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Introduction
Lipids and lipid signaling profoundly impact the func-
tion of ion channels and transporters, and the molec-
ular mechanisms by which lipids act are now being 
rapidly elucidated. More than 50 JGP contributions 
illustrate specific regulation of ion channels by phos-
phoinositides, both transient regulation caused by 
phosphoinositide concentration changes and constitu-
tive regulation related to channel localization in mem-
brane compartments with differing phosphoinositide 
content. Less specifically, lipids modify the function 
of channels and transporters by modifying local mem-
brane structure and protein–membrane interfaces. 
Membrane tension, fluidity, curvature, and asymmetry 
are subjects of more than 200 JGP publications. The 
lipids involved include diacylglycerols, ceramides, free 
fatty acids, fatty acid metabolites, lysolipids, and cho-
lesterol. Arachidonic acid is addressed in 26 JGP pub-
lications, while cholesterol and anionic lipids are each 
addressed in more than 200 JGP articles. An emerg-
ing area of interest is the formation of proteolipid 
domains in cell membranes. Diverse studies indicate 
that membrane proteins and lipids can form ordered 
domains that modify membrane protein function and 
may catalyze unique membrane protein interactions, 
such as concerted channel gating. Domains initiate as 
nanoscale proteolipid aggregates and, upon coales-
cence, can achieve lifetimes of up to several seconds. 
Domains can vesiculate inwardly as adapter-free endo-
cytosis or outwardly as ectosome shedding, and they 
may potentially serve as platforms for local lipid metab-

olism. Palmitoylation is a common protein modifica-
tion that promotes participation in ordered domains. 
Amphipathic compounds, such as lysolipids and deter-
gents, and phospholipids with small head groups, such 
as ceramide, can also catalyze domain coalescence. A 
parallel mechanism is that membrane domains can be 
formed via membrane cytoskeleton fences that restrict 
long-distance lipid diffusion without restricting local 
lipid diffusion. Clearly, the development of improved 
means to study membrane domains and to test emerg-
ing ideas about their formation will be a major chal-
lenge for membrane physiology in the 21st century.

Lipid signaling is complex
In 1969, a prescient JGP article explicitly raised the 
question of how mechanistically the lipid bilayer can 
influence membrane protein conformations (Wallach, 
1969). The answers were not simple at that time, and 
they are not simple now. A few of the physical mecha-
nisms of interest are tabulated in Fig. 1 A. Second mes-
senger functions are exemplified by the regulation of 
K channels by phosphatidylinositol (4,5) bisphosphate 
(PIP2) as it occurs in sympathetic neurons (Kruse et al., 
2016). Numerous biophysical mechanisms by which the 
interface between membrane proteins and the bilayer 
can be modified are outlined in recent articles of the 
Olaf Andersen group (Lundbaek and Andersen, 1994; 
Andersen, 2013; Bruno et al., 2013; Rusinova et al., 
2013, 2015), three of which were published in JGP.

Lipids influence powerfully the function of ion channels and transporters in two well-documented ways. A few 
lipids act as bona fide second messengers by binding to specific sites that control channel and transporter gat-
ing. Other lipids act nonspecifically by modifying the physical environment of channels and transporters, in par-
ticular the protein–membrane interface. In this short review, we first consider lipid signaling from this traditional 
viewpoint, highlighting innumerable Journal of General Physiology publications that have contributed to our 
present understanding. We then switch to our own emerging view that much important lipid signaling occurs via 
the formation of membrane domains that influence the function of channels and transporters within them, pro-
mote selected protein–protein interactions, and control the turnover of surface membrane.
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Lipids that can influence membrane–protein inter-
faces in all cells including diacylglycerols (DAGs), ce-
ramides, free fatty acids (FFAs), and FFA metabolites, 
as well as cholesterol and PIP2 (Rusinova et al., 2013). 
The complexity grows exponentially with the number 
of lipids considered, and it explodes with the realiza-
tion that lipid-metabolizing enzymes simultaneously 
generate and deplete multiple bioactive lipids. Fig. 1 B 
highlights this principle for PLCs. As example, PLC-β 
becomes activated when M1 muscarinic receptors or 
α1 adrenergic receptors are activated and couple to Gq 
proteins (Falkenburger et al., 2013). The PLC-β activity 
controls not one signaling lipid, but a network of lipids, 
while it simultaneously generates inositol triphosphate 
(IP3) and thereby Ca signals. DAG is generated, PIP2 is 
depleted, and PIP2 depletion potentially depletes phos-
phatidylinositol (3,4,5) trisphosphate (PIP3; Howes et 
al., 2003). It is even suggested that PIP3 phosphatase 
activity can in certain circumstances promote accumu-
lation of PIP2 (Li et al., 2014). Next, DAG is phosphor-
ylated by DAG kinases to generate phosphatidic acid 
(PA; Gomez-Cambronero, 2014; Bullen and Soldati- 
Favre, 2016), or it is cleaved by DAG lipases to generate 
FFAs and arachidonylglycerol (2-AG). All three of the 
reaction products are universal signaling lipids (Oka-

zaki and Saito, 2014), and FFAs are the precursors of ad-
ditional highly active metabolites. The activated forms 
of FFAs, long-chain acyl coenzyme As (CoAs), directly 
regulate both transporters (Hamming et al., 2008) and 
channels (Shumilina et al., 2006), whereas prostaglan-
dins and cannabinoids are agonists at their own specific 
receptors (Sang and Chen, 2006). 2-AG is also impli-
cated to regulate A-type K channels by a direct mecha-
nism and thereby control neuronal pacemaking (Gantz 
and Bean, 2017).

Expanding still further this complexity, the same 
lipid signaling molecule can often be generated by mul-
tiple biochemical pathways. Given that lipids typically 
traffic extensively during and subsequent to their syn-
thesis (Blom et al., 2011), this multiplicity may or may 
not contribute to compartmentalization of lipid signal-
ing. Whereas 2-AG, as diagrammed in Fig. 1 B, can be 
a product of the PLC pathway, cannabinoids are also 
generated in other branches of lipid metabolism (Rah-
man et al., 2016). Anandamide synthesis, for example, 
can be initiated by the transfer of an acyl chain from 
phosphatidylcholine (PC), possibly located in the outer 
monolayer, to the head group of a phosphatidylethanol-
amine (PE) in the inner monolayer, via an acyl transfer-
ase (PLA2G4E) that only recently has been identified 
(Ogura et al., 2016). Once again, multiple signaling 
molecules are generated. Lysophosphatidylcholines 
(LPCs), which are commonly generated by PLA2, are 
also generated when the acyl chain of PC is removed 
and transferred to the head group of PE, thereby form-
ing N-acyl-PE (N-aPE). The cannabinoid anandamide is 
formed subsequently by the cleavage of N-aPE. In this 
connection, it is an intriguing question whether this 
unusual, three-legged lipid intermediate, N-aPE, might 
itself have signaling functions in the cytoplasmic leaflet 
of the surface membrane.

A good signaling lipid can be hard to find
Invertebrate vision illustrates very well the complexities 
just outlined. The no receptor potential Drosophila 
visual mutant, norpA (Paj et al., 1976), characterized 
biochemically in a JGP paper in 1978 (Ostroy, 1978), 
provided the first very persuasive support, albeit indi-
rect support, for the notion that specific membrane 
lipids can act as specific membrane-delimited second 
messengers to regulate ion channels. Biochemical 
work in the early 1980s revealed that in vision-impaired 
norpA mutants, DAG was not being phosphorylated to 
generate PA (Yoshioka et al., 1984). Soon, it was clar-
ified that the disrupted enzyme was not a DAG kinase 
but rather a PLC (Yoshioka et al., 1985). Subsequently, 
the transient receptor potential TRP proteins that me-
diate invertebrate vision were identified (Montell and 
Rubin, 1989), and they were determined to be cation 
channels that could initiate light responses by depolar-
izing photoreceptor cells in the ommatidium (Montell 

Figure 1.  Mechanisms involved in lipid signaling to ion 
channels and transporters. (A and B) A host of biophysical 
mechanisms (A) and lipidic messengers (B) are involved in lipid 
regulation of membrane proteins. PLCs cleave one signaling 
lipid, PIP2, and generate two signaling molecules, IP3 and DAG. 
Phospholipase Ds (PLDs) and DAG kinases both generate the 
signaling molecule, PA. DAG lipases cleave one signaling lipid, 
DAG, and generate the cannabinoid 2-AG, whereas FFAs serve 
as precursors to many other signaling lipids. PLA2 generates 
the signaling lipid LPC, as well as FFAs. The acyltransferase 
PLA2G4E generates LPC as it transfers an acyl chain from PC to 
PE to form N-aPE, the precursor of anandamide.  on F

ebruary 6, 2018
jgp.rupress.org

D
ow

nloaded from
 

http://jgp.rupress.org/


3JGP��﻿﻿

and Rubin, 1989). It remained then only to identify the 
second messenger generated by PLC activity.

Ironically, these seminal discoveries did not lead 
quickly to the identification of a second messenger that 
mediates invertebrate phototransduction. IP3 appeared 
to be required for Limulus photo responses (Brown et 
al., 1984), and it was later verified to be critical in Limu-
lus in another JGP contribution (Fein, 2003). However, 
IP3 was eliminated as a possible second messenger in 
Drosophila, and interest turned to FFAs generated by 
DAG lipases subsequent to PIP2 cleavage to DAG (Chyb 
et al., 1999). Later, results for DAG kinase mutants 
shifted interest to DAG itself (Hardie et al., 2002). How-
ever, the role of DAG in Drosophila phototransduction 
became less convincing over the next decade. Recently, 
it has been proposed that PIP2 depletion within the 
membrane, together with acidification that can occur 
during PLC activity, underlies the photo response in 
Drosophila (Hardie and Juusola, 2015). Given this his-
tory, the field remains unsettled, and there are indeed 
good reasons for uncertainty. The functions of TRP 
and TRPL channels, although better understood in 
Drosophila as a result of contributions to JGP (Saari et 
al., 2017), are strongly dependent on the cell type in 
which they are expressed, thereby confounding analysis 
of their biochemical regulation in expression systems 
(Lev et al., 2012). Although regulatory proteins may 
play a role, it seems certain that the lipidic environment 
is important. Resolution of the remaining open ques-
tions will be challenging, and one possible outcome is 
an involvement of multiple lipid messengers.

Multiplicity in lipid signaling
The interconnected nature of lipid signaling and the po-
tential for involvement of multiple signaling lipids, just 
highlighted, raise similar problems across the board. 
One prevalent example is that PIP2-sensitive transport-
ers and channels are more often than not also affected 
by PA or other anionic lipids. Human inwardly rectifying 
K channels, for example, have one relatively specific site 
for PIP2 and another nonspecific site where additional 
anionic lipids can bind (Cheng et al., 2011). Therefore, 
regulation of DAG kinases and PA hydrolases, as well 
as PLCs, becomes physiologically important. PIP2 and 
PA both have substantial effects on many Kv channels, 
and the voltage sensitivity of some Kv channels is more 
affected by PA than PIP2 (Hite et al., 2014). Our own 
interest in lipid signaling was stimulated by finding that 
multiple negatively charged lipids can profoundly acti-
vate cardiac Na/Ca exchange (NCX1) in isolated car-
diac membranes (Hilgemann and Collins, 1992). At 
first, it appeared that phosphatidylserine and PA were 
the key modulators of Na/Ca exchangers (Hilgemann 
and Collins, 1992), but in giant membrane patches, PIP2 
unambiguously became the most active anionic lipid in 
the presence of ATP (Hilgemann and Ball, 1996). As 

expected, PIP2 cleavage in response to activation of M1 
muscarinic receptors expressed in cell lines inhibited 
NCX1 currents (Yaradanakul et al., 2007).

Disappointing for us, others found that PLC activa-
tion in cell cultures did not inhibit NCX1 activity, mon-
itored as ion flux (Chernysh et al., 2008). Furthermore, 
hormones that activate Gq signaling and PLCs were 
found in some circumstances to activate, rather than in-
hibit, NCX1 activity (Ballard and Schaffer, 1996; Stengl 
et al., 1998; Yaradanakul et al., 2007). In the case of 
α1-adrenergic receptor activation by phenylephrine, an 
involvement of PKCs was indicated (Ballard and Schaf-
fer, 1996), although many α-agonist effects in myocytes 
do not seem to involve PKCs (Endou et al., 1991). Cer-
tainly, PA is generated during the α1 response, both via 
the PLC/DAG kinase pathway and via phospholipase Ds 
(Singer et al., 1996). Accordingly, PA rather than PIP2 
may be the most active lipid messenger at Na/Ca ex-
changers in cardiac myocytes, and the long-term acti-
vation of NCX1 by Ca elevations (Lu et al., 2016) may 
well reflect generation of PA by Ca-dependent DAG ki-
nases (Liu et al., 2016; Boroda et al., 2017). In summary, 
and typical for PLC activation in any cell, the response 
of cardiac myocytes to PLC-β activation involves multi-
ple lipids. PA may act primarily on Na/Ca exchangers, 
DAG on TRPC3, and TRPC6 channels (Onohara et al., 
2006), and PIP2 on delayed rectifier K channels (Bian 
and McDonald, 2007), but it remains possible that mul-
tiple lipids regulate each of these mechanisms.

Beyond the complexity that multiple lipids may reg-
ulate the same targets, individual signaling lipids can 
have different functions in different cell types. Table 1 
summarizes work from more than 40 JGP contribu-
tions concerning the functions of PIP2 in regulating ion 
channels. These articles explore a wide range of issues, 
from interactions of PIP2 with polyamines in the regula-
tion of KATP channels, to the specificity of PIP2 as a regu-
lator of different K channel types (e.g., Kir verus Kv), as 
well as very different channel types (ENaC versus HCN 
channels), and the potential of PIP2 to regulate skele-
tal muscle excitation–contraction coupling. Space does 
not permit a detailed review of this work, but many de-
tails are available in review articles compiled previously 
(Logothetis and Nilius, 2007; Robertson, 2007). Espe-
cially in neurons, the second messenger function of 
PIP2 to Kv channels has been firmly established (Hughes 
et al., 2007; Hernandez et al., 2008b; Hille et al., 2015; 
Dai et al., 2016). In other tissues, notably the heart, it 
remains more convincing that PIP2 usually functions as 
a surface membrane marker that constitutively activates 
ion channels when they are localized to the cell surface 
(Hilgemann et al., 2001).

As usual in biology, the rules are not absolute. It is 
described for cardiac atrial myocytes that PIP2-sensi-
tive GIRK channels can desensitize as muscarinic re-
ceptor activation promotes PIP2 cleavage (Jan and Jan, 
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2000; Kobrinsky et al., 2000), consistent with a second 
messenger function. However, this appears to be spe-
cies-dependent and may not occur in intact cardiac 
tissue. In guinea pig atria, for example, muscarinic 
receptor activation shortens action potentials rapidly 
and monotonically, and the underlying GIRK chan-
nels clearly remain active for many minutes with no 
sign of desensitization (Gertjegerdes et al., 1979). This 
is indicative of strong Gi signaling to activate GIRKs 
with only weak Gq signaling that might deplete PIP2. 
As a second example, HERG (Ikr) K channels in ven-
tricular myocytes can be inactivated by PIP2 depletion 
and potently reactivated by PIP2 (Bian and McDonald, 
2007). Nevertheless, their inhibition by Gq-coupled 
α1-adrenergic receptors (Bian and McDonald, 2007; 
Urrutia et al., 2016) appears to depend more on PKC 
activity (Urrutia et al., 2016) than on PIP2 depletion. 
In this context, many studies show that the affinities 
of PIP2 binding sites can be regulated by phosphory-
lation and by additional channel modulators (Du et 
al., 2004; Rapedius et al., 2005; Li et al., 2011; Zhang 
et al., 2014; Chen et al., 2015; Salzer et al., 2017). 
Accordingly, PIP2 can be switched from being a con-
stitutive, high-affinity channel activator to being a 
regulatory second messenger with lower channel affin-
ity whose influence changes with changes of surface 
membrane PIP2 levels.

That phosphoinositides indeed regulate ion chan-
nels in a membrane compartment–dependent man-
ner is now supported by studies of ion channels in 
internal membrane compartments. D3 phosphoinos-
itides, such as PI(3,5)P2, activate TRP​ML channels 
that are localized to lysosomes (Zhang et al., 2012; 
Schmiege et al., 2017), where D3 inositides are prev-
alent, whereas PI(4,5)P2 is inhibitory (Zhang et al., 
2012). Similarly, the activity of Na-selective two-pore 
channels (TPCs), localized to endolysosomal mem-
branes, requires D3 inositides (Lagostena et al., 2017; 
Nguyen et al., 2017).

Local PIP2 signaling
After more than 20 years of electrophysiological PIP2 
studies, it remains an open question whether PIP2 sig-
naling can occur in a local manner. Superresolution 
microscopy has generated conflicting results about PIP2 
domains with antibody probes showing PIP2 clustering 
(Wang and Richards, 2012), whereas less aggressive, 
lower-affinity PH domains reveal even distributions of 
PIP2 with interspersed areas of PIP2 sparsity (Ji et al., 
2015). Findings that tend to support local PIP2 signal-
ing in cardiac myocytes, and therefore the presence of 
long-lived membrane domains, include the following. 
Although global PIP2 changes very little with α1-ad
renergic stimulation (Nasuhoglu et al., 2002), multiple 
studies suggest that PIP2-sensitive ion channels can ex-
perience PIP2 depletion during α1-receptor activation. 
This is the case for volume-activated anion channels that 
in myocytes require PIP2 for their activation in response 
to cell swelling (Ichishima et al., 2010). Activation of 
α1 receptors can block their activation by swelling, and 
multiple methods to deplete and enhance PIP2 modu-
late this blockade as expected if α1-adrenergic receptor 
activation locally depletes PIP2.

More directly, provocative experiments using fluores-
cent phospholipids in cardiac myocytes suggested (a) 
that PIP2 diffusion is strongly and selectively restricted 
by the membrane cytoskeleton of the sarcolemma (Cho 
et al., 2005a), (b) that this restriction can be readily 
disrupted by latrunculin-induced disruption of mem-
brane cytoskeleton (Cho et al., 2005a), (c) that PIP2 
restriction by the cytoskeleton enables local signaling 
from specific receptors to specific PIP2-sensitive inward 
rectifying K channels (Cho et al., 2005b), and (d) that 
GIRK channels are specifically localized to caveolae in 
which PIP2 depletion is very pronounced during acti-
vation of colocalized endothelin receptors (Cui et al., 
2010). That PIP2 in caveolae can be regulated in a lo-
calized manner is supported further by an independent 
biochemical study showing that activation of α1-adren-

Table 1.  Ion channel regulation by PIP2: >40 JGP contributions

Ion channel JGP contributions

KATP channels Koster et al., 1999; Ribalet et al., 2000; Shyng et al., 2000; Cukras et al., 2002; Pratt et al., 2011
GIRK channels Petit-Jacques et al., 1999; Lacin et al., 2017
Multiple inward rectifier (Kir) channels Lu et al., 2002; Xie et al., 2005; Lee et al., 2016
KCNQ channels Suh et al., 2004; Hernandez et al., 2008a,b; Telezhkin et al., 2012; versus other Kv channels: Kruse et al., 2012
TRPV channels Lee et al., 2005; Doerner et al., 2011; Ufret-Vincenty et al., 2015
Hyperpolarization-activated HCN (“IF”) channels Pian et al., 2006
Epithelial (ENaC) Na channels Pochynyuk et al., 2007
Large conductance Ca-activated (BK) K channels Vaithianathan et al., 2008; Tian et al., 2015
CNG vertebrate vision channels Dai et al., 2013
TRPC6/7 channels Itsuki et al., 2014
ELK K channels Li et al., 2015
TRPM3 channels Badheka et al., 2015; Tóth et al., 2015
Skeletal muscle Ca release mechanism Berthier et al., 2015
Cav channels Park et al., 2017

CNG, cyclic nucleotide-gated; Cav, voltage-gated Ca; ELK, EAG-like.
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ergic receptors depletes PIP2 in caveolae of myocytes 
but not in the bulk of the cardiac sarcolemma (Morris 
et al., 2006). Given the potential importance of these 
findings for an understanding of PIP2 signaling in myo-
cytes, it remains paramount that these conclusions are 
addressed by further studies, preferably with additional 
methodological approaches. That membrane cytoskel-
eton and/or other membrane-associated proteins can 
strongly impede the diffusion of lipids in membranes 
is unambiguously established for phagosomes (Go-
lebiewska et al., 2011; Ostrowski et al., 2016) and for 
lipid diffusion within the cytoplasmic leaflet of epithe-
lial cells, where tight junctions form a diffusion barrier 
between apical and basolateral cell surfaces (van Meer 
and Simons, 1986).

Membrane domains as regulators of membrane protein 
interactions and function
It has been advocated for decades that the formation 
of proteolipid domains within biological membranes 
promotes selected protein–protein interactions and 
membrane trafficking events (van Meer and Simons, 
1988). How, in detail, domains form and regulate these 
functions remains controversial. Our group was forced 
to think in terms of membrane domains after finding 
that cells can internalize large fractions of their surface 

membrane without involvement of conventional endo-
cytic proteins (Yaradanakul et al., 2007). Fig.  2  A de-
scribes the progression of massive endocytosis (MEND) 
in cartoon form. During these responses, membrane 
regions internalize that are more ordered, and there-
fore bind amphipathic compounds poorly. More than 
20 amphipaths were analyzed, including detergents, 
hydrophobic ions, and fluorescent membrane probes 
(Hilgemann and Fine, 2011). Those membrane regions 
that are more disordered, and bind amphipaths more 
avidly, remain at the cell surface. The capacitance re-
cords typically do not reveal discrete events, indicating 
that the vesicles formed are not unusually large. Trig-
gers of MEND include large Ca transients, amphipathic 
compounds, membrane protein palmitoylation, sphin-
gomyelinase activities, and metabolic stress.

The JGP review process enabled us to publish a se-
ries of articles describing very large datasets concerning 
these endocytic processes (Fine et al., 2011; Hilgemann 
and Fine, 2011; Lariccia et al., 2011). At least three 
different Ca sensors could eventually be distinguished 
(Hilgemann et al., 2013), and MEND could be shown to 
occur in several different flavors, some of which are il-
lustrated in Fig. 2 (B–E) using capacitance recording to 
monitor surface membrane area in BHK cells. Ca influx 
for 5  s via constitutively expressed Na/Ca exchangers 

Figure 2.  Massive endocytosis or 
MEND. (A) Formation of ordered mem-
brane domains that can internalize by 
MEND (Fine et al., 2011). (1) The outer 
monolayer consists of nanoscale liquid 
ordered (Lo) and liquid disordered (Ld) 
domains with lifetimes of microseconds 
up to a few seconds. Affinity differ-
ences for Lo versus Ld domains are less 
than one log unit. (2) Palmitoylation of 
membrane proteins promotes the co-
alescence of larger Lo domains, as do 
amphipathic compounds that displace 
cholesterol from Ld to Lo domains. Line 
tension between domains may now 
promote the plasmalemma to buckle. 
(3) Accumulation of proteins with 
large cytoplasmic domains in Lo do-
mains promotes membrane budding. 
(4) Membrane scission remains a key 
biophysical problem. “Line tension” 
between Lo and Ld domains will mini-
mize the perimeters of Lo domains and 

promote domain budding, but it cannot account energetically for excision of vesicles <400 nm in diameter. One speculation is that 
inverted V-shaped lipids accumulate in "neck" regions with high curvature and catalyze the final “pinch” to excise vesicles. MEND 
generates vesicles that follow normal trafficking pathways to endosomes, and the contents of endocytized vesicles can recycle back 
to the plasmalemma via ATP-dependent processes that are inhibited by n-ethylmaleimide (NEM) and oxidative stress. (B) Delayed 
MEND triggered by Ca influx for 5 s (blue trace) is blocked in the absence of ATP (red trace) but can be restored by perfusion of PIP2 
into cells (Lariccia et al., 2011). (C) MEND occurs very rapidly in the presence of high-cytoplasmic Ca when the cytoplasm is enriched 
with polyamines (e.g., spermidine) or the membrane is enriched with cholesterol. There is no requirement for ATP. (D) Application 
of TX-100 at a sublytic concentration induces MEND within a few seconds without significant conductance changes and with no re-
quirement for ATP. (E) Application of ionic detergents, such as SDS, at low concentrations appears to block constitutive endocytosis. 
MEND occurs when SDS is washed off, indicating that ordered domains with long lifetimes were formed in the presence of SDS. 
(B–E) Tracings of records published in the two JGP articles referenced in this legend.
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routinely causes initially an exocytic response that ex-
pands the surface membrane by >30%. After cytoplas-
mic Ca recedes, this response is followed by loss of 50% 
of the cell surface over 2 min (blue trace in Fig. 2 A), 
and this response was verified optically to be endocyto-
sis rather than ectosomal membrane shedding (Laric-
cia et al., 2011). In the absence of cytoplasmic ATP (red 
trace in Fig. 2 A), MEND is blocked but can be rapidly 
restored after a Ca transient by perfusing PIP2 into cells 
(Lariccia et al., 2011). In other circumstances, illus-
trated in Fig. 2 C, MEND occurs with no dependence 
on ATP or PIP2, and the rapid progression of MEND 
requires the continued presence of a high cytoplasmic 
Ca concentration. This type of Ca-activated MEND is 
promoted by polyamines, such as spermidine, and by 
enhancing the membrane cholesterol content.

The involvement of membrane domains became in-
creasingly likely with indications that conventional en-
docytic proteins, such as clathrin, dynamins, and actin, 
were not involved in MEND. As anticipated, reagents 
that modify mechanical properties of membranes 
(Lundbaek and Andersen, 1994; Lundbæk et al., 2004) 
and promote complex membranes to form domains 
(Staneva et al., 2005) powerfully induced MEND with 
no requirement for ATP and without significant con-
ductance changes. Fig. 2 D illustrates the induction of 
MEND by Triton X-100 (TX-100, 120  µM). Like TX-
100, ionic detergents such as SDS can also displace 
cholesterol laterally (Caritá et al., 2017), and SDS in-
duces MEND at concentrations 10-fold lower than its 
critical micelle concentration. These MEND responses, 
illustrated in Fig.  2  E, take place with the caveat that 
detergent must be removed for MEND to occur. An ex-
planation of this pattern must take into account that 
SDS does not cross membranes and has no effect from 
the cytoplasmic side in pipette perfusion experiments. 
Our suggestion is that, although SDS promotes the 
formation of domains that can internalize, the ionized 
head groups of SDS molecules also prevent the final fu-
sion of the outer monolayer with itself that must occur 
as vesicles pinch off. SDS can be washed off cells much 
faster than the membrane can reorganize laterally back 
to its “ground” state. Accordingly, domains induced by 
SDS must have lifetimes equivalent to the few seconds 
over which MEND takes place in these experiments 
when SDS is washed off.

The induction of MEND by sphingomyelinases (Zha 
et al., 1998; Lariccia et al., 2011) is also implicated to 
involve the formation of submicroscopic membrane 
phase separations. Equivalent experiments using giant 
artificial vesicles demonstrate that ceramides, gener-
ated during sphingomyelin cleavage by sphingomyeli-
nases, associate into domains and catalyze membrane 
vesiculation in the direction expected from their in-
verted V shape (Holopainen et al., 2000). A correlate 
to this result, described in a provocative JGP article 

(Combs et al., 2013), is that the loss of head group mass 
by sphingomyelinase activity causes large hyperpolariz-
ing shifts in the activation of Kv channels by decreasing 
the energy required for K channel voltage sensors to 
move outwardly.

From the different MEND types, delayed ATP/
PIP2-dependent MEND has been studied most exten-
sively up to now. As illustrated in Fig. 3, mitochondria 
appear to initiate delayed MEND through a pathway 
that uses CoA as a second messenger (Hilgemann et al., 
2013; Lin et al., 2013). In brief, CoA is synthesized on 
the outer surface of mitochondria and is then actively 
concentrated at least 50-fold into the mitochondrial 
matrix (Idell-Wenger et al., 1978; Tahiliani and Neely, 
1987) via voltage-dependent transporters (Tahiliani, 
1989; Tahiliani et al., 1992), perhaps using a nucleotide 
exchange mechanism (Fiermonte et al., 2009). The 
opening of large-diameter permeability transition pores 
(PTPs) in response to Ca or metabolic stress in mito-
chondria releases CoA back into the cytoplasm, where 
it initiates a wave of acyl-CoA (aCoA) synthesis via aCoA 
synthetase activity (Idell-Wenger et al., 1978; Sepp et al., 
2014). Possibly, aCoA supports domain coalescence via 
direct amphipathic effects on the cytoplasmic mono-
layer of the surface membrane. In addition, however, 
the aCoA wave supports palmitoylation of membrane 
proteins. This clearly requires additional Ca-mediated 
“permissive” signals at the surface membrane, whereby 
both PKC activation and transient generation of reac-
tive oxygen species can be effective (Hilgemann et al., 
2013; Lin et al., 2013). Functionally, palmitoylation and 
PIP2 seem to support domain coalescence in a similar 
fashion. A possible explanation is that one acyl chain of 
PIP2, bound to at the edge of a membrane protein, can 
bend laterally and engage in hydrophobic interactions 
with neighboring proteins, including the acyl chains of 
palmitoylated proteins that protrude similarly.

That Ca can effectively promote endocytosis, as well 
as exocytosis, was described insightfully in a 1979 JGP 
article analyzing pinocytosis that occurs in Amoeba 
proteus (Prusch and Hannafin, 1979). Other types of 
Ca-dependent endocytosis that might be related to 
delayed MEND are “bulk endocytosis” (Cheung et al., 
2010) and “excess endocytosis” (Engisch and Nowycky, 
1998), which occurs in secretory cells. Although recent 
work on bulk endocytosis suggests an involvement of 
actin and tropomyosin in some secretory cells (Gormal 
et al., 2017), Ca-dependent endocytosis that occurs in 
rat calyx of Held terminals appears to be rather similar 
to Ca-activated MEND (Yue et al., 2017). Ca-activated 
endocytosis in astrocytes (Jiang and Chen, 2009) has 
very similar characteristics to the fast forms of Ca-acti-
vated MEND (Lariccia et al., 2011).

As portrayed in Fig.  4, the manipulations that lead 
to MEND presumably drive small aggregates or clusters 
of proteins and lipids to coalesce into larger domains 
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that eventually become large enough to form vesicles 
(Lingwood and Simons, 2010; Schmid, 2017). During 
this progression, increased ordering of the membrane 
may enable collective conformational changes of lip-
ids that in turn can mediate functional interactions 
between membrane proteins without direct protein–
protein contacts (Sarasij et al., 2007; García-Sáez and 
Schwille, 2010). Of course, this requires that the pro-
teins involved significantly perturb the bilayer when 
they undergo conformational changes. Recent recon-
stitution studies using complex lipid mixtures reveal 
that conformational changes of Na/K pumps indeed 
significantly affect the bilayer (Bhatia et al., 2016). As 
expected if those modifications are significant and can 
affect neighboring proteins, Na/K pump activity in 
cardiac myocytes appears to impact Na/Ca exchangers 
by mechanisms that do not involve Na concentration 
changes (Lu and Hilgemann, 2017). In this light, it will 
be of great interest to determine how and if membrane 
ordering and domain formation may facilitate the con-
certed gating of clusters of voltage-gated ion channels 
(Choi, 2014; Moreno et al., 2016) as well as channel 
cross talk that can occur between distinct channel types 
(Vivas et al., 2017).

Membrane domains mushroom in life-or-
death circumstances
Yeast can survive without clathrin (Lemmon and 
Jones, 1987), mammalian cells can survive without 
dynamins (Park et al., 2013), and one speculative 
explanation is that primitive endocytic processes re-
lated to MEND enable this survival. At least, it seems 
reasonable to assume that over the course of evolu-
tion, cells developed complex lipidic membranes be-
fore developing the intricate protein machinery that 
underlies classical membrane trafficking. Accord-
ingly, MEND-related endocytic processes might have 
been critical for survival of evolving cells, and MEND 
might have served as a template upon which more 

selective endocytic processes and signaling mecha-
nisms developed. Speculatively, at least, this would 
explain why life-or-death metabolic stress appears to 
activate MEND. Beside cardiac cells in an ischemic 
zone of the myocardium, neoplastic cells within solid 
tumors must cope with extreme metabolic stress to 
survive (Noman et al., 2015), as do degenerating 
neurons with limited mitochondrial function (Pluta 
et al., 2013). In solid tumors, MEND-related endocy-
tosis might provide an endocytic flux of nutrients in 
parallel with classical pinocytosis (Recouvreux and 
Commisso, 2017), whereas in degenerating neurons, 
MEND-related endocytosis might propagate cell de-
mise by internalizing deranged proteins (e.g., prions 

Figure 3.  Proposed molecular basis of delayed palmitoyla-
tion-dependent MEND. Adapted from Hilgemann et al. (2013). 
CoA is synthesized on the outer surface of mitochondria and 
accumulated to high concentrations in the mitochondrial matrix 
via a voltage-dependent nucleotide (X)/CoA exchange mecha-
nism (Fiermonte et al., 2009). CoA is released to the cytoplasm 
by transient activation of PTPs when mitochondrial accumulate 
Ca and/or generate oxidative stress. A wave of long-chain aCoA 
synthesis promotes palmitoylation of surface proteins via the 
activity of aCoA transferases (DHHCs), especially via the surface 
membrane DHHC5. PKCs and transient generation of reactive 
oxygen species (ROS) appear to play permissive roles for the 
palmitoylation of DHHC5 substrates, which subsequently accu-
mulate in Lo domains that vesiculate inwardly during MEND.

Figure 4.  Potential hierarchy of membrane 
domain entities from clusters to vesicles. 
Adapted from Lingwood and Simons (2010). 
Lo membrane domains begin as aggregates 
or clusters of lipids around one to a few 
membrane proteins (Schmid, 2017). Lifetimes 
of such clusters will in general be in the mi-
crosecond range, although lifetimes of phos-
phoinositides bound to membrane proteins 
can be extraordinarily long, namely tens of 
seconds (Huang et al., 1998; McKenna and 
Ostap, 2009). Clusters can then coalesce to 
domains that grow large enough to form ves-

icles and that potentially achieve lifetimes long enough to allow local phosphoinositide metabolism. Assuming that membrane 
reorganization, which leads to MEND, indeed reflects growth of membrane domains, coalescence will depend on cholesterol/
sphingomyelin content of the outer monolayer, PIP2 synthesis, the expression of transmembrane proteins that can be palmitoylated, 
PKC activities that appear to promote palmitoylation, the maintenance of transbilayer phospholipid asymmetry that supports outer 
monolayer ordering, and G-protein signaling that controls lipase activities generating MEND-catalyzing amphipathic compounds.
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or amyloid proteins) secreted by neighboring cells 
(Stopschinski and Diamond, 2017).

As documented in Fig. 5, the metabolic settings that 
support MEND in cardiac myocytes are often also coin-
cident with those that promote KATP channel openings, 
which underlie ST-segment elevation in the EKG (Long 
et al., 2010; Stoller et al., 2010). Fig. 5 presents a routine 
recording of these events in an isolated, patch-clamped 
murine cardiac myocyte (n > 30). Using standard physi-
ological solutions with 6 mM MgATP included in the pi-
pette solution, myocytes are superfused with thoroughly 
O2-depleted solutions for a period of 5 min. During the 
anoxic period, membrane conductance and capaci-
tance (i.e., sarcolemma area) are entirely stable. Upon 
reintroducing oxygen, however, membrane capacitance 
begins to fall within 40 s, and a large outward KATP po-
tassium current develops transiently. During the same 
time period over which KATP current rises and falls, and 
over which membrane area decreases by ∼18%, Na/K 
pump activity decreases to negligible values and re-
mains suppressed for long periods of time.

These results appear fundamental, starting with the 
fact that KATP current is activated during reoxygenation 
in these protocols, not during anoxia. To explain in 
detail this sequence of events, it must eventually be 
determined whether ATP becomes depleted as KATP 
channels activate and whether conventional endocytic 
proteins become involved. At this time, however, the 
events appear consistent with the pathway outlined in 
Fig.  3. When mitochondria are stressed, they initiate 
a cytoplasmic aCoA wave that promotes the direct ac-
tivation of KATP channels (Shumilina et al., 2006) and 
the progression of MEND. Na/K pump activity may be-
come suppressed in part via endocytosis of pumps, in 
part via inhibitory effects of palmitoylating Na/K pump 
subunits, and in part as a response to additional lipidic 
messengers that affect the function of ion channels and 
transporters. Bioactive lipids generated in ischemia in-

clude acylcarnitines (Yamada et al., 1994), FFAs, and 
lysolipids (DaTorre et al., 1991). LPC, in particular, has 
powerful inhibitory effects at both KATP channels (Eddle
stone, 1995) and Na/K pumps (Oishi et al., 1990).

Other lipidic events that may occur include the fol-
lowing. PIP2 may become depleted as a result of mi-
tochondrial Ca release via PTPs with subsequent PLC 
activation. PIP2 may become depleted if PTP openings 
promote reverse ATP synthase activity that results in 
ATP depletion. Strong support for the involvement of a 
MEND-like process in these events comes from seminal 
studies published in the 1970s, as well as recent work: 
sarcolemmal membrane particles, which likely reflect 
Na/K pumps, were described to aggregate during reper-
fusion injury in 1977 (Ashraf and Halverson, 1977), the 
density of Na/K pumps in the cardiac sarcolemma was 
described to decrease substantially during reperfusion 
injury in 1976 (Beller et al., 1976), and this decrease 
was recently shown to be uninfluenced by disruption of 
a classical dileucine clathrin endocytosis motif present 
in the α subunits of Na/K pumps (Pierre et al., 2011).

The mountains beyond the mountains
In conclusion, lipid signaling regulates ion transporters 
and channels much more extensively and powerfully 
than was previously envisioned. PIP2 is a chameleon 
that can act as a second messenger or as a constitutive 
activator, and it can be switched between these roles 
by classical cell signaling mechanisms. Although PIP2 
has received an extraordinary amount of scientific at-
tention, DAGs almost certainly have equally profound 
roles at ion channels and transporters. We predict that 
new signaling roles for most of the lipids highlighted in 
Fig. 1 B will be revealed in the coming few years. The 
idea that membrane domains bring proteins together 
and thereby promote functionally important protein–
protein interactions is not a new one (van Meer and Si-
mons, 1988). However, the idea of a raft evokes images 

Figure 5.  MEND is a key event in isch-
emia/reperfusion injury. MEND occurs in 
cardiac myocytes upon reintroduction of 
oxygen after an anoxic episode, in parallel 
with a transient activation of KATP channels 
and the complete loss of Na/K pump activ-
ity. Capacitance (Cm) and conductance (Gm) 
were monitored online via square wave 
voltage perturbation (20 mV/3 ms; Wang 
and Hilgemann, 2008). The extracellular 
solution contained 130 mM Na, and 7 mM 
Na was substituted for 7 mM K to activate 
Na/K pump currents as indicated. The cy-
toplasmic solution contained 100  mM K, 
25 mM Na, and 6 mM MgATP. Results are 

consistent with the hypothesis that during reoxygenation, mitochondria generate a cytoplasmic wave of aCoA that activates KATP 
channels and that promotes MEND, possibly both via direct amphipathic effects on the sarcolemma and via membrane protein 
palmitoylations. Both MEND and Na/K pump inhibition may also be supported by PLA2 activities that generate additional am-
phipaths, such as LPC. Conventional endocytic mechanisms might also become involved, as is suggested to occur during ischemia 
(Yang et al., 2016).
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of isolated signaling complexes in a sea of membrane, 
not the endocytosis of large fractions of the surface 
membrane. Clearly, we are only beginning to under-
stand how membrane domains organize and regulate 
important membrane processes. A key challenge will 
be to elucidate how the “unconventional” mechanisms 
considered here are related to classical signaling and 
trafficking mechanisms. JGP is, in our experience, a su-
perb forum within which relevant new studies can be 
reviewed, improved, and disseminated to advance this 
fast-growing area of membrane physiology.
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