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A B S T R A C T

Introduction
The freezing of gait (FOG) is a common and highly distressing motor symptom in patients with Parkinson’s Disease

(PD). Effective management of FOG is difficult given its episodic nature, heterogeneous manifestation and limited re-
sponsiveness to drug treatment.
Methods

In order to verify the acceptance of a smartphone-based architecture and its reliability at detecting FOG in real-time,
we studied 20 patients suffering from PD-related FOG. They were asked to perform video-recorded Timed Up and Go
(TUG) test with and without dual-tasks while wearing the smartphone. Video and accelerometer recordings were syn-
chronized in order to assess the reliability of the FOG detection system as compared to the judgement of the clini-
cians assessing the videos. The architecture uses two different algorithms, one applying the Freezing and Energy Index
(Moore-Bächlin Algorithm), and the other adding information about step cadence, to algorithm 1.
Results

A total 98 FOG events were recognized by clinicians based on video recordings, while only 7 FOG events were
missed by the application. Sensitivity and specificity were 70.1% and 84.1%, respectively, for the Moore-Bächlin Algo-
rithm, rising to 87.57% and 94.97%, respectively, for algorithm 2 (McNemar value = 28.42; p = 0.0073).
Conclusion

Results confirm previous data on the reliability of Moore-Bächlin Algorithm, while indicating that the evolution of
this architecture can identify FOG episodes with higher sensitivity and specificity. An acceptable, reliable and easy-to-im-
plement FOG detection system can support a better quantification of the phenomenon and hence provide data useful to
ascertain the efficacy of therapeutic approaches.

© 2016 Published by Elsevier Ltd.
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A smartphone-based architecture to detect and quantify freezing of gait in
Parkinson’s disease
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a Department of Experimental and Clinical Medicine, Neurorehabilitation Clinic, “Politecnica delle Marche” University, Ancona, AN, Italy
b Department of Information Engineering, “Politecnica delle Marche” University, Ancona, AN, Italy

1. Introduction

Parkinson’s disease (PD) is among the most common neurodegen-
erative disorders [1]: it imposes an increasing social and economic
burden due to the progressive disability mainly related to gait and bal-
ance impairments. The freezing of gait (FOG) is a very distressing gait
disorder affecting up to 80% of patients in the advanced stage of PD
[2] and leading to a high risk of falls [3]. It is resistant to dopaminergic
medication [4], though improves through external sensory cues [5,6].
It is generally defined as an episodic absence or marked reduction of
forward progression of the feet, despite having the intention to walk
[7], with different features being dominant: “shuffling” steps, “trem-
bling” legs or akinesia [8]. Due to its erratic nature, FOG is difficult to
be studied in the clinical setting [9,10].

⁎⁎ Corresponding author.
Email addresses: m.capecci@univpm.it, m.g.ceravolo@univpm.it (M. Capecci); l.
pepa@univpm.it (L. Pepa); f.verdini@univpm.it (F. Verdini)
1 These authors contributed equally to the paper.

A number of wearable sensors recently proposed for providing
quantitative assessment of FOG during the real life [11–16]. Moore
et al. [11] defined a freeze index (FI) using power spectrum analysis
of vertical linear acceleration of the shank [13] during gait and im-
plement it in an complex architecture (composed of 7 Inertial Mea-
surement Units) that was able to transmit data wireless to a computer
for processing. The FI is the ratio between the power in the “freeze”
band (3–8 Hz) and the power in the “locomotor” band (0.5–3 Hz).
Bächlin et al. [12] updated the FOG detection algorithm based on the
FI proposing a lighter architecture in which acceleration data from
three sensors attached to the body (shank, thigh and belt) were trans-
mitted to a wearable computer through wireless Bluetooth link.

We developed a smartphone-based architecture for real time moni-
toring of FOG during daily living taking into consideration acceptance
and usability requirements. [17] Our controlled cross-sectional study
was aimed at verifying the reliability of this system in FOG detec-
tion by using two algorithms: an accredited algorithm of the literature
(Moore-Bächlin algorithm), and a modification of this algorithm.

http://dx.doi.org/10.1016/j.gaitpost.2016.08.018
0966-6362/© 2016 Published by Elsevier Ltd.
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2. Methods

2.1. Subjects

Twenty consecutive subjects, referred to the Movement Disorders
Centre for counselling, were enrolled if they met the following eligi-
bility criteria and signed an informed consent prior to the study: di-
agnosis of probable idiopathic PD [18]; independent ambulation, at
least gait needing verbal supervision or help from one person with-
out physical contact in the ON-state, i.e. under the effects of chronic
antiparkinsonian treatment (either drug therapy or neuro-stimulation
or a combination of the two); clinical history of FOG confirmed by a
third person, i.e. caregiver (“probable freezer” [19]); age ≤ 80 years.
Patients suffering from concomitant severe neuro-muscular and or-
thopedic disorders or from moderate to severe cognitive impairment
(Mini-Mental State Examination—MMSE- score < 18) were ex-
cluded.

The study conformed to the Helsinki protocol for clinical trials and
was approved by the local ethics committee.

Patients were assessed under the effect of their own chronic
dopaminergic therapy. They underwent a standard clinical neurolog-
ical assessment, before the execution of the experimental protocol.
Hoehn and Yahr staging (H&Y), Unified Parkinson’s Disease Rating
Scale (UPDRS), MMSE, Frontal Assessment Battery (FAB) were ap-
plied.

Subjects were: 5 female and 15 males, mean age 67.6 years (±9.1),
disease duration 15.5 years (±6.6), H&Y stage 3.6 (±0.8) (median:
4), UPDRS total score 40.0 (±15.8), UPDRS Section II 18.5 (±6.2),
UPDRS Section III 18.8 (±8.3), UPDRS Section II item “Freezing
of gait” 2.4 (±0.7), LEDD (Levodopa equivalent daily dose) 707.3
(±242) mg, MMSE 25.9 (± 3.1), FAB 11.7 (±2.6). No subject was
under chronic neuro-stimulation.

2.2. Experimental assessment protocol

Patients were asked to perform three different kinds of
video-recorded modified Time Up and Go (TUG) tests: (1) TUG test
without dual tasking [20], (ii) Cognitive Dual Task TUG test (Cogni-
tive TUG) [21] and, finally, (iii) Manual Dual Task TUG test (Man-
ual TUG) [22]. In line with Shumway-Cook et al. [20] description of
the TUG test, the patient sits on the chair, then rises on the command
“go”, walks 3 m at a comfortable and safe pace, turns, walks back to
the chair and sits down. The chronometer is started at the instruction
“go” and stopped when the patient seats again. In order to maximize
the chance of FOG occurrence, the original TUG test [20] was mod-
ified asking patients to walk 5 instead of 3 m. In the Cognitive TUG,
patients were asked to count backwards by threes, during walking,
starting at a number selected by the assessor each time. In the Manual
TUG, participants had to complete the task while carrying 2 full cups
of water on a tray. Water levels in the cups and cup position on the
tray were standardized. The patients had to perform three repetitions
of each task, in a random sequence. If the clinical condition did not
allow them to complete three repetitions, we accepted a lower number
of trials, because the analysis was performed on the whole sample of
FOG episodes.

Walking trials were video recorded and used for later analysis.
Each video showed a complete TUG trial starting and ending in the
seated position. During trials the patient wore the smartphone with
the application running and hence performing real-time FOG detec-
tion. An elastic belt and a socket hold the smartphone attached to the

hip joint (Fig. 1) The application stores all the data collected (gait pa-
rameters and FOG episodes) on an internal database.

2.3. The architecture and data processing

The architecture is composed of a smartphone with an application
for FOG monitoring. The application was developed for iOS and An-
droid operating systems, although tests were executed with an iPhone
5 (dimensions: 123.8 × 58.6 × 7.6 mm; weight: 112 g). The graphic
user interface was designed in order to enhance usability. Just press-
ing the big central button in the display (see Fig. 1a), the applica-
tion runs the FOG monitoring function, without requiring any further
user interaction (Fig. 1a). The application acquires vertical accelera-
tion data from the onboard sensor at 100 Hz. A sliding window (256
samples Hamming window) is applied to the acquired data; the win-
dow shift is 40 samples. On each window, the Fast Fourier Trans-
form (FFT) and the power spectrum are calculated, and the follow-
ing gait features are extracted: FI, as defined by Moore et al. [11],
EI, in the version proposed by Bächlin et al. [12] and step cadence,
computed as the second harmonic in the power spectrum. Consider-
ing human gait a periodic phenomenon, Auvinet et al. [23] showed
that stride frequency represents the first harmonic in power spectrum,
while step frequency (cadence) is the second. A peak detection al-
gorithm finds the step cadence by identifying the second peak in the
power spectrum acquired data do not include continuous component
since the application retrieves user acceleration, without gravity. Two
trapezoidal integrations are performed on the frequency intervals char-
acterizing the ‘freeze’ and ‘loco’ bands. The obtained values are di-
vided to find FI and summed to find EI. Although the three features
can be computed using any acceleration component (vertical, antero-
posterior or medial-lateral), the vertical one is the most significant for
the FI [11,13]. Hence, only the vertical component was used for fea-
ture extraction, in order to avoid CPU and RAM wasting, thus enhanc-
ing real time performance.

Two FOG detection algorithms were tested.

1) Algorithm 1 (Moore-Bäächlin Algorithm, A1) is the same de-
scribed by Bächlin et al. [12], which uses FI and EI. FOG is de-
tected when both FI and EI exceed a threshold value, as expressed
in the next equation:

Where and are FI and EI values of the current window,
and are FI and EI threshold values.

2) Algorithm 2 (A2) adds step cadence information to A1. In particu-
lar, step cadence variation and increase are evaluated according to
the following binary rules respectively:

where , , , are cadence values in the last three
windows, and the symbol ∧ stands for logical conjunction (“AND”
operator). When condition (2) or (3) becomes true, the application de-
tects a cadence variation or increase respectively.

A2 detects a FOG start through a combination of different binary
rules:

(1)

(2)

(3)
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Fig. 1. (a) The hardware of the FOG detection system: a smartphone with the proper application installed. This structure was chosen to enhance usability and acceptability require-
ments. (b) The block scheme of the FOG detection app. Vertical acceleration data are acquired at 100 Hz sample frequency, then a sliding window is applied for real time processing.
On each window, the Fast Fourier Transform (FFT) is computed and successively the power spectrum. The second harmonic of the power spectrum is taken as the step cadence (SC),
the integrals between 3 and 8 Hz (Freeze band) and 0.5–3 Hz are computed. The sum of Freeze and Loco band is the EI, while the ratio of Freeze and Loco band is the FI. SC, EN and
FI are sent in input to the FOG detection algorithm. It must be specified that the Moore-Bachlin algorithm does not have the “2° harmonic” and “SC” functional blocks. Furthermore,
the “FOG detection” block is different in Algorithm 1 and 2.

Where stands for A1 (Eq. (1)), and are the binary rules re-
ported in Eqs. (2) and (3), and the symbol stands for logical disjunc-
tion (“OR” operator).

After detecting a FOG start, the smartphone app starts a concurrent
processing thread with the task of detecting the FOG end when the fol-
lowing rule becomes false:

Both the algorithms adopted the same user-specific thresholds for
FI and EI, in order to adapt the algorithm to patient’s characteristics
and hence to increase system reliability in FOG detection. Customized
thresholds ( , ) are set as the mean plus one standard deviation
of parameters ( , ) computed during 20 s of standing posture.

The smartphone locally stores gait features, FOG time of occur-
rence, FOG duration and threshold values.

A2 was applied in real-time during the experimental trials, while
A1 was applied offline on the same data records.

2.4. Data analysis

System reliability was assessed measuring Sensitivity, Specificity,
Accuracy, and Precision. These measures were calculated by match-
ing smartphone data recorded to the judgement of two expert clin-
icians (MGC and MC) who scrutinized the videos and marked the

start and end of each FOG event occurring during the TUG trials. Clin-
icians also took note of the following features of each trial: time of
TUG execution (time taken to perform all trials of each TUG), num-
ber of freezing episodes, duration of each freezing episode (seconds),
total FOG duration (FOG duration per number of FOG episodes), type
of freezing (trembling, shuffling, akinetic), gait phase of FOG occur-
rence (initiation, turning, ending, midway).

The distribution of demographic and clinical variables in the whole
sample was described using mean, standard deviation (±SD), median,
range and interquartile range (IQR) for continuous variables, while
rates were used to describe categorical parameters.

Data analysis was performed on the whole sample, including both
patients who showed FOG episodes during video recordings and those
who did not, although complaining of FOG daily at home.

Sensitivity (Se), specificity (Sp), precision (Pr) and accuracy (Ac)
were used to assess the smartphone reliability and they were calcu-
lated according to the following formulas:

Here, tp = true positives are the windows correctly classified as

(4)

(5)
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FOG, fn = false negatives are the windows classified as not-FOG de-
spite the patient showed FOG in that time instant, tn = true negative,
are the windows correctly classified as not-FOG and fp = false posi-
tives are the windows classified as FOG despite its absence. Values
were computed for each score, and for each patient (considering all the
trials together), as well as for the whole patients

The ROC analysis and the McNemar’s test were carried out to
assess and compare algorithms performance. FOG episode durations
measured by A1, A2, and clinicians were compared through a Kruskal
Wallis test. The reliability of the system was also checked with re-
spect to the detection of FOG episodes occurring at the turning; in fact,
step cadence spontaneously changes on turning even in the absence
of FOG, possibly producing ambiguous results. The system sensitivity
to acknowledge turning FOGs was calculated by the number of turn-
ing FOGs correctly detected out of the total number of turning FOGs.
Conversely, specificity was defined by the number of turns where the
system correctly ruled out a FOG episode out of the total turns with-
out FOG. Finally, the relation between some clinical variables, possi-
bly interfering with gait patterns, (Hoehn & Yahr stages, FOG and PD
types) and Sp and Se was tested (both with Kruskal Wallis test for con-
tinuous data and Chi square test classifying Se and Sp > or < 50%).

3. Results

3.1. Clinical assessment of gait trials

Sixteen (80%), out of 20 enrolled patients, showed at least one
FOG episode during the trials. A total 98 FOG events were recog-
nized by clinicians based on video recordings. Inter-rater agreement
was perfect with respect to FOG episode acknowledgment, and fair
(ICC > 0.80) concerning FOG duration. Table 1 shows descriptive
statistics of clinical features. Patients performed the standard TUG

faster than the Cognitive (z = −2.3; p = 0.01) and Manual (z = −2.3;
p = 0.01) TUG tests. During Standard and Manual TUG, FOG
episodes most frequently recurred on turning (42% and 46% respec-
tively) and on gait initiation (31% and 27% respectively), whereas
during the Cognitive TUG, they recurred equally at the initiation
(26%) as well as at midway, turning point and destination (24%
respectively). Considering FOG subtypes, 52% were akinetic, 31%
shuffling and 17% trembling. The percentages did not change across
the three kinds of TUG tests.

3.2. Algorithm reliability

The application correctly detected 91 of the 98 FOG events
(92.86%) diagnosed by clinicians. The same result was obtained both
with A2 running in real time, and with A1 applied offline.

The reliability scores, obtained on the whole sample of subjects,
were: 70.11% (±21.22) sensitivity, 84.13% (±21.99) specificity,
63.45% (±13.57) precision, 81.69% (±17.86) accuracy as for A1;
whereas 87.57% (±12.81) sensitivity, 94.97% (±7.79) specificity,
69.55% (±12.43) precision and 84.37% (±10.83) accuracy for A2.

The reliability values were also separately computed on the sub-
group of freezers (Table 2: last row).

Fig. 2 shows ROC curves of the two algorithms Area Under the
Curve (AUC) was 0.81 for A1 and 0.90 for A2 on the whole sample.
The comparison between the two tests was carried out on the whole
data sample obtaining a McNemar value of 28.42 and a p-value of
0.0073.

FOG duration values (median, IQR) slightly differed according to
detection type: they were 4 (7.7) s for the clinical assessment, 1.6(1.6)
s and 2.8(4.5) s for A1 and A2 respectively. Clinical and A2 measure-
ments of FOG duration proved to be significantly correlated (Kruskal
Wallis test: p = 0.01), whereas no relationship was observed between
clinical assessment and A1

Table 1
FOG features as determined upon the clinical assessment of videos. Values refer to the whole group of subjects.

Mean
Standard
deviation Median Minimum Maximum IQR

TUG time (seconds) Standard TUG 83.76 52.55 61.08 28.12 198.63 88.73
Cognitive
TUG

118.98 149.75 68.89 42.62 728.98 56.09

Manual TUG 91.10 93.62 67.37 29.81 437.43 30.98
FOG episodes Standard TUG 1.6 2.0 1 0 6 2

Cognitive
TUG

2.4 2.1 2 0 9 4

Manual TUG 2.3 2.7 1.5 0 9 4
FOG episode duration (seconds) Standard TUG 6.64 5.54 4.5 0 14.1 10.5

Cognitive
TUG

18.02 30.86 4.8 0 11.3 17.5

Manual TUG 47.9 135 4.6 0 433 6.2
Total FOG duration per subject (FOG duration per number of FOG
episodes)

Standard TUG 33.43 39 7.7 0 127 41

Cognitive
TUG

65.99 164.8 10 0 667 55.4

Manual TUG 66.97 135.6 15 0 433 54.2
Trembling
(%)

Shuffling (%) Akinetic
(%)

FOG type Standard TUG 20 31 49
Cognitive
TUG

10 36 54

Manual TUG 23 23 54
Initiation (%) Turning (%) Midway

(%)
Ending
(%)

Distribution of FOG episodes by gait phase Standard TUG 31 42 11 16
Cognitive
TUG

28 24 24 24

Manual TUG 27 46 11 15
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Table 2
Results. Se1, Sp1, Pr1 and Ac1 are sensitivity, specificity, precision and accuracy of algorithm 1, while Se2, Sp2, Pr2 and Ac2 are sensitivity, specificity, precision and accuracy of
algorithm 2. Mean and standard deviations are reported at the bottom lines for all the patients (“All” row) and for the only ones who manifested FOG (“Freezers” row).

Pat. id Gender PD Type N° FOG Se1 Se2 Sp1 Sp2 Pr1 Pr2 Ac1 Ac2

1 M Akinetic 2 81.25% 93.75% 98.94% 99.75% 50.00% 60.00% 95.18% 96.09%
2 M Akinetic 14 65.54% 78.00% 58.21% 87.49% 61.32% 68.52% 56.30% 68.62%
3 M Akinetic 3 81.11% 93.33% 98.46% 99.23% 71.43% 74.14% 97.94% 96.60%
4 F Akinetic 1 40.00% 90.00% 96.52% 98.30% 58.00% 62.26% 94.74% 92.66%
5 F Tremoric 9 49.16% 74.08% 98.36% 99.43% 88.79% 89.23% 88.45% 88.08%
6 M Akinetic 1 100.00% 100.00% 38.79% 68.80% 44.27% 47.57% 79.11% 73.17%
7 M Akinetic 7 64.86% 85.38% 90.57% 96.06% 61.02% 70.08% 82.50% 88.22%
8 M Akinetic 8 48.81% 72.77% 91.23% 98.39% 67.78% 75.85% 88.13% 76.49%
9 F Akinetic 13 92.68% 97.29% 31.55% 81.72% 65.50% 76.13% 63.64% 68.85%
10 M Akinetic – – – 85.64% 91.58% – – 85.64% 91.58%
11 M Akinetic – – – 99.51% 99.79% – – 99.51% 99.79%
12 M Akinetic 1 100.00% 100.00% 89.74% 94.93% 62.14% 64.41% 91.40% 87.11%
13 F Tremoric – – – 43.49% 87.81% – – 43.63% 87.81%
14 M Tremoric 4 38.59% 76.63% 95.62% 97.59% 67.33% 78.11% 88.38% 73.85%
15 F Tremoric 6 76.79% 100.00% 90.40% 98.04% 72.50% 75.25% 89.05% 84.59%
16 M Tremoric – – – 97.47% 99.25% – – 97.47% 99.25%
17 M Akinetic 2 87.50% 100.00% 98.35% 98.87% 42.35% 49.56% 89.43% 88.04%
18 M Akinetic 2 80.00% 100.00% 95.40% 97.99% 56.67% 61.31% 96.75% 87.67%
19 M Akinetic 14 75.26% 81.71% 99.10% 98.05% 91.38% 93.84% 41.82% 63.60%
20 M Akinetic 11 40.13% 58.13% 85.22% 96.41% 54.70% 66.57% 65.08% 75.24%
All subjects 98 70.1 ± 21.2% 87.6 ± 12.8% 84.1 ± 22.0% 95.0 ± 7.8% 63.5 ± 13.6% 69.6 ± 12.4% 81.7 ± 17.9% 84.4 ± 10.8%
Freezers 98 70.1 ± 21.2% 87.6 ± 12.8% 84.8 ± 21.8% 94.4 ± 8.4% 63.5 ± 13.6% 69.6 ± 12.4% 81.7 ± 16.4% 81.8 ± 10.4%

Fig. 2. ROC curve of algorithm 1 (green lines) and algorithm 2 (blue lines). The curves were built with the whole data set (continuous lines) and with the trials of the only freezers
(dotted lines). Red dots indicate optimal operating points. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

For what concerns system reliability at the turning, sensitivity
and specificity were 80.63% and 75.87%, respectively for A1, while
94.87% and 90.33% respectively, for A2.

PD type, FOG type or Hoehn & Yahr stage did not influence the
reliability of the two algorithms.

4. Discussion

We described a smartphone-based architecture, developed to detect
and quantify FOG in patients with PD. In a laboratory setting, we have
proved the high reliability of the system in FOG monitoring, in partic-
ular after the implementation of A2.

Our sample is representative of “PD freezers” as described by dif-
ferent authors [3,4,7,8]: the incidence of freezing in the laboratory
was higher than in previous reports [7,8] probably because we used a
longer and dual-task TUG test protocol.

A1 reliability (Se and Sp mean scores) was found comparable with
previous works [12,24,25], although it was tested on a different sys-
tem of accelerometers. In fact, Moore et al. [13] obtained a sensi

tivity of 86.8% and specificity of 82.4%, whereas Bächlin et al. [12]
obtained a mean sensitivity of 73.1% and specificity of 81.6%.

In our sample, the standard deviation is high for A1, revealing a
possible loss of performance in some patients. This was observed also
in previous works [12,14], where it was related to different PD types
(tremoric versus akinetic). In the present study no correlations were
found between Sp or Se and the clinical data (PD and FOG types,
Hoehn & Yahr stages), possibly due to the small sample size.

A2 adds to A1 the computation of the step cadence and the eval-
uation of its variability or increase through two binary rules (Eqs.
(2) and (3)). This upgrade was decided on the basis of studies relat-
ing FOG to the disruption of temporal, rather than spatial, character-
istics of gait [26,27]. With A2, the mean reliability values increased
while the standard deviations decreased McNemar test, applied to the
whole data sample, confirmed that these improvements are statisti-
cally significant. With rule (4), A2 can avoid false positives due to a
wrong increase of FI and EI (i.e. in patients affected by tremor of dis-
tal limbs) or a wrong variation of step cadence (i.e. while approach-
ing to a turn). Actually, the normal cadence increases to higher values
in shuffling and trembling FOG, making condition true. In akinetic
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FOG, the second harmonic in the power spectrum (step cadence)
should change randomly without the periodic contribution of walking,
making condition true. Furthermore, rule (5) ensures that the fre-
quency content comes back in the ‘loco’ band and the step cadence
regularity is restored before detecting the end of the episode, thus im-
proving sensitivity and the quantification of FOG duration. The ROC
analysis and the Kruskal Wallis test on FOG durations confirmed
these correlations between step cadence and FOG.

Finally, system reliability at the turning does not deteriorate with
respect to the overall performance, making it useful in the most chal-
lenging and recurrent situation.

A large part of previous architectures [11–13] challenge the accept-
ability criterion, [17] since they need to place intrusive sensors on pa-
tient’s body and to transmit data to a computing unit, which must be
near the patient. Conversely, we chose the smartphone as our sens-
ing and processing unit for its popularity (socially accepted), ease of
use and growing computational capabilities. The choice of a smart-
phone-based architecture gives patients the opportunity to use the de-
vice in the community during everyday life [28,14,15]. Ginis et al.
[16] proposed a wearable architecture for FOG detection and training
composed of three sensors and a smartphone. To our knowledge, only
Kim et al. [15] led both sensing and processing on a smartphone. How-
ever, our system differs for the adopted algorithm and for the use of
user-specific thresholds, rather than a standard threshold for all sub-
jects.

The study has some limitations, mostly represented by the sample
size, which may reduce the reliability of the Se and Sp comparison
among the three different FOG/PD subgroups (akinetic, shuffling and
trembling) or within PD types and stages.

5. Conclusion

The smartphone-based architecture presented in this study is a
not-intrusive system that proved to be highly reliable for FOG moni-
toring. The promising results obtained in a laboratory context encour-
age further evaluations in a real life scenario, in order to implement
a more complete system useful to monitor and, eventually, manage
FOG. In fact, the smartphone app could be easily updated to comprise
the functionality of delivering real time cues, whenever FOG episodes
manifest and challenge gait progression and patient’s safety.
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