. #5 concerns the lower body, namely the legs.
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Fig. 2. The system overview shows how the main phases of the projects (i.e., Collaborative design stage, Feature extraction and Movement assessment) are connected: the
blue dotted lines highlight the steps in which the clinicians are involved while the red continuous lines connect the outputs the methodology provides. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the targets that subjects have to reach while CFs are the postures
that must be satisfied during the exercise execution. Since the
exercises are composed by different repetitions, the frequency is
a relevant factor: subjects are expected to follow a constant speed,
whereas aged and disabled people can show high-frequency vari-
ability (Studenski, 2011). All POs and CFs are represented in terms
of relative distances, angles, and anatomical surfaces, while FV is a
temporal distance.

Table 1 illustrates respectively the extracted PO for each exer-
cise and the extracted CF for Exercise #1. POs are extracted in
terms of Local Minima (LMin) and Local Maxima (LMax) of the
related kinematic features shown in Fig. 3a–e. The hip normaliza-
tion is performed for the PO of Exercise #4 (xmin;max; zmin;max). Since
all the remaining features corresponding to POs and CFs of Exercise
#1, #2, #3, #5 and CF of Exercise #4 are extracted in terms of rel-
ative angles, distances and anatomical surfaces, the normalization
is not needed.

CFs are partitioned in Absolute (ACF) and Relative (RCF) Control
Factor. The former describes an achievement of a global constraint,
mandatory for all subjects (inter-subjects), (e.g. subjects have to
maintain the elbow extended to 180�), while the latter describes
an achievement feature that must be maintained during each rep-
etition by the subjects (intra-subject), (e.g. subjects have not to
move the hands).
4.2. Feature extraction stage

The feature extraction stage aims to extract the POs, CFs and FV
from the motion pattern acquired by Kinect v2. We verified the
accuracy of the Microsoft Kinect with respect to the stereopho-
togrammetric system (gold standard) in recognizing and evaluat-
ing these features during Exercise #1, #2, and #5 in the
published paper (Capecci et al., 2016b).

The extracted spatial features are filtered with a 3rd order, zero-
phase, low-pass Butterworth filter in order to reduce the effects of
the measurement noise (Mehran, 2012). Due to its maximum flat
passband nature this type of filter is also often used to remove high
frequencies from digitalized kinematic data acquired by Kinect
Skeletal tracking (see (Capecci et al., 2016b; Scano et al., 2014;
Rocha et al., 2015)). The cut-off frequency f c is fixed at 1 Hz
selected as the optimal value according to the residual analysis
Table 1
PO description related to each exercise considered in this study.

PO (see Fig. 3a–e)

Exercises Tag Description

1 aL;Rmin;max

(Fig. 3a)
LMin and LMax of underarm angle in
the sagittal plane

2 bL;Rmin;max

(Fig. 3b)

LMin and LMax of the lateral
shoulder flexion in the frontal plane
respect to hip

3 dxmin (Fig. 3c) LMin of the horizontal distance
between elbows

4 xmin;max; zmin;max

(Fig. 3d)
LMin and LMax of the spine base
oscillation in the transverse plane

5 hL;Rmin;max

(Fig. 3e)
LMin and Lmax of the knee angles in
the sagittal plane

CF (see Fig. 3f)

Exercise 1 Tag Description

ACF cL;R Elbow extension angles
ACF /L;R Knee extension angles
RCF wL;R Hip angles
RCF At Torso Area
RCF dh Hands Distance
RCF da Ankle Distance

Please cite this article in press as: Capecci, M., et al. An instrumental approach f
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introduced in (Winter, 2009). Frequency variability is computed
considering the time difference between two consecutive PO peaks
(i.e. local maxima).

Fig. 4a shows the POs extracted from one Control subjects
(subA) during Exercise #1. Zero Velocity Crossings (ZVC)
(Pomplun, 2000) is applied to compute the PO of each exercise.
Among these stationary points, only local minima/maxima under
specific amplitude and temporal threshold are selected respec-
tively in order to avoid spurious peaks checking the spatial and
temporal resolution. The amplitude threshold is empirically set
as the mean value of the considered feature, while the temporal
threshold tth is selected using the recorded samples m and the
number of repetitions performed by the subjects (i.e., n ¼ 5) as
tth ¼ m

2n.
The CFs are extracted for each recorded frame. An example of

two CFs, extracted from control subject A, during Exercise #1 is
shown in Fig. 4b and c. The subject satisfies the ACF when reaches
or overcomes the objective threshold (see Fig. 4b). Instead, RCFs
are analyzed considering the parameter variation respect to the
mean value obtained by the subject during the whole trial (see
Fig. 4c).

4.3. Score function

A bell-shaped function is used to rank the patient performance
and to provide the scores. The generalized bell function depends on
three parameters obj; b, and D as given by:

y ¼ 1

1þ input�obj
D

��� ���2b
ð1Þ

where obj is the target value, D is the admitted tolerance and input
refers to the considered PO, CF or FV features. Together with the tol-
erance, b controls the slope at the crossover points. The target and
tolerance values are assigned statistically based on the training
stage described in the next Section. The parameter b is set empiri-
cally to 2, according to the clinicians, in order to provide a less
restricted evaluation. The score ranges from 0 to 100. On the basis
of exercise scope, each subject can achieve the objective if he/she
remains in the tolerance of the target value, overcomes the target
value or remains under this threshold. Therefore three score func-
tions (see Eqs. (2)–(4)) are designed depending on how the exercise
medical goal must be achieved:

score1 ¼ y ð2Þ

score2 ¼ y; if input 6 obj

100 if input > obj

�
ð3Þ

score3 ¼ y; if input P obj

100 if input < obj

�
ð4Þ

The score related to PO is the average respectively for each local

minima POmin
scorei

� �
and/or maxima POmax

scorei

� �
during the five repeti-

tions (n ¼ 5):

POmin
score ¼ mean POmin

scorei¼1...n

� �
ð5Þ

POmax
score ¼ mean POmax

scorei¼1...n

� �
ð6Þ

The total PO score POtot
score

� �
is computed as the mean of the POmin

score

and POmax
score. CF score is figured out for each recorded frame (number

of samples, t) of the specific k constraint (CFk¼1...l). The total CF score
CFtot

score

� �
is computed by:
or monitoring physical exercises in a visual markerless scenario: A proof of
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Fig. 3. Kinematic features: PO (a–e) and CF (f) extraction.
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CFk
score ¼ mean CFk

scorei¼1...t

� �
ð7Þ

CFtot
score ¼ mean CFk¼1...l

score

� �
ð8Þ

The FV score is computed for each time difference between two
consecutive peaks of PO (i.e. local maxima). Then the total FV score
is given by:

FVtot
score ¼ meanðFVscorei¼1...n�1

Þ ð9Þ
The Total Score (TS) is the mean of the POtot

score;CF
tot
score; FV

tot
score.

4.4. Training stage

During the training stage the objective (obj) and tolerance (D)
values are computed for each feature respectively as mean and
standard deviation of POs, CFs and FV extracted from the Control
group (s ¼ 1 . . .28). The PO target (POobj) is computed respectively
as the mean, while the tolerance value (POD) is set as the standard
deviation (std).

POobj ¼ meanðPOs¼1...28Þ ð10Þ
POD ¼ stdðPOs¼1...28Þ ð11Þ

Also, the ACF target (ACFobj) and tolerance (ACFD) are computed
considering respectively the mean and std for all the recorded
frame.
Please cite this article in press as: Capecci, M., et al. An instrumental approach f
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ACFobj ¼ meanðACFs¼1...28Þ ð12Þ
ACFD ¼ stdðACFs¼1...28Þ ð13Þ

Instead, for RCF the target value changes among subjects and it
is computed as the respective mean value, while the tolerance
(RCFD) is the std of each signal normalized to zero mean RCFnorm

s

� �
.

RCFD ¼ std RCFnorm
s¼1...28

� � ð14Þ
Since each subject can perform the exercise at different speeds,

also the FVD is the std of each feature normalized to zero mean
FVnorm

s

� �
.

FVD ¼ std FVnorm
s¼1...28

� � ð15Þ
4.5. Data analysis

The reliability of the instrumental approach is assessed taking
into account three different aspects:

1. measuring the correlation between the algorithm scores and
the averaged judgment of two expert clinicians (M.C. and M.
G.) who scrutinized the recorded videos and responded to the
questionnaire employed in Capecci et al. (2016a) and detailed
in Appendix A about the gesture correctness, amplitude,
variability, and posture;
or monitoring physical exercises in a visual markerless scenario: A proof of
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Fig. 4. PO(aLmax;min
) (a), ACF (cL) (b) and RCF (dh) (c) computed from subA during Exercise #1.
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2. studying the ability to discriminate healthy subjects (i.e. Control
group) with respect to disabled people (i.e., Experimental
group);

3. analyzing how the single features and the related scores con-
tribute to the final outcome and identifying which feature is
able to discriminate between group.

Clinicians observed videos and fulfilled a 10-item Likert ques-
tionnaire in order to quantify the clinical judgment about the exer-
cise execution (see Appendix A). The first three questions
investigated the functional goal, whereas the last seven items con-
trolled the posture maintained during the exercise. Three outcome
measures are then calculated: the clinical Total Score (cTS) as the
sum of the scores of all ten questions, the clinical Primary Outcome
score (cPO) as the sum of the scores of the first three questions and
the clinical Control Factors (cCF) as the sum of the last seven items.
To the best of authors knowledge, in literature, no other assess-
ment questionnaires are presented in order to record clinicians’
judgment about subjects exercise performance. Therefore, authors
choose to propose this scale (Capecci et al., 2016a) and checked for
inter-rater reliability applying Cohens Kappa test that resulted
high (K > 0:8) assessing measures taken from both controls as well
as patients. Since the Kolmogorov Smirnov test rejected the null
hypothesis that the score data comes from a standard normal dis-
tribution, the non-parametric Mann-Whitney U test is used to per-
form the between-group comparison.
5. Results

The correlation analysis with the cPO is performed averaging
the PO and FV scores. The analysis of relationship between
Please cite this article in press as: Capecci, M., et al. An instrumental approach f
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machine and clinicians based assessment shows a medium
(q > :4) and significant (p < :02) correlation for TS and PO score
in all the exercises with the exception of Exercise #5 (see Table 2).
This significant correlation was recognized on the whole sample
(Control and Experimental group) and on the Experimental group.

Fig. 5a and b shows respectively the box plot of the scores com-
puted by the algorithm and clinicians for both groups separately
(i.e. Experimental and Control subjects).

The between-group comparison performed by the Mann–
Whitney U test discloses that the Total Score, provided by the
rule-based approach, is able to detect significant differences among
subjects without pathological history (i.e. Control group) with
respect to subjects suffering from pathologies, that induce motor
disability or pain (i.e. Experimental group) (see Table 3). The Pri-
mary Outcome score is able to distinguish between groups except
for the case of Exercise #2. The Control Factor score unveils signif-
icant differences between Control and Experimental people in the
case of Exercise #2 and #4, whereas the Frequency Variability
score is significantly different between healthy (Control) and dis-
abled (Experimental) subjects in the case of Exercise #1, #4 and
#5. All acquired clinical measures are able to discriminate between
Control and Experimental subjects (see Table 3).
5.1. Features analysis

The canonical correlation analysis was performed for Exercise
#1 between the feature scores provided by the algorithm with
respect to cPO and cCF (see Fig. 6). The correlation increases
respectively for PO scores (q ¼ 0:649 for Experimental Group, and
q ¼ 0:549 for the Whole Sample) and CF scores (q ¼ 0:777 for
Experimental Group, and q ¼ 0:637 for the Whole Sample).
or monitoring physical exercises in a visual markerless scenario: A proof of
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Table 2
Spearman rank correlation test: q values (Z value; p value).

Ex. Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5

TS
Whole sample .54 .45 .46 .64 .3

(3.6;.0003) (3.0;.002) (3.1;.002) (4.3; <.0001) (2.1;.03)
Experimental group .44 .41 .46 .62 .2

(2.3;.02) (2.3;.02) (2.6;.001) (3.5; <.0005) (n.s.)

PO
Whole sample .48 .45 .51 .6 .51

(3.3;.001) (3.0;.002) (3.4;.001) (4.0; <.0001) (3.4;.001)
Experimental group .57 .55 .50 .66 .41

(3.1;.002) (3.1;.02) (2.8;.005) (3.7; <.0002) (2.3;.02)

CF
Whole sample .2 .52 .42 .41 .1

(n.s.) (3.5;.0005) (2.8;.005) (2.7;.007) (n.s.)
Experimental group .2 .41 .47 .3 .3

(n.s.) (2.3;.02) (2.7;.008) (n.s.) (n.s.)

Fig. 5. Box plot rule-based assessment scores (a) and clinical scores (b) split by Experimental and Control group.
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The computed weights of each feature are reported in Fig. 7. The
most relevant PO for Exercise #1 is the aL=Rmax (i.e., the maximum
angle of the underarm angle). While the most salient CF is the
extension of the elbow angles (i.e.,cL=R).
Please cite this article in press as: Capecci, M., et al. An instrumental approach f
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The Mann-Whitney U test was performed for each PO and CF in
order to recognize which feature was more discriminative to iden-
tify groups. Results point out that none features are statistically
significant for discrimination. Anyway the aL=Rmax
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Table 3
Results of comparative statistics (Z value; p value by Mann Whithney U test) of rule-based assessment scores and clinical scores: Experimental subjects versus Control subjects.

Ex. Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5

Rule-based scores
TS �2.9;.003 �2.4;.01 �3.2;.001 �3.6;.0003 �4.1; <.0001
PO �2.3;.02 n.s. �2.6;.01 �2.1;.03 �4.2; <.0001
CF n.s. �2.5;.01 n.s. �2.4;.01 n.s.
FV -2.1;.03 n.s. n.s. �2.9;.003 �2.4;.02

Clinical scores
cTS �4.4; <.0001 �3.6;.0003 �4.5; <.0001 �4.5; <.0001 �3.6;.0003
cPO �3.8;.0002 �3.3;.001 �4.0; <.0001 �3.2;.001 �4.5; <.0001
cCF �4.1; <.0001 �3.7;.0002 �3.9; <.0001 �4.6; <.0001 �2.8;.005
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Fig. 6. Canonical correlation between the univariate outcome scores computed by the instrumental approach and the clinical primary and control factor outcome (i.e., cPO
and cCF). The x-axis shows the PO and CF scores multiplied for their related weight while y-axis reports cPo and cCF.
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(Z ¼ 1:7; p ¼ :092), cL=R (Z ¼ 1:6; p ¼ :105) and dh

(Z ¼ 1:4; p ¼ :153) are close to the boundary of significance.
6. Discussions

Telerehabilitation offers some benefits and advantages for peo-
ple suffering from neurological and orthopedic diseases (Hailey
et al., 2011; Steel et al., 2011; Bendixen et al., 2009; Brennan
et al., 2009; Constantinescu et al., 2010; Johansson and Wild,
2011). Complex and intrusive technologies like electromyography
(Russell et al., 2011), optoelectronic motion analysis or wearable
inertial systems cannot be routinely adopted in a physiotherapy
ambulatory or at home, because of their costs and low acceptabil-
ity and usability, as defined by the Unified Theory of Acceptance
and Use of Technology criteria (UTAUT (Venkatesh et al., 2003)).
On the other hand, more than one wearable sensor (i.e. accelerom-
eter) is required to accurately describe motion and posture
(Winters et al., 2003; Iosa et al., 2016), disagreeing with the UTAUT
(Venkatesh et al., 2003). Therefore, vision-based systems are
preferable for monitoring the whole body motion during the exe-
cution of a functional movement in a delimited environment.
Although there is a growing interest towards telerehabilitation,
most of the available systems failed to provide a direct accurate
monitoring of the motion during exercise.

In this paper, a Kinect based system is proposed for assessing
motor performance during rehabilitation. With respect to similar
systems yet presented in the literature (Zhao et al., 2014; Metcalf
et al., 2013; Palacios-Navarro et al., 2015; Chang et al., 2013;
González-Ortega et al., 2014; Su et al., 2014), three main innova-
tions, apart from using Microsoft Kinect v2 as the sensor, are
introduced:

1. the machine-based movement assessment is realized with rules
derived from the exercise kinematic, whereas most of the stud-
ies used probabilistic model (Ciabattoni et al., 2016; Karg et al.,
2015) or action similarity algorithm (Su et al., 2014; Hu et al.,
2015; Zhang et al., 2016);

2. the reliability of the assessing system has been performed com-
paring algorithm results with respect to blinded clinicians
judgments;

3. the algorithm is able to recognize separately both the correct
posture of different body segments (named postural Control
Factors) and, contextually, the correct kinematic outcomes
(named Primary Outcomes) during the exercise.

The rule-based approach allows to overcome the preliminary
construction of a large sample database of controls stratified by
gender, age and anthropometric measures, as required, for
instance, by template based approaches (Ciabattoni et al., 2016;
Karg et al., 2015; Su et al., 2014; Hu et al., 2015). Anyway, healthy
subjects may wrongly perform some exercises: as found in this
study, the maximum value of clinical postural score (cCF) is around
the 75%.

The algorithm provides a disaggregated quantitative score for
each PO, CF, which are the main information for supporting
patients directly and clinicians remotely (Kairy et al., 2009;
Hailey et al., 2011). To the best of authors’ knowledge, no available
systems have showed these markerless and low-cost features.

The system reliability has been tested on five exercises widely
used to treat neurological and musculoskeletal diseases (Hutson
and Ward, 2015; Kairy et al., 2009; Kisner and Colby, 2012). The
method followed in this study can be usefully applied for many
other exercises (e.g., K3Da dataset (Leightley et al., 2015)) adopted
in the rehabilitation context: the procedure used to design the
Please cite this article in press as: Capecci, M., et al. An instrumental approach f
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algorithm and to identify the outcome measures is the key rule
to generalize the approach.

In order to generalize the experiment and its results, the
enrolled groups are heterogeneous for age range and pathologies.
The correlation, respect to clinicians’ judgments, highlights a sig-
nificant reliability of TS and PO scores, while the CF scores result
less accurate for assessing postural features. In particular, dynamic
movements may include different postures adverse to the vision
sensor characterized by joint occlusion (Capecci et al., 2016b). On
the other hand also the clinical assessment can be affected by bias
and errors due to the discrete clinical scale grading (e.g. rarely vs
sometimes vs often) and to the visual evaluation of a 3D human
movement performed through 2D video images. These elements
and the sample heterogeneity can be the responsible for the wide
variability of clinical measures, as shown in Fig. 5b. The between-
group comparative statistic shows that TS and PO scores discrimi-
nate between healthy and disabled subjects while CF and FV scores
are less effective to do it in the case of Exercise #1, #3 and #5. The
TS is a comprehensive measure, able to give a reference value, use-
ful for both patients and clinicians, while PO score is able to depict
the reaching of the primary outcome of the exercise. Accordingly,
CF score remains the awkward measure due to its implicit com-
plexity while the FV values show a subject- and pathology-
dependency (Serrao et al., 2017).

The canonical analysis was able to identify those features that
most influence the PO and CF scores. However, neither of the fea-
ture alone was completely reliable at discriminating between
group, possibly due to highly variable movement patterns pro-
vided by subjects with motor impairments. Hence, we recommend
combining the assessment of different features to increase the dis-
criminative power and the generalization of this approach.
7. Conclusions

Monitoring the accuracy of subjects posture and movements
during rehabilitation stage is performed continuously by the phys-
iotherapist in order to guarantee the best outcome and avoid side
effect as pain or falls (Kisner and Colby, 2012; Kopper et al., 2012;
Graci et al., 2012; Lander et al., 1986; Robert-Lachaine et al., 2015).
However, when exercise is performed in the home environment,
the issue of gesture monitoring is critical. We proposed a tool able
to provide an instrumental monitoring of motor performance dur-
ing motor training for axial disorders, that may be adopted in a tel-
erehabilitation scenario. It resulted reliable when compared to
clinical judgment and efficacious at discriminating between
patients and healthy subjects. The tool provides different outcome
measures: a synthetic score (TS) that was the most consistent mea-
sure, a score describing movement features (PO) that was the most
reliable with respect to clinicians decision and a score describing
postural features (CF) that was the most variable measure during
both instrumental and clinical assessment, reflecting the limits of
Kinect camera as well as of the clinical judgment. As future works
authors aim to validate the reusability of the proposed methodol-
ogy with respect to other dataset proposed in literature such as the
K3Da dataset (Leightley et al., 2015). Furthermore, authors aim to
integrate this tool in a telerehabilitation system allowing subjects
to carry out tailored exercises at home, exploiting continuous feed-
back of their performances.
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Appendix A

Exercise accuracy assessment
Please, observing the entire exercise (all repetitions), answer

the questions signing one of the following chance:

1=Never 2=Rarely 3=Sometimes 4=Often 5=Always

1. Is the primary goal of the exercise reached (i.e., the exten-

sion of the upper limbs, trunk rotation with upper limbs ele-
vated to 90�, squatting, etc.)?

2. Is the exercise repeatable?
3. Is the amplitude of the movement complete?
4. Is the posture of the head correct?
5. Is the posture of the right arm correct?
6. Is the posture of the left arm correct?
7. Is the posture of the trunk correct?
8. Is the posture of the pelvis correct?
9. Is the posture of the right leg correct?

10. Is the posture of the left leg correct?
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