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Abstract
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Can you do the wrong thing and still be right?
Hypothesis Testing in I(2) and near-I(2) coin-
tegrated VARs†

Francesca Di Iorio, Stefano Fachin, Riccardo Lucchetti

1 Introduction
Since its introduction, the cointegrated I(1) VAR has proven to be an in-
valuable tool to investigate the long-run dynamics of economic systems in
countless applications. The driving factor behind its success is that I(1) dy-
namics for macroeconomic variables is often consistent both with economic
theory and with observed evidence.

However, Johansen et al. (2010) and Juselius (2013) pointed out that
in some empirically important cases (e.g., exchange rates) the cointegrating
relations estimated in I(1) VARs show very long swings away from equi-
librium. Inspecting the estimates reveals that in those cases the largest
unrestricted roots are very close to unity: in other words, these systems, al-
though strictly speaking I(1), are in practice very close to be I(2). Johansen
et al. (2010) label these systems as near-I(2).

Although the hypothesis of two unit roots was traditionally considered
economically implausible, Frydman and Goldberg (2007) have convincingly
argued that in systems involving interaction between the real and the fi-
nancial sector (e.g., those including exchange rates, assets and house prices)
expectations based on imperfect knowledge will generate highly persistent
dynamics resulting in near-I(2) trends.

The key empirical question is then how such near-I(2) systems should
be modelled in practice. If the DGP is strictly speaking I(1), obviously the
choice of an I(2) model is wrong in theory. However, in practice an I(2)
model could yield more sensible results if some the stable roots of the VAR
polynomial are very close to unity. Johansen et al. (2010) argue for this
approach, which yields the additional advantage of exploiting the ability of
the I(2) model of estimating separately short, medium and long-run error-
correction behavior.1

†Research supported by “La Sapienza” grant n. 2011C26A1145RM and MIUR PRIN
grant 2010J3LZEN. We would to thank Andreas Jensen for sharing his Hansl code.

1This could be very important for empirical studies, as in asset markets error-increasing
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Although empirical applications of the I(2) model are scant2, its sta-
tistical foundations are now over two decades old (Johansen, 1992, 1997),
and fairly well developed. However, before its the application to near-I(2)
data may be recommended we need to explore two open points. First, what
are the finite-sample properties of test statistics in the I(2) model? In or-
der to investigate this issue we will concentrate on Likelihood Ratio tests
on long-run coefficients, which are the key parameters of the system. Jo-
hansen (2006) showed that these tests are asymptotically χ2, but very little
is known on the applicability of this result to finite samples. Second, what
are the consequences of misspecification of the number of unit roots, i. e. of
the application of the I(2) model to near-I(2) data?3 Although our main
goal will be to shed light on the second question, we clearly need to explore
the first one as well.

In order to frame the problem correctly, we first review the I(2) model
briefly (mainly, to establish notation) in section 2; then, in Section 3 we
illustrate the basic idea that will be developed in the rest of the paper, that
is a thought experiment in which we perform a comparison between the same
statistic computed on I(2) and near-I(2) data. A Monte Carlo experiment is
then presented in section 4; section 5 summarises the results and concludes.

2 The I(2) and near-I(2) VAR
To establish notation, consider a p-variate VAR(2)

∆2Xt = ΠXt−1 + Γ∆Xt−1 + εt (1)

where εt = (ε1t, . . . , εpt)′ ∼ IID(0,Σ), and t = 1, . . . , T ; the matrix Π is
assumed to satisfy the reduced rank restriction Π = αβ′, where α and β
are p× r matrices, with p > r. If, further, α′⊥Γβ⊥ = φη′ has reduced rank
s (with s < p− r), then Xt is an I(2) process. Of course, greater generality
can easily be achieved by adding deterministic terms and/or lags of ∆2Xt

to the right-hand side of equation (1), but this is totally unnecessary in our
context.

Mosconi and Paruolo (2013) recently showed that the following repara-
metrisation of (1) holds:

∆2Xt = α(β′Xt−1 + υ′∆Xt−1) + (ξγ ′ + ςβ′)∆Xt−1 + εt (2)

where the matrices υ and γ are respectively p × r and p × s. The terms
(β′Xt−1 + υ′∆Xt−1) and (γ ′ + β′)∆Xt−1 are both stationary; the former

medium run relations may be associated with error-correcting long-run ones.
2Inter alia: Fanelli and Bacchiocchi (2005), Kongsted (2003), Nielsen and Bowdler

(2006), and more recently the empirical section in Kurita, Nielsen and Rahbek (2011).
3In the following we will sometimes use for convenience “I(2) data” as a shorthand for

“datasets generated by I(2) DGPs”.
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is known as multicointegration relation, or integral control term, the latter
as medium run relation, or proportional control term. As we will be clear
shortly, it is convenient to rewrite (2) as

∆2Xt = α[β′ : υ′]
[

Xt−1
∆Xt−1

]
+ [ξ : ς]

[
γ ′

β′

]
∆Xt−1 + εt (3a)

= [α : ξ : ς]

β′ υ′

0 γ ′

0 β′

[ Xt−1
∆Xt−1

]
+ εt (3b)

= ηζ′
[

Xt−1
∆Xt−1

]
+ εt

Hypotheses on the cointegration parameters can be easily expressed as

H0 : vec(ζ) = SΦζ + s,

where s is a normalisation vector and Φζ is the vector of unrestricted coef-
ficients in ζ. As anticipated in the introduction, in our experiments we will
concentrate on Likelihood Ratio tests on β, because this matrix is by far the
most important parameter as far as the interest is on the long-run proper-
ties of the system. Johansen (2006) showed that, in the case of hypothesis
on all elements of the multicointegration relation, inference is not LAMN;
however, likelihood ratio tests on the long-run structure parameters β are
asymptotically χ2, but their finite-sample properties may be very different.

3 The thought experiment
Before proceeding any further, let us restate our main question of interest.
Assume that a cointegrated I(2) VAR is estimated, applying all the standard
I(2) techniques; then, what are the properties of the LR test on β with data
that are near-I(2), as opposed to genuinely I(2)? Note that we are not
interested at all in the issue of telling I(2) and near-I(2) datasets apart.
Rather, the point of interest is assessing the properties of a certain testing
procedure which assumes I(2)-ness, with both type of data.

When the data are actually I(2), the test is applied within a correctly
specified model, whereas when they are near-I(2) the statistical model is
misspecified. To check what the effects of misspefication are, we need to
disentangle these effects from other sources of finite-sample problems so to
be able to focus on the former. In order to do this, one should ideally
have two datasets, which have exactly the same characteristics in every way,
except for the second eigenvalue of the companion form of system (1); then
the statistics of interest could be computed for both datasets and compared.

Clearly, this issue is impossible to settle by using real-world data: even if
the data were actually generated by a process exactly like (1) the “counter-
factual” dataset would not be available. On the other hand, a Monte Carlo
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experiment allowing such a comparison is easily designed. Let us represent
the simulated data in the n-th Monte Carlo replication (where n = 1 . . . N
and i = 1, 2) as

Xi
n = MC(X0, En,θi),

where Xi
n is the simulated dataset we obtain from formula (1) by using

X0 as starting (pre-sample) values, En as the artificially-generated T × p
matrix of disturbances and θi a given set of parameter values. Define θ2
as a set of parameters under which the DGP is I(2) and X2

n the resulting
dataset obtained in the n-th simulation. Further, let τ2 be the LR test
for a given hypothesis on β computed in the I(2) model estimated on X2

n.
In the same way let θ1 the parameter set such that the DGP is I(1) but
nearly I(2), X1

n and τ1 respectively the resulting dataset and LR test in
the I(2) model estimated on X1

n. Since the other two elements of the DGP
(the initial values, X0, and the shocks, En) are the same, we can safely
ascribe any difference in the behaviour of the LR statistics τ2 and τ1 to
model misspecification alone. For a given sample size and significance level,
the performances of the test under the two DGPs over the N Monte Carlo
replications can be usefully summarised in Table 1.

Table 1: Acceptance/rejection decisions for the LR test

LR test on near-I(2) data

τ1 accepts H0 τ1 rejects H0
LR test on τ2 accepts H0 A B A+B
I(2) data τ2 rejects H0 C D C +D

A+ C B +D N

In order to interpret Table 1 correctly, it is essential to realise that, by
performing this experiment, we are not comparing (as customary in the liter-
ature) two different test statistics on the same dataset. In fact we are doing
precisely the opposite, comparing the behaviour of the same test statistic
(LR) on datasets generated by two (slightly) different DGPs. Our aim is
to understand how large the differences are. More precisely, since under H0
the asymptotic distribution of τ2 (the LR test on I(2) data) is χ2, we know
that the ratio (C+D)/N must converge asymptotically to the nominal size,
although its small sample behaviour is unknown. On the other hand, noth-
ing is known about τ1 (the LR test on near-I(2) data). Is its performance
noticeably different from τ2’s? And if so, how?

To answer these questions, our attention will focus on B and C, which
are the cases when the LR tests in models with correctly specified and mis-
specified number of unit roots deliver contrasting results: B is the number
of cases when τ2 leads to the correct decision and τ1 does not, whereas C is
the frequency of the opposite case of τ2 leading to the wrong decision and τ1
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to the correct one4. The key point is that the difference (B-C) measures the
impact of model misspecification. To see why, consider an α-level test. The
empirical Type I error of the τ2 test (I(2) data) is (C+D)/N = α, while the
proportion of non-rejections of the true null hypothesis is (A+B)/N = 1−α.
Next, consider τ1 (near-I(2) data). If model misspecification had no effects
we would find its Type I error and proportion of non-rejections to be respec-
tively (B+D)/N = α and (A+C)/N = 1−α. It is easily seen that therefore
B=C.

To summarise the differences in the outcomes delivered by the tests with
I(2) and near-I(2) data we adapt to our case the following two indicators:

∇a = (B + C)/N,

which is simply the proportion of simulations in which τ2 and τ1 yield op-
posite conclusions, and

∇r = B ln
[ 2B
B + C

]
+ C ln

[ 2C
B + C

]
.

The ∇r statistic can be seen either as the Kullbalck-Leibler distance of
the table above from one with same marginals and B = C, and as an LR
test for the equality of P (B) and P (C). It is then a measure of the relevance
of misspecification effects: should we find that these are dominated by small
sample bias we could conclude that for practical purposes the use of the LR
tests in I(2) models applied to near-I(2) data is acceptable.

4 The experiment setup
If misspecification effects should turn out to be negligible, then using the
LR test in the I(2) model with near-I(2) data would be justified, in prac-
tice, by the fact that the test statistic has optimal asymptotic properties in
the “nearby” I(2) DGP. Therefore, the first issue we will investigate is the
appropriateness of asymptotic distributions in finite samples if the data are
I(2), as postulated. Secondly, we will use the same statistics on near-I(2)
data to ascertain how detrimental misspecification is for those properties.

Our experiments will be based on a Data Generating Process (DGP)
derived from Johansen (1992), in turn inspired by Hendry and von Ungern-
Stenberg’s (1981) famous specification of the consumption function, also
used by Paruolo and Rahbek (1999).

4The combination when τ2 leads to the correct decision and τ1 does not is relatively
unsurprising (the test in the misspecified model works worse than in the right model);
the opposite one (the test in the misspecified model outperforms the other one) is quite
counterintuitive. However, in finite samples this can be the simple consequence of mis-
specification and sample biases of opposite sign compensating each other.
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More precisely, we consider a system with three variables: consumption,
liquid assets and income (all in natural logarithms: ct, lt and yt respec-
tively); the system is driven by one stochastic trend and linked by an Error
Correction Mechanism (ECM):

∆ct = ν∆yt−1 − a11(ct−1 − b1yt−1)− a12(lt−1 − b2yt−1) + ε1t (4a)
∆lt = −a21(ct−1 − b1yt−1) + ε2t (4b)
∆yt = ρ∆yt−1 + ε3t (4c)

Equation (4a) is a consumption function, equation (4b) describes asset ac-
cumulation through saving, and (4c) is a simple law of motion for GDP. The
restrictions from economic theory one would want to test are the homogene-
ity conditions

H0 : b1 = b2 = 1. (5)

For ρ = 1 the stochastic trend is I(2), whereas for ρ = 1 − δ (where δ
is some small positive number), it is near-I(2). In the above model, ρ = 1
would imply that the growth rate of GDP is I(1): while this is clearly im-
plausible from an economic point of view, it is very possible that the growth
rate is so persistent in a finite sample that ρ is observationally indistinguish-
able from unity.

In order to show that this is not merely a theoretical possibility, we
computed ADF tests on quarterly GDP growth rates of 35 countries and
international aggregates, as supplied by the online OECD database for the
sample 1982:1–2013:2; these are shown in Table 2.5 Of course, we do not
claim that this should be taken as a serious modelling exercise: we are fully
aware that the results it contains may be spurious for a multitude of reasons
(structural breaks, misspecification of the ADF equation, low power are the
first that spring to mind) and therefore should not be taken at face value.

However, even with this caveat in mind, the number of cases in which
we would be unable to reject the null hypothesis of a unit root in GDP
growth is striking. In almost half of the cases (15 out of 35) the p-values are
greater than 5%, and in nearly one third of the panel (10 cases) even greater
than 10%. Even if we chose to interpret Table 2 as nothing more than a
collection of descriptive statistics, we believe that its message is quite clear:
in the sample sizes typically available to practitioners it may not be easy to
reconcile economic intuition (which would treat GDP growth as stationary)
with observed facts and rule out the possibility that GDP growth rates are
in fact I(1).6

5Dependent variable is the log difference of seasonally adjusted GDP volume index
(OECD code: VIXOBSA). We use the variant with a constant only; the lag length was
chosen via the modified Akaike criterion, as per Ng and Perron (2001); the second column
reports the actual number of observation used, as data for some of the countries start later
than 1982. P -values as per MacKinnon (1996).

6In fact, univariate unit root tests may have low power to detect a double unit root
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Table 2: ADF tests on GDP growth rates

Available ADF asymptotic
Country obs. test p-value (%)
Australia 125 -3.87 0.22
Belgium 73 -4.64 0.01
Canada 125 -5.16 0.00
Chile 41 -3.17 2.15
Czech Republic 69 -2.74 6.72
Denmark 89 -3.66 0.47
Estonia 73 -2.52 11.03
Finland 93 -3.24 1.75
France 125 -4.15 0.08
Germany 89 -5.48 0.00
Hungary 73 -1.89 33.72
Iceland 65 -2.21 20.13
Ireland 65 -1.67 44.89
Italy 89 -3.35 1.27
Japan 77 -5.59 0.00
Korea 125 -2.82 5.57
Luxembourg 73 -3.03 3.18
Mexico 81 -4.78 0.01
Netherlands 101 -1.95 30.81
New Zealand 101 -2.52 11.10
Norway 125 -2.57 9.93
Poland 73 -3.89 0.21
Portugal 73 -1.40 58.61
Slovak Republic 65 -2.92 4.28
Slovenia 69 -1.94 31.31
Spain 53 -0.93 77.99
Sweden 81 -3.18 2.09
Switzerland 125 -5.43 0.00
Turkey 61 -4.49 0.01
United Kingdom 65 -2.94 4.08
United States 125 -2.71 7.19
Euro area 73 -3.52 0.75
European Union 73 -3.39 1.14
G7 125 -2.48 12.02
NAFTA 125 -2.79 5.90
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After defining Xt = (ct, lt, yt)′ and εt = (ε1t, ε2t, ε3t)′, under H0 as per
(5), the DGP can be compactly written in levels as

Xt =

1− a11 −a12 ν + a11 + a12
−a21 1 a21

0 0 2− δ

Xt−1 +

0 0 −ν
0 0 0
0 0 δ − 1

Xt−2 +εt. (6)

and in a manner compatible with equation (3a) as:

∆2Xt =

a11 a12
a21 0
0 0

[−1 0 1
0 −1 1

]
Xt−1 +

−1 0 ν
0 −1 0
0 0 −δ

∆Xt−1 + εt, (7)

where the matrix α′⊥Γβ⊥ has reduced rank (and therefore the system is
truly I(2)) only if δ = 0. After imposing the I(2) assumption, using (3b)
we obtain the Mosconi-Paruolo representation, in which the structure of
the integral control term and the medium run relationship involved by this
model may be clearly appreciated:

∆2Xt = [α : ς]
[
β′ υ′

0 β′

] [
Xt−1

∆Xt−1

]
+ εt.

where

α =

a11 a12
a21 0
0 0

 β =

−1 0
0 −1
1 1

 ς =

1 0
0 1
0 0

 υ =

−1 0
0 −1
ν 0

 .
and γ = 0.

In the simulation experiments the loadings aij have been chosen in such a
way to control of the roots of the VAR, so to generate series with a wide range
of diverse dynamic features; details of the seven combinations of loadings
considered in the various experiments are given in Table 3 below. For all
our Monte Carlo experiments, we set the number of replications to 5000.

To evaluate the properties of the tests in near-I(2) systems, we ran a
second set of experiments with the same loadings and ρ = 0.90, 0.95 and
0.99. The lagged effect of income growth on consumption growth, ν, is
always fixed at 0.5. Disturbance terms are IID Gaussian with covariance
matrix diag(1, 1, 0.1). These choices were made so to obtain simulated series
whose relative order of magnitude resemble the ones observed in real-world
data.

The sample sizes considered are T = 64, 128, 256; we consider these rep-
resentative of the order of magnitude usually available in macroeconomic

when the shocks to the drift term of the differenced process (which generate the second
unit root) are actually small compared to those to the the differenced process (see Juselius,
2013), so that these tests are likely to be somehow biased against the I(2) hypothesis.
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applications. It should be noted that we do not perform unconstrained es-
timation of all the parameters in the model, but we assume that the form
of the three equations (4a)–(4c) is known. Therefore, several aspects of
the estimated DGP are not derived from the data, but imposed a priori.
More precisely, we assume lag length, type of deterministic terms and coin-
tegration rank to be known, as routinely done in simulation experiments of
cointegrated systems. Further, we also assume known the shape of loading
matrix, so that we may constrain the three parameters a22, a32 and a33 to
zero.

Table 3: VAR Dynamic properties in different Monte Carlo settings - ρ = 1

Model a11 a12 a21 Roots
M1 0.20 0.20 −0.20 1 1 0.92 0.92
M2 0.50 0.50 −0.50 1 1 0.87 0.87
M3 0.80 0.80 −0.80 1 1 0.92 0.92
M4 0.40 0.20 −0.20 1 1 0.80 0.80
M5 0.80 0.20 −0.20 1 1 0.95 0.25
M6 0.80 0.40 −0.40 1 1 0.60 0.60
M7 0.80 0.60 −0.60 1 1 0.75 0.75

Roots: roots of the companion form of (1); two zero roots omitted

As argued in Section 3, we made this choice so to focus on our present
aim, which is to evaluate if and how tests on the cointegration parameters
exhibit worse properties because of the misspecification of the integration
order, without blurring the results with the possible inaccuracies stemming
from the fact that we estimate everything unrestrictedly. Moreover, this pro-
cedure makes it possible to use a simple one-step optimisation algorithm for
estimation7 instead of Mosconi and Paruolo’s iterative two-step GLS switch-
ing algorithm, inevitably more complex and computationally demanding.
This, in turn, makes it possible in practice to run a much larger number of
Monte Carlo simulations, which is essential in this type of exercise. Under
each setting, we computed the Type I errors of asymptotic Likelihood ratio
tests of H0 : vec(ζ) = SΦζ + s, with S and s defined so to (i) have the
cointegration vectors normalised respectively on ct and lt and (ii) impose
homogeneity (β31 = −β11, β32 = −β22). H0 is thus imposed only on the
coefficients of the level terms of the multicointegration relation.

7We use the BFGS algorithm, as implemented in the gretl software library.
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5 Experiment results and conclusions
The results of the simulations for the empirical size of τ2 and τ1 are reported
in Tables 4 and 5, and easily summarised.8 First of all, in the correctly
specified case the rejection frequency is slightly higher than the nominal
size, but seems to converge steadily to the nominal value as the sample
size increases. In fact, even with T = 64 the size bias is often quite small,
and decreases uniformly for all models considered. Moreover, and most
notably, there seems to be little difference between the I(2) and near-I(2)
cases. Even if the largest root considered here is 0.90, quite distant from
unity, this is evident from the rejection rates and fully confirmed by the
divergence measures reported in Table 6 and plotted in Fig. 1 and 2.

Table 4: Size of LR tests on long-run coefficients – I(2) case, ρ = 1

T 64 128 256
α 5.0 10.0 5.0 10.0 5.0 10.0

Model M1 7.1 13.0 5.6 10.3 5.5 10.2
M2 6.0 11.8 5.4 10.2 5.7 10.7
M3 6.1 11.5 5.4 10.3 5.3 10.6
M4 8.5 14.7 6.2 11.9 5.8 11.4
M5 7.2 13.2 5.5 11.3 5.7 10.9
M6 7.2 13.3 5.6 11.1 5.3 10.4
M7 6.2 12.6 5.3 10.6 5.5 10.6

Table 5: Size of LR tests on long-run coefficients – near-I(2) case, ρ = 0.90

T 64 128 256
α 5.0 10.0 5.0 10.0 5.0 10.0

Model M1 7.2 13.2 5.6 11.3 5.7 11.0
M2 6.4 11.8 5.5 11.3 5.8 11.2
M3 5.8 11.5 5.2 10.9 5.3 10.3
M4 8.1 15.1 6.7 12.3 6.2 11.6
M5 7.0 13.0 6.3 11.7 5.7 10.6
M6 7.9 13.6 6.6 12.1 6.3 11.8
M7 6.1 12.6 5.6 10.9 5.7 11.6

First of all, let us examine the values of ∇a in Fig. 1, which is the
proportion of simulations in which the LR tests with I(2) data and the clos-
est near-I(2) dataset yield opposite conclusions. This proportion behavies

8For the sake of conciseness, we report, under the “near-I(2)” heading, only the results
for ρ = 0.90; the other tables are, of course, available on request.
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Table 6: Distances ∇a and ∇r between the test performances with I(2) and
near-I(2) data

∇a ∇r
T T

ρ Model 64 128 256 64 128 256
0.99 M1 0.01 0.02 0.03 0.04 0.04 0.99

M2 0.01 0.02 0.03 0.04 0.53 0.44
M3 0.01 0.02 0.03 0.16 2.24 2.22
M4 0.01 0.02 0.03 0.04 0.01 0.39
M5 0.01 0.02 0.04 0.05 0.59 0.17
M6 0.01 0.02 0.03 0.12 0.45 2.91
M7 0.01 0.02 0.04 1.31 0.59 0.63

0.95 M1 0.05 0.06 0.07 0.03 0.43 1.28
M2 0.05 0.05 0.07 0.57 0.19 0.00
M3 0.04 0.03 0.06 0.20 0.06 0.65
M4 0.05 0.05 0.06 1.92 0.33 0.05
M5 0.05 0.06 0.08 1.36 0.72 0.02
M6 0.05 0.06 0.06 0 0.99 0.95
M7 0.04 0.05 0.07 2.66 0.99 0.10

0.90 M1 0.08 0.08 0.07 0.02 0.29 0.75
M2 0.06 0.07 0.08 0.53 0.10 0.24
M3 0.06 0.06 0.07 0.00 0.02 0.34
M4 0.08 0.07 0.07 1.41 0.86 0.02
M5 0.08 0.08 0.09 0.01 1.05 0.03
M6 0.07 0.07 0.08 1.22 2.99 1.36
M7 0.06 0.06 0.07 2.41 3.82 1.27
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Figure 1: Type I errors in I(2) and near−I(2) DGPs: ∇a distance
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Figure 2: Type I errors in I(2) and near−I(2) DGPs: ∇r distance

ρ = 0.90
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largely as expected: first of all, it is generally very small (always less than
10%). Second, it decreases as ρ approaches unity, and, for given ρ, with T.

The values of ∇r are more difficult to assess. From Fig. 2, the distances
appear to be approximately randomly distributed, with no clear effects of
sample size, ρ and DGP. M7 may appear as possible exception, but a closer
inspection shows that the conclusion that ∇r does not diverge with T holds
for this DGP also. In fact, the distance for T = 256 is much smaller than
those for T = 64 and 128 and entirely in line with those found for other
combinations of DGP and ρ. Simulations with T = 512, not reported here,
confirmed for all combinations of ρ and DGP that ∇r does not diverge with
T . Hence, in our simulations the misspecification bias is indeed dominated
by the small sample bias.

This finding suggests that with a number of observations in the order of
magnitude of most macro-econometric applications, it makes little sense to
worry about telling “real” I(2) processes from near-I(2), as finite-sample bias
dominates the effects of misspecification. Tables 7 and 8 suggest that similar
results hold for power against a trivial alternative. It may be surmised that
some bootstrap version of the test may offer even better properties.

The answer to our original question, “Can you do the wrong thing and
still be right?” is, then, absolutely yes. Clearly, one could conceivably argue
that it would be better still to “do the right thing” from the outset, that
is, use the I(1) model with appropriate corrections for the near-I(2)-ness of
the data. For instance, since in this set-up many statistics of the I(1) model
may have distributions poorly approximated by asymptotic ones, these may
replaced by bootstrap distributions. However, this strategy would, in turn,
open two new issues: first, it would still leave the “long swings” in the data
poorly modelled. Second, we would forsake the rich modelling potential of
the I(2) model, for instance the ability to estimate separate error correction
behaviour for different time horizons.

In conclusion, our results provide strong support to the use of asymp-
totic LR tests on the long-run coefficients of the I(2) model with both I(2)
and near-I(2) data. However, it should be kept in mind that our results are
somewhat partial, as we assume full knowledge of the structure of the VAR
(lag length, cointegration ranks and exogeneity status of the different vari-
ables). A more thorough investigation in a more realistic simulation setting
is the subject of ongoing work.
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Table 7: Power of LR tests on long-run coefficients – I(2) and near-I(2)
case, ρ = 0.90

I(2) near-I(2)
T = 64 T = 128 T = 64 T = 128

Model 5.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0
M1 88.1 91.6 99.9 100.0 69.2 76.9 97.7 98.7
M2 99.7 99.9 100.0 100.0 97.5 98.5 99.0 100.0
M3 100.0 100.0 100.0 100.0 99.8 99.9 100.0 100.0
M4 90.2 93.8 99.9 100.0 77.8 84.8 99.3 99.6
M5 99.0 99.5 100.0 100.0 98.2 96.9 100.0 100.0
M6 98.6 99.0 100.0 100.0 96.0 98.2 100.0 100.0
M7 99.8 99.8 100.0 100.0 99.4 99.2 100.0 100.0

Power settings: β31 = 0.8 and β32 = 0.8; H0 : β31 = −β11, β32 = −β22

Table 8: Power of LR tests on long-run coefficients - I(2) and near-I(2) case
ρ = 0.90

I(2) near-I(2)
T = 64 T = 128 T = 64 T = 128

Model 5.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0
M1 82.9 87.5 99.9 100.0 58.9 67.2 94.3 96.3
M2 99.2 99.6 100.0 100.0 94.7 96.6 99.9 99.9
M3 99.2 99.9 100.0 100.0 99.4 99.6 100.0 100.0
M4 78.8 85.3 100.0 100.0 59.9 69.1 96.3 97.7
M5 96.9 98.2 100.0 100.0 92.7 94.9 100.0 100.0
M6 97.0 98.2 100.0 100.0 89.7 92.7 99.5 100.0
M7 99.6 99.8 100.0 100.0 97.2 98.1 99.9 100.0

Power settings: β31 = 0.8 and β32 = 1.0; H0 : β31 = −β11, β32 = −β22
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