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Abstract

In recent years, the boost to the realization of “nearly Zero Energy Buildings” (nZEB) could require so high investment costs
which may be not justifiable with the reduced consumptions (and costs) during the use phase. So, even if the estimated potential 
saving of energy efficiency projects seems to be very high, investors are often discouraged by a high-risk perception, linked to 
difficulty in knowing the real costs of advanced and innovative technologies, assessing unforeseen costs, or taking into account 
the significant fluctuations in energy costs. Life Cycle Cost Analysis (LCCA) in buildings could be a useful estimation method, 
but a large set of input parameters and accurate predictions is required to achieve an effective assessment. Aim of this study is the 
selection and characterization of the stochastic inputs to be exploited in a probabilistic LCCA to find the cost-optimal energy 
efficiency measures. We developed a Monte-Carlo based methodology for uncertainty quantification and sensitivity analysis,
which combines Global Costs calculation with Building Energy Simulation and we applied it to a building case study, 
representative of the typical Italian stock. We characterized the stochastic inputs typically involved in the Global Cost method 
(related to the initial Investment Costs, Annual Costs, Residual Values, and Discount Rates) and analyzed the impact of these 
parameters on the final results in different renovation scenarios. Results showed that the financial factors (inflation and discount 
rate) and the energy trend uncertainty are the most influential parameters. Nevertheless, pushing towards nZEB makes it 
increasingly important the accuracy of investment costs data.  
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1. Introduction

In the last 50 years the significant changes to the regulatory framework in the context of building energy 
efficiency have led to substantial reductions in buildings consumptions (and therefore costs during the use phase), 
even through modest efficiency measures. In recent years, the additional boost to the realization of “nearly Zero 
Energy Buildings” (nZEB) could instead require so high investment costs which may be not justifiable with the 
reduced consumptions (and costs) during the use phase. So, even if the estimated potential saving of energy 
efficiency projects seems to be very high, investors are often discouraged by a high-risk perception, linked to 
difficulty in knowing the real costs of advanced and innovative technologies, assessing unforeseen costs, or taking 
into account the significant fluctuations in energy costs that alter the return on investment over time.

Life Cycle Cost Analysis (LCCA) in the field of building construction or renovation is a useful assessment 
method to compare the effectiveness of different energy efficiency measures (EEMs) and chose the most profitable 
design options. LCCA provides the total expected costs and benefits (expressed in terms of money) due to the 
application of an EEM, evaluated during an established time frame and adjusted for the time value of money.

Nevertheless, a large set of input parameters and accurate predictions are required to achieve an effective 
assessment. Data uncertainty is a well-recognized issue associated with LCC deterministic calculation methods [1–
3]. In particular, results are heavily dependent on future trends for economic data and the corresponding uncertainty 
(e.g. inflation rate and energy prices) or on service life of building components [1,4,5].

If LCC methodologies in the field of buildings are considered as important decision supports, it is then necessary 
to assess and communicate the problem of uncertainties properly [6]. A probabilistic approach provides more 
realistic informations about results uncertainty and enables more useful analysis of potential benefits of a design 
option.

The probabilistic methodology described in this work is based on an uncertainty and sensitivity analysis via 
Monte Carlo (MC) approaches. They consist of randomly selecting or sampling input variables according to their 
probabilistic characteristics and inserting them into the output-equation to predict the corresponding output 
parameters. MC are effective methods used to build the entire output probability density function and to asses global 
uncertainty and sensitivity [6]. Uncertainty analysis (UA) is the study of the model output distribution as a function 
of the input parameters’ distribution. Sensitivity analysis (SA) goes one step further by apportioning the output
variations to the input variations [7]. While a deterministic analysis approach requires input variables that are fixed, 
in a probabilistic approach every input parameter is considered as a stochastic variable, modelled using a probability
density function (PDF). The quantification of the uncertainty of the output is a result of possible variance of the 
input parameters.

In this paper we applied MC methods for the probabilistic LCCA of different energy efficiency scenarios for a 
building case study, representative of the typical Italian stock. We characterized the stochastic inputs typically 
involved in the Global Cost method established by European Standard EN 15459 [8] (related to the initial 
Investment Costs, Annual Costs, Residual Values, Discount Rates) and we analyzed the impact of these parameters 
on the final result in different renovation scenarios.

Nomenclature

C cost [€] L lifespan [years]
efficiency [-] R rate [-]

t time [years] U thermal transmittance [W/m2K]
Val value [€] F factor [-]

Subscripts
a annual disc discount 
env envelope e evolution (rate)
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F final f floor
g global gn generation
I investment i inflation 
int interest M maintenance
pv present value R real interest 
w window

2. Methodology

The work can be summarized by the following phases, further described in the paragraphs below:

Selection of a building case study, definition of several energy efficiency measures and related costs;
Selection and characterization of the stochastic inputs through Probability Density Functions (PDFs);
Development of a Monte-Carlo based tools suite for the uncertainty and sensitivity analysis.

2.1. Building case-study and Energy Efficiency Measures

The case study is a single-family detached house with two floors and an attic of early '900, located in Cattolica
(average heating degree days: 2165), a coastal town in the centre of Italy (Fig. 1). The gross volume of the building
is about 467 m3, the net floor area 178 m2, for a surface/volume ratio of 0.82. The original walls are made by
plastered brick masonry (29 cm thickness, U=1.76 W/m2K), while floors and roof consist on wood slabs with 
respectively pavements (U=1.29 W/m2K) or clay tiles (U=1.68 W/m2K). Original windows have timber frames and 
a 4 mm single glazing (U=5.7 W/m2K). The heating system consists on a conventional natural gas boiler (23 kW 
peak power) and radiators.

Four renovation scenarios have been selected based on the Italian regulations on the energy efficiency in 
buildings that followed one another over the last 15 years. The scenarios includes different EEMs mainly concerning 
the reduction of the envelope thermal transmittance and the heating equipment efficiency (Table 1).

Fig. 1. (a) Building plans; (b) View of the north facade.
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Table 1. Energy Efficiency Measures related to the four Scenarios identified for the building case study.

Measure Unit Scenario 0 Scenario 1 Scenario 2 Scenario 3

Building Envelope – External Wall

Windows

Heating system

Uenv

CI

CM

L

Uw

CI

CM

L

gn

CI

CM

L

[W/m2K]

[€/m2
env]

[€/m2
env/y]

[years]

[W/m2K]

[€/m2
w]

[€/m2
w/y]

[years]

[-]

[€/m2
f]

[€/m2
f/y]

[years]

0.48

44.62

0.90

50

2.8

250

7.50

30

0.868

14.60

0.30

20

0.34

54.52

0.90

50

2.2

380

7.50

30

0.898

15.70

0.32

20

0.30

58.48

0.90

50

1.9

400

4.35

30

0.918

19.10

0.38

20

0.26

62.44

0.90

50

1.4

435

4.35

30

0.918

65.20

1.30

20

2.2. Global cost calculation method and definition of the PDFs of the stochastic inputs

The evaluation of the cost-benefits of the EEMs in the four scenarios has been carried out based on the Global 
Cost method described in the European Standard EN 15459 [8]. The global costs Cg(t) referred to the starting year t0

are calculated by summing, for each component j, the initial investment costs CI, the annual costs Ca discounted by 
the rate Rdisc(i) for every year i and the residual value ValF, as shown in Eq.(1).

j

t

i
tFdisciaIg jValiRjCCtC

1
,,)( (1)

The initial investment cost CI represents the construction/installation cost of the EEM considered. The annual 
costs Ca include recurrent costs such as components maintenance costs and energy carriers’ costs. The replacement 
costs of components are to be considered in recurrent costs too, but with a frequency depending on the lifespan of 
the j component concerned. Finally, the residual value ValF is calculated based on a straight-line depreciation of the 
initial investment or replacement cost of the component until the end of the calculation, discounted at the beginning 
of the evaluation period.

As the main objective of the evaluation is the comparison of different efficiency scenarios, the only investment 
cost items included in the LCC evaluation are those relating to the EEMs. The following cost items are therefore 
omitted from the calculation: the costs related to building elements that have no influence on the energy 
performance, and the costs that are the same for all the measures. The global cost is directly linked to the duration of 
the calculation period t, that has been considered of 30 years, as established by the European Commission Delegated 
Regulation and its Guidelines [9,10] for residential buildings.

In order to lead the global costs calculation in probabilistic terms and perform the Monte Carlo simulation, to the 
following LCC input variables a PDF has been assigned, based on literature data and authors’ judgment: (1) 
Inflation rate Ri, (2) Interest rate Rint, (3) Energy prices evolution rate Re, (4) Component costs CI, (5) Maintenance 
costs CM.

Inflation rate and interest rate affect the real interest rate RR, according to Eq. (2):
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100/1
int

i

i
R R

RR
R (2)

The real interest rate RR is used to calculate Rdisc(i) through the following Eq.(3).

i

R
disc R

iR
100/1

1
)( (3)

Finally, in order to take into account the fact that the price development for energy may differ from the inflation 
rate, a specific present value factor fpv for this price has been introduced in the calculation. It represents a factor by 
which the energy annual costs are to be multiplied in order to be referred to the starting year. fpv is related to the 
evolution of the energy prices Re by the following Eq.(4), where n is the number of calculated years.

n

R

e

eR

e
pv R

R
RR

R
f

)1(
)1(

1
)(

)1( (4)

The stochastic character of the macroeconomic parameters depends on the extreme uncertainty of the financial 
market, whose future evolution is difficult to be exactly predicted. For this assessment, we considered a “baseline” 
scenario, based on the analysis of time series of these parameters during last years. In particular, for the inflation rate 
we obtained a normal distribution from fitting the inflation rate time series in Italy, in the period from the adoption 
of euro currency, when European Central Bank started its monetary policies that aim to maintain the inflation rates 
below but close to 2% over the medium term. For the interest rate a triangular distribution has been selected with a 
median value of 4.09%, coming from Bank of Italy survey on personal loans rates. The minimum value was based 
on the EURIRS 30 years average rate and the maximum rate is the usury limit in Italy. For the energy prices trend 
and its uncertainty we referred to the Annual Energy Outlook 2015’s projections until 2040 of the EIA/DOE [11].

Table 2. Uncertain LCC input parameters.

Parameter Unit Standard 
value

Reference for standard value Distribution* Reference for 
distribution

Inflation rate

Interest rate

Energy price evolution

Components costs

Components lifespans

Maintenance costs

[-]

[-]

[-]

[€]

[years]

[€]

1.9 %

4.09 %

1.59%

cost

life

maint

ECB

Market analysis (mean)

EIA/DOE

DEI pricelist, Regional pricelists

EN15459/INIES/ASHRAE

EN15459/Market analysis/Literature

Nor(0.019,0.010946)

Tri(0.0149,0.0908,0.0409)

Nor(0.0159, 0.014037)

cost - cost +10%)

cost - cost +20%)

maint maint *3%)

Time series data fitting

EURIRS/Banca d’Italia

EIA/DOE

Pricelists inequalities

ISO 15686

Labour costs inequalities

*Uni(a,b): uniform distribution between a and b.
Nor( , ): normal distribution with mean value and standard deviation .
Tri(a,b,c): triangular distribution with lower limit a, upper limit b and mode c, where a < b and a c b.

The initial investment costs were determined through the analysis of regional and national pricing lists for public 
works. The surveys carried out on prices lead to a prices variation on a geographical basis of about 10%. This 
uncertainty interval has been considered representative of the price variations that could affect a design choice 
because of an unforeseen during the design/execution of the work. Therefore it was decided to attribute a uniform 
distribution (±10%) to the component costs. 

The costs of component maintenance were assumed based on market surveys (for the opaque envelopes), 
literature [12] (for windows), and Annex A of EN 15459 [8] (for the heating system components). A normal 
distribution with 3% standard deviation has been considered.
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Finally, data on components lifespans came from INIES database [13], ASHRAE: Service Life and Maintenance 
Cost Database [14] and Annex A of EN 15459 [8], and are 50 years for the insulation systems, 30 years for window 
elements and 20 years for system components. To the lifespan uncertainty a uniform distribution (±20%) has been 
attributed. Table 2 summarizes the uncertain inputs considered in the calculation of global costs and related PDFs.

2.3. Monte-Carlo based methodology for uncertainty quantification

For the purpose of the research, a Monte-Carlo based methodology for uncertainty quantification has been 
developed, which combines Global Costs calculation with Building Energy Simulation (necessary to obtain the 
running costs linked to the building energy consumptions). The methodology has been implemented in a tools suite
(Fig.2). SimLab software [15] has been used to define the PDFs of the uncertain input parameters. With Latin 
Hypercube Sampling method, samples with different sizes have been generated and simulations were run with an 
increasing number of iterations (10, 25, 50, 100, 250, 500, 1000, 2500, 5000). The quality of the related outcome 
(the PDF of the output sample) has been compared with a reference simulation of 20000 runs.

EnergyPlus software was used for the building energy simulation and the global cost calculation. Life Cycle Cost 
computation in EnergyPlus is mainly based on NIST Handbook 135 [16], so the original software source code has 
been modified in order to make it entirely conforming to EN 15459 [8] global cost method, particularly allowing for 
the automatic calculation of residual values ValF. Finally, SimLab performed the uncertainty and sensitivity analysis 
on the outputs.

3. Results

To assess whether the number of simulation runs was sufficient to guarantee the quality of the outcome (the PDF 
of the output sample), the convergence of the mean and standard deviation of the different output samples has been 
investigated, compared to the reference simulation of 20000 iterations. From Table 3 it is possible to observe the 
results in terms of mean and standard deviation, and normalized mean and standard deviation (ratio with the 
reference simulation). A good convergence of the output sample is obtained at 2500 iterations. That is reflected by a 
quite accurate PDF of the output (Fig.3).

Then goodness-of-fit plots (density, cumulative density function (CDF), Q-Q plot and P-P plot) for global cost 
output data have been performed (Fig. 4) in order to find the theoretical distribution that better represents the trend 
of output data (lognormal distribution). Table 4 reports the estimated mean, standard deviation, skewness and 
kurtosis for the two extreme scenarios (0 and 3). 

Fig. 2. Diagram of the tools suite for the MC based methodology.
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Fig. 5. represents the PDF and CDF of the global costs (2500 iterations), for the two extreme scenarios (0 and 3). 
A difference of less than 10000 € in the median value of costs can be observed. In order to evaluate the influence of 
input data uncertainty on the results (which provides informations about the relative sensitivity of the parameters), 
Spearman coefficients have been calculated. They are reported in Fig. 6 for scenarios 0 and 3. Macroeconomic 
inputs as inflation rate, interest rate, energy prices evolution rate are the most influential parameters in both 
scenarios, even if energy prices escalation is mainly influencing the uncertainty of the result in scenario 0, due to the 
higher energy consumptions during building use phase. On the contrary, the uncertainties on life times of the 
components (which determine the replacement costs during the building life time) have greater relevance in the 
more efficient building (where the energy consumption counts less).

Table 3. Mean, STD, Normalized Mean and Normalizes STD for Global Cost of the case study for each sample size

Number of simulations Mean STD Norm. mean Norm. STD

20000 (Reference)

10

25

50

100

250

500

1000

2500

5000

68693.83

69505.06

68881.45

68585.38

68912.00

68292.40

68449.11

68545.37

68640.88

68764.19

13336.14

16423.78

13734.42

11728.32

13859.22

12687.16

12778.93

12830.10

13244.44

13575.97

-

0.011809296

0.002731233

0.00157874

0.003175909

0.005843767

0.003562475

0.002161299

0.000770911

0.001024265

-

0.231524089

0.029865030

0.120560984

0.039222883

0.048663440

0.041781892

0.037945249

0.006875938

0.017983349

Fig.  3. Output uncertainty analysis for 100 (a), 500 (b) and 2500 (c) sample size.

a

c

b
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Min

Max

Median

Mean

Estimated standard deviation 

Estimated skewness

Estimated kurtosis

46630.75

216393

75398.35

79142.05

18346.03

1.554457

7.383926

44661.99

164394.3

65978.99

68640.88

13244.45

1.583461

7.43674

Fig. 4. Goodness-of-fit plots (density, Q- and P-P plot) for global cost output data of Scenario 0 and Scenario 3.



499 Elisa Di Giuseppe et al.  /  Procedia Engineering   180  ( 2017 )  491 – 501 

a

b

Fig. 5. Density and CDF plots of global cost output for Scenario 0 and Scenario 3.
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Conclusions

Life Cycle Cost Analysis in the field of building construction or renovation are useful decision methods to 
compare the effectiveness of different energy efficiency measures and chose the most profitable design option. 
Nevertheless, a large set of input parameters and accurate predictions is required to achieve an effective assessment 
and data uncertainty is a well-recognized issue associated with LCC deterministic calculation methods. Probabilistic 
LCC methodologies could provide powerful decision support for undertaking building energy efficiency measures. 
Nevertheless, their development in the field of LCC is still at the beginning.

This paper proposed a Monte Carlo based methodology for uncertainty quantification that combines building 
simulation and Life Cycle Costs analysis and applied it to different renovation scenarios of a building case study. 
The methodology showed a great potential in undertaking the output uncertainty calculation with low computational 
costs and high accuracy of the result.

We characterized the stochastic inputs typically involved in the Global Cost calculation method and analyzed 
through sensitivity analysis (Spearman coefficients) the impact of these parameters on the results uncertainty. 
Results revealed that macroeconomic inputs, as inflation rate, interest rate, energy prices evolution rate, are the most 
influential parameters, so they should be further investigated in future studies. In particular future assessments could
consider different alternative macroeconomic scenarios where macroeconomic variables are interdependent.
Scenarios could then express possible combinations of these variables that can be encountered under different 
economic conditions and medium and long-term growth patterns. As the event of an economy falling in one of these 
conditions is largely unpredictable, the choice among scenarios should be driven by other orders of arguments: 
political relevance, ethical concerns, attitude towards risk, etc.

Fig. 6. Spearman Coefficients in Scenario 0 and Scenario 3.
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