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In this paper the artificial compressibility flux Discontinuous Galerkin (DG) method for the
solution of the incompressible Navier–Stokes equations has been extended to deal with the
Reynolds-Averaged Navier–Stokes (RANS) equations coupled with the Spalart–Allmaras
(SA) turbulence model. DG implementations of the RANS and SA equations for compress-
ible flows have already been reported in the literature, including the description of limiting
or stabilization techniques adopted in order to prevent the turbulent viscosity ~m from
becoming negative. In this paper we introduce an SA model implementation that deals
with negative ~m values by modifying the source and diffusion terms in the SA model equa-
tion only when the working variable or one of the model closure functions become nega-
tive. This results in an efficient high-order implementation where either stabilization terms
or even additional equations are avoided. We remark that the proposed implementation is
not DG specific and it is well suited for any numerical discretization of the RANS-SA gov-
erning equations. The reliability, robustness and accuracy of the proposed implementation
have been assessed by computing several high Reynolds number turbulent test cases: the
flow over a flat plate (Re ¼ 107), the flow past a backward-facing step (Re ¼ 37400) and the
flow around a NACA 0012 airfoil at different angles of attack (a ¼ 0�; 10�; 15�) and Rey-
nolds numbers (Re ¼ 2:88� 106;6� 106).

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Discontinuous Galerkin (DG) methods for Computational Fluid Dynamics have been first applied to strictly hyperbolic
problems as the Euler equations [1,2]. After the pioneering work of Bassi and Rebay [3], DG methods have received much
attention also for the high-order discretization of elliptic problems and, since then, many stable DG discretization schemes
for the diffusive terms of the compressible Navier–Stokes equations have been developed. More recently, DG methods suited
for the incompressible Navier–Stokes (INS) equations have been proposed and analyzed in a number of papers [4–11].

Papers about the high-order DG space discretization of the Reynolds-Averaged Navier–Stokes (RANS) equations are far
less numerous and they only deal with compressible flows. This is to be related to severe problems of numerical stiffness
induced by the highly non-linear source terms of the turbulence model equations and by grid stretching needed to resolve
the near-wall behaviour of the turbulent quantities. Thus, high-order DG methods for the RANS and turbulence model equa-
tions must be carefully set up and always include some form of limiting or stabilization terms in the turbulence model equa-
tions in order to prevent blow-up of computations.

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jcp.2012.12.038&domain=pdf
http://dx.doi.org/10.1016/j.jcp.2012.12.038
mailto:a.crivellini@univpm.it
mailto:v.dalessandro@univpm.it
mailto:francesco.bassi@unibg.it
http://dx.doi.org/10.1016/j.jcp.2012.12.038
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


A. Crivellini et al. / Journal of Computational Physics 241 (2013) 388–415 389
At the time of this writing, the authors are aware of few DG implementations of the RANS equations coupled with two
turbulence models, the one-equation SA and the two-equation k—x models. Bassi et al. [12] solved the RANS and k—x equa-
tions with some modifications in the original model consisting of (i) rewriting the x equation in terms of logðxÞ instead of x,
(ii) fulfilling the realizability constraints for the turbulent stresses (obtaining a lower bound for x), and (iii) enforcing a zero
lower bound for the turbulent kinetic energy in the source terms and in the turbulent viscosity constitutive relation. Persson
et al. [13] solved the RANS and the SA turbulence model equations using an artificial viscosity term in order to stabilize the
discretization of the turbulence model equation. Oliver and Darmofal [14,15] also developed a DG solver for the RANS equa-
tions and the SA model. They added an artificial dissipation, governed by an additional PDE, to avoid numerical oscillations in
under-resolved regions. Landmann et al. [16] solved the RANS equations coupled with both the SA and k—x turbulence mod-
els. For the k—x model they used the same approach adopted by Bassi et al. [12] while for the SA model a strong instability
for negative values of eddy viscosity was observed. Therefore they implemented a limiting technique that after each Newton
iteration resets to zero negative values of the computed turbulence variable. Finally, Hartmann et al. [17] developed a DG
code for turbulent flow computations using the same modifications proposed by Bassi et al. in [12] for the k—x equations.

This work continues the development of the DG method for the INS equations introduced in [18] and extended in [19] to
natural convection flows and in [20] to unsteady flows. The main feature of the method is an original formulation of the
inviscid interface numerical fluxes based on the solution of Riemann problems with a relaxed incompressibility constraint,
[18]. The numerical experiments reported in Bassi et al. [18] show that the convergence rate, using polynomial approxima-
tions of degree k for all the variables, is kþ 1 for the velocity components and at least k for the pressure.

In this paper the method has been extended to the numerical solution of the incompressible RANS equations coupled with
the SA model. One advantage of using this model is that the turbulent variable ~m has less stringent requirements on near-wall
grid resolution needed to capture velocity profiles with respect to other models, especially of the k—� type. For high-order
computations the dimensionless height yþ of elements next to the wall can be taken of order 10, see for example [21] or the
results reported in Section 5.1. Despite of its relative simplicity, the robustness and accuracy of the SA model for aerody-
namic flows has been demonstrated in very many papers and its extension to more advanced levels of turbulence modelling
such as the Detached Eddy Simulation (DES), which is one of our goals, has already been attempted with promising results.
Finally, the ideal boundary conditions for the turbulent variable at far-field and wall boundaries are simply homogeneous
boundary conditions. In the next sections we present and analyse an implementation of the SA model that addresses the
above mentioned issues related to high-order DG implementations. In particular, we will show how few careful corrections
in the source and diffusive terms of the model are enough to stabilise its numerical behaviour and to avoid unphysical tur-
bulent quantities.

The paper is organised as follows. Section 2 presents the governing equations with a detailed analysis of the proposed
modifications in the SA model. Sections 3 and 4 describe the DG discretization and the implicit Newton–Krylov solution algo-
rithm. In the final section, Section 5, numerical results of several test cases are reported.
2. Governing equations

The governing equations of the fluid flow model considered in this paper are the incompressible RANS equations coupled
with the one-equation SA turbulence model. Let X � RN ; N 2 f2;3g, be a bounded and connected Lipschitz domain. Adopting
the standard SA nomenclature, the complete set of governing equations, in ½0; t� �X, reads:
$ � u ¼ 0;
@u
@t
þ $ � u� uð Þ þ $p� $ � mþ mtð Þ $uþ $uT

� �� �
¼ 0;

@~m
@t
þ $ � ðu~mÞ � 1

r
$ � ððmþ ~mÞ$~mÞ ¼ s;

ð1Þ
where p ¼ P=q is the pressure dived by density and the turbulent viscosity, mt , is computed according to the equation
mt ¼ fv1~m: ð2Þ
In Eq. (1) the source term, s, is given by
s ¼def cb1
~S~mþ cb2

r
$~m � $~m� cw1fw

~m
d

� �2

; ð3Þ
where d is the minimum distance from the wall and ~S, which is a function of both the vorticity magnitude S and the turbulent
variable ~m, is the following production term
~S ¼ Sþ
~m

k2d2 fv2; X ¼ $u� $uT

2
; S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2X : X
p

: ð4Þ
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To completely define the PDEs the closure functions
v ¼
~m
m
; f v1 ¼

v3

v3 þ c3
v1

� � ;
fv2 ¼ 1� v

1þ vfv1ð Þ ; f w ¼ g
1þ c6

w3

g6 þ c6
w3

� �1
6

;

g ¼ r þ cw2 r6 � r
� �

; r ¼
~m

~Sk2d2

ð5Þ
and closure constants
cb1 ¼ 0:1355; cb2 ¼ 0:622; cv1 ¼ 7:1;

r ¼ 2=3; cw1 ¼
cb1

k2 þ
ð1þ cb2Þ

r
;

cw2 ¼ 0:3; cw3 ¼ 2; k ¼ 0:41

ð6Þ
are required. The resulting turbulence model is the standard SA model without the trip function, hence employed in a fully
turbulent mode.

2.1. SA modifications

The SA model described in [22] was designed so as to incorporate four nested versions. The first version, which is the sim-
plest one, is applicable only to free shear flows; the last version, the most complex one, is applicable to viscous flows past
solid bodies with a specified turbulent transition location. The model complexity is increased adding new terms, passive in
all the lower versions of the model. This means that near the edge of boundary layers as well as in free-shear layers only the
simplest model is active. This class of problems admits typical ramp solutions related to the following sub-model:
@~m
@t
þ $ � u~mð Þ � 1

r
$ � mþ ~mð Þ$~mð Þ ¼ cb2

r
$~m � $~mþ cb1S~m: ð7Þ
It is already known that the eddy viscosity decreases rapidly from a positive value to the free-stream value (ideally zero but
usually set to a positive very small value) changing its curvature in a narrow layer. For high Reynolds number flows this layer
is extremely thin, its thickness being determined by the laminar viscosity. Moreover in the limit of Re!1, as noted by Spal-
art and Allmaras [22], the equation admits weak solutions, with discontinuous $~m.

The numerical stability of high-order DG solvers is closely related to this phenomenon. Persson et al. [13] and Oliver and
Darmofal [14,15] have recognised in this behaviour the cause of highly oscillatory, or even unstable, solutions characterised
by negative ~m values. It is clear that a negative turbulent eddy viscosity is meaningless and that the original closure functions,
Eq. (5), and closure constants, Eq. (6), were developed only for positive ~m (the function fv1, for example, is singular for
v ¼ �cv1).

As outlined in Section 1, several authors have proposed different numerical approaches to address the stability issues of
high-order DG implementations of the SA model. In this work only corrections for negative values of ~m and for the closure
function r have been adopted, resulting in an efficient implementation of the RANS high-order solver since neither additional
equations/terms nor complex limiting procedures, which for an high-order approximation may be computationally expen-
sive, are employed. Hence, the key ingredients for a stable and reliable high-order implementation of the SA model are here
strictly related to the treatment of the source and diffusive terms.

2.1.1. Negative ~m modifications
In the proposed algorithm when ~m is negative the turbulence model equation is modified in order to ensure an increasing

turbulent viscosity. A first version of this approach has been suggested by Allmaras himself in [23] while the current version
is unpublished and it was only reported, as a personal communication, by Oliver [24]. Following Oliver presentation, one
multiplies the model equation by its independent variable to obtain the following partial differential equation for the energy
of ~m
~m
@~m
@t
þ ~m$ � ðu~mÞ ¼ 1

2
@~m2

@t
þ $ � ðu~m2Þ

� �
¼

~m
r$ � n$~mð Þ þ ~ms; ð8Þ
where for convenience we have set the diffusion coefficient n ¼ mþ ~m ¼ m 1þ vð Þ. Defining Xþ and X� the sub-domains of
X ¼ Xþ [X�, in which ~m is positive and negative, respectively, and assuming that @X \ @X� ¼ 0; i:e: X� is internal to X,
and that the function ~m is C0 Xð Þ, the integration of Eq. (8) over the domain X� gives:
1
2

Z
X�

@~m2

@t
dxþ 1

2

Z
@X�

u~m2 � ndr|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
0

�
Z
@X�

~m
r

�m$~m � ndr|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

þ
Z

X�

$~m
r
� n$~mdx ¼

Z
X�

~msdx;
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where the Gauss divergence theorem is used in order to simplify the equation, being for continuity ~mj@X� ¼ 0. By using the
source term definition, Eq. (3), one obtains
1
2

Z
X�

@~m2

@t
dx ¼

Z
X�

cb2~m� n
r

$~m � $~m|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
~msC

dxþ
Z

X�
cb1

~S~m2|fflfflffl{zfflfflffl}
~msP

dx�
Z

X�
cw1fw

~m3

d2|fflfflfflfflffl{zfflfflfflfflffl}
~msD

dx:
Since the convective fluxes are null, this equation represents the rate of change of the ~m ‘‘energy’’ associated with a control
volume moving together with the boundary of X�. The terms ~msC , ~msP and ~msD represent diffusion plus cross term, production
term and destruction term, respectively. Thus, if ~m is negative, ~msC and ~msP must be less than zero while ~msD must be greater
than zero in order to avoid an increasing ‘‘energy’’.

The ~msC contribution, given by
~msC ¼
cb2~m� n

r
$~m � $~m;
is positive if ~m < 0 and ðcb2~m� nÞ > 0 and thus the following alternative definition of n, ensuring the desired sign, is adopted
n ¼
m 1þ vð Þ v P 0;
m 1þ vþ 1

2 v
2

� �
v < 0:

(
ð9Þ
The original ~msP term is a function of S; d2 and v, but for negative v it is always positive for v > �1:940� 101; therefore the
production term is modified as
sP ¼
cb1

~S~m v P 0;
cb1S~mgn v < 0;

(
ð10Þ
where
gn ¼ 1� 103v2

1þ v2 : ð11Þ
If v < �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=999

p
the gn function is negative and ~msP is positive. This region in which the production term has the ‘‘wrong’’ sign

is unavoidable if the continuity of Jacobian is requested. Since sPjv¼0 ¼ 0 and @sP
@v jv¼0 ¼ ccb1Sm with S > 0 the production term

must change sign in v ¼ 0. The function in Eq. (11) clusters this undesirable behaviour in a small interval, for
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=999

p
< v < 0, and limits the maximum ~msP ‘‘adverse’’ value.

Finally, the sign of ~msD depends on the sign of ~m and fw, the latter being negative for �1:185 < r < 0; thus, once again, a
new formulation is introduced
sD ¼
cw1fw

~m2

d2 v P 0;

�cw1
~m2

d2 v < 0:

8<
: ð12Þ
Note that all these negative ~m modifications have been devised so as to ensure the continuity of the function and of its first
derivative with respect to ~m; i:e: the resulting Jacobian matrix is continuous even in ~m ¼ 0.

Assembling all the modifications in a single source term, the Allmaras approach reads
s ¼
cb1

~S~mþ cb2
r $~m � $~m� cw1fw

~m
d

� �2 v P 0;

cb1S~mgn þ cb2
r $~m � $~mþ cw1

~m2

d2 v < 0:

8<
: ð13Þ
The second approach to deal with negative ~m values follows the DG implementation of the k—x turbulence model introduced
in Bassi et al. [12]. If we interpret this approach in the framework of the above described modifications of negative turbu-
lence model quantities, it takes the meaning of a simple algorithm ensuring a positive diffusion coefficient (equal to the
molecular viscosity) and zero source terms if the turbulent viscosity quantities happen to be negative. In formulas, this ap-
proach reads
n ¼
m 1þ vð Þ v P 0;
m v < 0;



ð14Þ

s ¼ cb1
~S~mþ cb2

r $~m � $~m� cw1fw
~m
d

� �2 v < 0;
0 v < 0;

(
ð15Þ
which guarantees the fulfilment of conditions for an increasing negative ~m. In this case, however, the Jacobian is not contin-
uous anymore. Unlike what Landmann et al. claim in [16], we have found that this algorithm works well without any sta-
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bility issue. As already observed by Allmaras [23] for his implementation, both approaches reduce to original SA model for a
positive (i.e. meaningful) turbulent viscosity solution, being this behaviour enforced by the constraint
mt ¼ fv1 max 0; ~mð Þ: ð16Þ
For this reason the two approaches to deal with negative ~m values should be viewed just as implementation variants of the
original SA model.

To highlight typical numerical issues related to inadequate treatment of negative ~m values, Fig. 1(a) shows the turbulent
viscosity profile in the shear-layer behind a NACA 0012 airfoil. The effect of negative ~m correction for the diffusion coefficient
can be easily appreciated: compared to the standard model, the amplitude of solution oscillations is drastically reduced, and
the numerical error does not significantly propagate outside the turbulent region. Nevertheless, solutions inside this region
appear almost indistinguishable, proving that this technique does not affect positive ~m values, see Fig. 1(a) and (b).

2.1.2. The negative r modifications
The second key ingredient of the proposed high-order SA implementation can be considered a kind of realizability con-

dition for the r closure function, Eq. (5). In this section ~m, hence v, is assumed to be positive, since in the negative ~m case the r
function is not evaluated at all. In the paper where the SA model was presented for the first time, [22], this quantity was

introduced according to the definition r ¼ l2
= k2d2
� �

, where l is a mixing length inspired to algebraic turbulence models.

Substituting Eq. (4) in the r closure function of Eq. (5) yields
r ¼
~m

~S kdð Þ2
¼ v

S kdð Þ2
m þ vfv2

; ð17Þ
which means that r is a function of the two, positive defined, non-dimensional groups, S kdð Þ2=m and v, related to the vorticity
magnitude and to the turbulent eddy-viscosity, respectively. By definition the r function should be positive, however, for
SðkdÞ2=m 6 6:088, negative values can occur in Eq. (5) even with ~m P 0, see Fig. 2(a). This behaviour is related to the function
fv2 which is negative for 1:003 6 v 6 1:840� 101, Fig. 2(b). Moreover r is singular for vfv2 ¼ �SðkdÞ2=m. The contours plot of
the r function, Fig. 3(a), shows that the region with r < 0 is bounded by a line along which the function is singular.

To avoid the singularity here r is limited to a positive value, rmax. Moreover, since the original function r is negative only if
it crosses the curve where r ! 	1, negative values are handled in the same way as large values. This means that the follow-
ing new r definition takes the place of the original one in Eq. (5):
r
 ¼
~m

~Sk2d2 ; r ¼
rmax r
 < 0;
r
 0 6 r
 < rmax;

rmax r
 P rmax:

8><
>: ð18Þ
Fig. 1. Effect of the correction equation (9) and (14) on the numerical solution, ~m behaviour on the NACA 0012 wake. Re ¼ 106, a ¼ 0� .



Fig. 2. Closure functions, standard SA model.

Fig. 3. Contour plot of the closure functions, standard SA model, solid lines for positive iso-value curves, dashed lines for negative iso-value curves, dot-
dashed line for singular curve.
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Furthermore, in order to avoid a negative production term, as will become more clear in the following, here the sP is rear-
ranged as
sP ¼ cb1
~m2

rk2d2 ; ð19Þ
which is equivalent to the original formulation if the standard r definition is assumed. Eq. (19) indicates that when r < 0 the
standard sP term is negative; moreover, even the standard destruction term, sD ¼ cw1fw~m2=d2, may change its original sign for
r < 0. As a matter of the fact, Fig. 3(b) shows that, for r < 0, the fw closure function can be negative in the region below the
dot-dashed line.

It is very important to realize that also this modification does not affect the final solution. In fact, the SA equation is built
to obtain r ¼ 1 close to the wall, where ~m � uskd and ~S � us=ðkdÞ2 (us is the friction velocity), and r ¼ 0 at the boundary edge
where ~m goes to zero faster than S. Obviously far from the wall, in free shear region, r should not influence the solution since
it was originally introduced in the turbulence model only as the argument of the fw function which serves the purpose of the
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model calibration for the near-wall region. Furthermore, quoting the Spalart and Allmaras paper, [22], ‘‘the region r > 1 is
exercised only in adverse pressure gradient, and then rarely beyond r ¼ 1:1’’.

However, from the numerical point of view, at the edge of boundary layer both ~m, as noticed in previous section, and S, see
Fig. 4(a), display steep profiles resulting in oscillating solutions around zero or around a free stream value close to zero. This
phenomenon can possibly lead the r function to very high or even negative values, see Fig. 4(b).

During this work we have observed that this undesired behavior of the r function is not very important for attached flow
simulations, while it becomes crucial when flows with large adverse gradients and large flow separations are addressed. In
these cases during the non linear solution process, using for example the implicit pseudo transient approach here adopted,
the solution displays wildly oscillating residuals which can lead to blow-up of computations or compromise the non linear
convergence history and thus the computational efficiency.

To a better understand of the difficulties related to the numerical treatment of the original SA model, we first rewrite the
source terms, involved in the near-wall region modifications, as follows
sPD ¼ sP þ sD ¼
mv
d

� �2 cb1

k2r
� cw1fw

� �
: ð20Þ
Being this source term a function of r multiplied by a positive quantity, ðmv=dÞ2, its sign is completely determined by the r
value. In Fig. 5(a) the fw function, which is negative for �1:185 < r < 0, is reported.

Now we can express the partial derivative of Spd, with respect to ~m, as
@sPD

@~m
¼ mv

d2 2
cb1

k2r
� cw1fw

� �
� mv cb1

k2r2
þ cw1

dfw

dr

� �
@r
@~m

� �
;

where, introducing the following relations
@r
@~m
¼ 1

mv�
1
~S

@~S
@~m

 !
r;

@~S
@~m
¼ 1

kdð Þ2
fv2 þ vdfv2

dv

� �
;

one obtains
@sPD

@~m
¼ mv

d2 2
cb1

k2r
� cw1fw

� �

� cb1

k2r2
þ cw1

dfw

dr

� �
r � r2 fv2 þ vdfv2

dv

� �� �
: ð21Þ
Note that if r !1 the sPD source term tends to �2:005cw1ðmv=dÞ2, since limr!1fw ¼ 2:005, while if r ! 0 even if
cb1=ðk2rÞ ! 1 the equation is still well behaved since this is possible only for v! 0 or for d!1. For the Jacobian the same
consideration holds true at r ¼ 0, while for r !1 it is still well defined since limr!1r2dfw=dr ¼ 0.

Eqs. (20) and (21) together with Eq. (17) are particularly useful for our investigation because they allow to represent the
source term and its Jacobian at each point of the computational domain, thus for a particular d, and for a particular flow re-
gime, thus for a fixed value of m kinematic viscosity, as a function of the two non-dimensional groups introduced above. In
Fig. 4. Flat plate turbulent profiles at Rex ¼ 2:7� 106, computation with P6 and ne ¼ 384.



Fig. 5. Closure functions, standard SA model.

Fig. 6. Source term and its Jacobian contour plots, standard SA model, solid lines for positive iso-value curves, dashed lines for negative iso-value curves,
dot-dashed line for singular curve.
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Fig. 6(a) and (b) the contour plots of sPD and of @sPD=@~m are reported and it is quite easy to observe that there are two zones in
which the Jacobian is positive.

The first one is where the production term is dominated by the free shear production term cb1S~m. The second is instead
inside the negative r zone, below the dot-dashed line in Fig. 6(a), where the following term, related to wall destruction, may
be large
cw1
mv
d2 r2 dfw

dr
fv2 þ vdfv2

dv

� �
:

In fact for r < �8:289� 10�1, Fig. 5(a), and for 5:003� 10�1 < v < 4:421, Fig. 5(b), both dfw=dr and fv2 þ vdfv2=dv are nega-
tive and, since cw1mvr2=d2 is a positive quantity, the previous term is greater than zero.

As has been already noticed for example by Allmaras [23] or Wilcox [25] a positive Jacobian source term, in the RANS
closure equations, can compromise the convergence proprieties of an implicit solution algorithm. The diagonal dominance
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of the matrix is in fact reduced and the linearised SA equation may admit an exponential growth of the turbulence working
variable. As a matter of fact, we have verified that only if the previous term is damped in the Jacobian matrix, i.e. is multiplied
by a function which is zero at the beginning of the computation and is equal to one when the norm vector of the residuals is
extremely small, the stability of the method dramatically improves, see Fig. 7(a). However this approach requires to make a
choice about the shape of damping function while the r modification here proposed completely avoids this issue. Moreover
the r modification does not renounce to the exact Jacobian formulation, which may be not so important in a steady state
algorithm but is relevant in a URANS (Unsteady Reynolds Averaged Navier Stokes) or in a DES framework.

The idea of a cutoff for r is not completely new since Spalart and Allamars, [22], suggested to take 10 as a maximum for
this function. However their observation was based only on the fact that fw approaches a constant value, Fig. 5(a), for a suf-
ficiently large r and they did not consider the negative case. Nevertheless, since both sPD and its Jacobian are well behaved for
r !1, we adopt the r clipping only in order to avoid numerical problems in the floating point operations, as for example an
overflow, or the loss of many significant digits in the closure functions evaluations. Therefore we have tested several rmax

values much larger than 10 without any trouble or significant difference of computed results.
In [15,24] it was already noted that, due to the fv2 definition, ~S can be negative even for a positive ~m and this implies a

negative value of cb1
~S~m. This behaviour is considered the responsible for stability issues and slow steady state convergence;

thus a new formulation for ~S was there introduced. Differently from what is claimed in those works we believe that the main
numerical difficulties are strictly related to the destruction term which, in certain circumstances, behaves as a production
term with an increasing production rate. Despite the different considerations which have inspired the SA modifications, even
that variant of the ~S definition implicitly avoids the negative r and reads:
S ¼
~mfv2

k2d2 ;
~S ¼

Sþ S; S P �cv2S;

Sþ S c2
v2Sþcv3Sð Þ

cv3�2cv2ð ÞS�S
; S < �cv2S;

8<
: cv2 ¼ 0:7; cv3 ¼ 0:9:
This formulation is referenced in [15,24] as an unpublished work of Johnson and Allmaras. However only few details are gi-
ven about how the new closure function for ~S has been developed, but it should be quite clear that it was designed in order to
obtain ~S P 1� cv2ð ÞS. Using this ~S definition the new source term is C1 continuous for both ~m and S while with our simpler
approach the Jacobian is no more continuous at r ¼ rmax. However the discontinuity, Fig. 8(b), is quite small, being, as pre-
viously noted, fw almost constant for large r and both dfw=dr and cb1mv=ðk2d2rÞ null for r !1. Thus the only term that sig-
nificantly leads to a jump in the Jacobian is
cb1
mv

k2d2 fv2 þ vdfv2

dv

� �
:

A possible cure to the discontinuous Jacobian, Fig. 8(b), is to keep the original formulation for the production term, cb1
~S~m, and

to adopt the new r definition inside the destruction term. Looking at Figs. 8(b) and 9(b) it is easy to observe that the source
Fig. 7. Convergence histories, P3, NACA 0012 Re ¼ 2:88� 106, a ¼ 15� .



Fig. 8. Source term and its Jacobian contour plots, modified r for both sD and sP terms, solid lines for positive iso-value curves, dashed lines for negative iso-
value curves, dot-dashed line for singular curve.

Fig. 9. Source term and its Jacobian contour plots, modified r for sD , standard sP term, solid lines for positive iso-value curves, dashed lines for negative iso-
value curves, dot-dashed line for singular curve.
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term sPD is almost identical between the two cases, proving that for r < 0 the negative sP values are negligible compared to
the destruction term. Numerical experiments show that there is no remarkable difference using the original sP or the new
formulation, Eq. (19), with almost indistinguishable convergence histories, Fig. 7(b), proving once more that the responsible
for instabilities and computational inefficiency is the destruction term. Anyway here we prefer to retain the physically mean-
ingful r positive values for both source terms, accepting the new source term is only C0.

Finally, since all the above discussed approach consists only in a particular clipping of r, we believe that the here proposed
modification is extremely well suited for a straightforward implementation in many existing CFD codes. While we have ver-
ified that in a high-order framework is almost mandatory to handle in some way the negative r case, we believe that this
approach can also improve the stability and the computational efficiency of standard second order codes.



398 A. Crivellini et al. / Journal of Computational Physics 241 (2013) 388–415
3. Discontinuous Galerkin discretization

In this section we present the DG discretization of Eq. (1) considering inviscid, viscous, source terms and boundary con-
ditions treatment separately.

3.1. Convective terms

Introducing the following convective fluxes:
Fðu; pÞ¼defu� uþ pI ¼ uiuj þ pdij;

gðu; ~mÞ ¼def u~m ¼ ui~m
and neglecting the diffusive and source terms, the weak form of Eq.(1) reads:
�
Z

X
$q � udxþ

Z
@X

qu � ndr ¼ 0;Z
X

v � @u
@t

dx�
Z

X
$v : Fðu;pÞdxþ

Z
@X

v � n : Fðu;pÞdr ¼ 0;Z
X

q
@~m
@t

dx�
Z

X
$q � gðu; ~mÞdxþ

Z
@X

qgðu; ~mÞ � ndr ¼ 0

ð22Þ
for arbitrary test functions v and q.
In order to construct the DG discretization of Eq. (22), we consider a triangulation T h ¼ fKg of an approximation Xh of X,

that is we partition Xh into a set of non-overlapping elements K (not necessarily simplices). We denote with E0
h the set of

internal element faces, with E@h the set of boundary element faces and we let Eh ¼ E0
h [ E

@
h. We moreover set:
C0
h ¼

def [
e2E0

h

e; C@
h ¼

def [
e2E@h

e; Ch¼
defC0

h [ C@
h: ð23Þ
The solution is approximated on T h as a piecewise polynomial function possibly discontinuous on element interfaces, i.e. we
assume the following space settings for the approximate solution ðuh; ph; ~mhÞ:
uh 2 Vh ¼
def Vh½ �N ; ph; ~mh 2 Q h ¼

def Vh; ð24Þ
where, for all integers k P 1,
Vh ¼
def vh 2 L2 Xð Þ : vhjK 2 Pk Kð Þ8K 2 T h

n o

being PkðKÞ the space of polynomials of global degree at most k on the element K. To overcome the ill-conditioning of ele-
mental mass matrices for higher-order polynomials on high aspect ratio and curved elements we have chosen a hierarchical
and orthogonal set of shape functions defined in physical space. This set is obtained using a modified Gram-Schmidt proce-
dure considering as a starting point a set of monomial functions of the same degree k. For all e 2 E0

h , for all vector quantities v
and scalar quantities q such that a (possibly two-valued) trace is available on e, we define:
svt¼defvþ � nþ þ v� � n�; sqt¼defqþnþ þ q�n�; ð25Þ
where we adopt the notation illustrated in Fig. 10. According to these definitions, svt is a tensor quantity, and sqt is a vector
quantity, i.e. the jump operator always increases the tensor rank by one. Similarly, for all scalar, vector or tensor quantities
such that a (possibly two-valued) trace is available on e, we introduce the average operator:
f�g ¼def ð�Þþ þ ð�Þ�

2
: ð26Þ
These definitions can be extended to faces intersecting @X accounting for the weak imposition boundary conditions as dis-
cussed in Section 3.4.

The discrete counterpart of Eq. (22) for a generic element K 2 T h then reads:
�
Z

K
$hqh � uhdxþ

Z
@K

qhuhjK � ndr ¼ 0;Z
K

vh �
@uh

@t
dx�

Z
K
$hvh : Fðuh;phÞdxþ

Z
@K

vh � n : FðuhjK ;phjKÞdr ¼ 0;Z
K

qh
@~mh

@t
dx�

Z
K
$hqh � gðuh; ~mhÞdxþ

Z
@K

qhgðuhjK ; ~mhjKÞ � ndr ¼ 0:

ð27Þ



Fig. 10. Normals and local frame at quadrature point P on edge e.

A. Crivellini et al. / Journal of Computational Physics 241 (2013) 388–415 399
To introduce a coupling between the degrees of freedom belonging to adjacent elements and to ensure conservation, we sub-
stitute the fluxes uhjK , FðuhjK ; phjKÞ and gðuhjK ; ~mhjKÞ with suitably defined numerical fluxes ûðu	h ; p	h Þ, F̂ðu	h ; p	h Þ and
ĝðu	h ; p	h ; ~m	h Þ. We remark that the stability and accuracy properties of the method strongly depend on the choice of such
numerical fluxes. Summing Eq. (27) over the elements we obtain the DG formulation of problem (22) which then requires
to find uh 2 Vh and ph; ~mh 2 Q h such that:
�
Z

Xh

$hqh � uhdxþ
Z

Ch

sqht � ûðu	h ; p	h Þdr ¼ 0;Z
Xh

vh �
@uh

@t
dx�

Z
Xh

$hvh : Fðuh;phÞdxþ
Z

Ch

svht : F̂ðu	h ;p	h Þdr ¼ 0;Z
Xh

qh
@~mh

@t
dx�

Z
Xh

$hqh � gðuh; ~mhÞdxþ
Z

Ch

sqht � ĝðu	h ; p	h ; ~m	h Þdr ¼ 0

ð28Þ
for all vh 2 Vh and qh 2 Qh. The key idea to devise û; F̂ and ĝ is to reduce the problem of flux computation to the solution of a
planar Riemann problem as in the compressible case. In order to recover the hyperbolic character of the equations, the
incompressibility constraint is relaxed by adding an artificial compressibility term to the continuity equation. At each quad-
rature point P on Ch we therefore solve the Riemann problem for the equations:
1
c2

@p
@t
þ @u
@x
¼ 0;

@u
@t
þ @ðu

2 þ pÞ
@x

¼ 0;

@v
@t
þ @uv

@x
¼ 0;

@~m
@t
þ @u~m

@x
¼ 0;

ð29Þ
with initial datum
ðu;p; ~mÞ ¼
ðu�h ; p�h ; ~m�h Þ if x < 0;
ðuþh ; p

þ
h ; ~m

þ
h Þ if x > 0;

(

where x denotes a locally defined axis oriented as the normal vector nþ pointing out of Kþ and located in such a way that
x ¼ 0 at P (see Fig. 10).

Denoting with u
; p
; ~m
ð Þ the solution of the Riemann problem on the space–time line x=t ¼ 0, we finally set:
ûðu	h ;p	h Þ ¼ u
; F̂ðu	h ; p	h Þ ¼ Fðu
; p
Þ; ĝðu	h ;p	h ; ~m	h Þ ¼ gðu
; ~m
Þ:
The details of the procedure adopted to determine the state u
; p
; ~m
ð Þ are thoroughly discussed in the Appendix A of [18].
Here we remark that the transported scalar quantities, like turbulent viscosity but also tangential velocity components or
temperature (if the energy equation is used), can be computed according to the relation
/
 ¼
/þf u	h � nþ;p	h

� �
u
 � nþ P 0;

/�f u	h � nþ;p	h
� �

u
 � nþ < 0;

(

where / stands for any transport quantities and the function f, depending on the structure of the Riemann, is the same for all
the transported quantities.
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3.2. Diffusive terms

Many techniques are available for the DG space discretization of the diffusive terms: a complete survey can be found in
[26]. In this paper we choose the form, first proposed in [2], which gives the following space discretization of the complete
governing equations: find uh 2 Vh and ph; ~mh 2 Q h such that
�
Z

Xh

$hqh �uhdxþ
Z

Ch

sqht � ûðu	h ;p	h Þdr¼0;Z
Xh

vh �
@uh

@t
dx�

Z
Xh

$hvh : Fv $huh;r suhtð Þ;~mhð ÞþF uh;phð Þð Þdxþ
Z

Ch

svht : F̂vð$hu	h ;r
	
e suhtð Þ;~m	h Þþ F̂ðu	h ;p	h Þ

� �
dr¼0;Z

Xh

qh
@~mh

@t
dx�

Z
Xh

$hqh � gv ~mh;$h~mh;r s~mhtð Þð Þþg uh;~mhð Þð Þdxþ
Z

Ch

sqht � ĝvð~m	h ;$h~m	h ;r
	
e s~mhtð ÞÞþ ĝðu	h ;p	h ;~m	h Þ

� �
dr¼0

ð30Þ
for all vh 2 Vh and qh 2 Qh. The diffusive fluxes in the above equations are defined as:
Fv $huh; r suhtð Þ; ~mhð Þ ¼def� mþ mtð~mhÞð Þ $huh þ $huT
h

� �
þ r suhtð Þ þ r suhtð ÞT
� �� �

;

F̂vð$hu	h ; r
	
e suhtð Þ; ~m	h Þ ¼

def� mþ mtð~mhÞð Þ $huh þ $huT
h

� �
� ge re suhtð Þ þ re suhtð ÞT

� �� �n o
;

gv ~mh;$h~mh; r s~mhtð Þð Þ ¼def��mh $h~mh þ r s~mhtð Þð Þ;

ĝvð~m	h ;$h~m	h ; r
	
e s~mhtð ÞÞ ¼def� nh $h~mh þ gere s~mhtð Þð Þf g;

ð31Þ
where nh is defined according to Eq. (9) or Eq. (14). For all e 2 Eh and for all w 2 ½L2ðeÞ�N
2

the lifting operator re is defined as the
solution of the following problem:
Z

Xh

re wð Þ : shdx ¼ �
Z

e
w : shf gdr; 8sh 2 ½Vh�N

2

: ð32Þ
Similarly, for all w 2 ½L2ðeÞ�N ,
Z
Xh

re wð Þ � vhdx ¼ �
Z

e
w � fvhgdr; 8vh 2 Vh½ �N : ð33Þ
Finally,
r �ð Þ¼defX
e2Eh

re �ð Þ: ð34Þ
It is possible to find lower bounds for the parameter ge 2 Rþ ensuring stability of the method [26].
3.3. Source terms

To complete the DG spatial discretization a source term is added to the right hand side of the equation for ~mh in the system
(30):
�
Z

Xh

$hqh �uhdxþ
Z

Ch

sqht � ûðu	h ;p	h Þdr¼0;Z
Xh

vh �
@uh

@t
dx�

Z
Xh

$hvh : Fv $huh;r suhtð Þ;~mhð ÞþF uh;phð Þð Þdxþ
Z

Ch

svht : F̂vð$hu	h ;r
	
e suhtð Þ;~m	h Þþ F̂ðu	h ;p	h Þ

� �
dr¼0;Z

Xh

qh
@~mh

@t
dx�

Z
Xh

$hqh � gv ~mh;$h~mh;r s~mhtð Þð Þþg uh;~mhð Þð Þdxþ
Z

Ch

sqht � ĝvð~m	h ;$h~m	h ;r
	
e s~mhtð ÞÞþ ĝðu	h ;p	h ;~m	h Þ

� �
dr

¼
Z

Xh

qhsh $huhþr suhtð Þ;~mh;$h~mhþr s~mhtð Þð Þdx;

ð35Þ
where the term sh is defined according to Eq. (13), for the Allmaras approach, or to Eq. (15), for the Bassi one, and according
to the new r definition, Eq. (18). All integrals appearing in the space discrete problem (35) are computed by means of Gauss
integration rules with a number of integration points suited for the required accuracy. The theoretical degree of integration
must account for the degrees of (i) polynomial approximation, (ii) mapping, and (iii) Jacobian of the mapping. If available,
cheaper non-product formulae, taken from [27], are preferred to tensor product ones.
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3.4. Boundary conditions

The DG discretization is best suited for a weak enforcement of boundary conditions. This can be easily achieved by prop-
erly defining a boundary state which, together with the internal state, allows to compute the numerical fluxes and the lifting
operator on the portion C@

h of the boundary Ch.
For Dirichlet type boundary data this can be easily achieved by properly defining a boundary state ub

h; pb
h and ~mb

h which,
together with the internal state uþh , pþh and ~mþh is suitable for the evaluation of the numerical fluxes û; F̂; ĝ and the function
rþe . Moreover the averages f$huhg; freðsuhtÞg; f$h~mhg and freðs~mhtÞg are set in F̂v and ĝv equal to the internal values. The wall-
type boundary conditions have been implemented by defining the boundary state on the exterior of boundary faces as
ub

h ¼ �uþh ; $ub
h ¼ $uþh ; pb

h ¼ pþh ; ~mb
h ¼ �~mþh and $~mb

h ¼ $~mþh . In this case the external boundary state exactly replaces u�h ; ~m�h
and p�h in the jump operators, in the numerical fluxes and in the lifting operator.

4. Time discretization and linear system solution

The discrete problem corresponding to Eq. (35) can be written as:
M
dU
dt
þ R Uð Þ ¼ 0; ð36Þ
where U is the global vector of unknowns and M is the global block diagonal mass matrix. Eq. (36) defines a system of non-
linear ODEs which is discretized by means of linearly implicit (Rosenbrock-type) Runge–Kutta schemes, see [20] for time
accurate unsteady Navier–Stokes computations. In this work only steady problems are considered hence only the first order
backward Euler scheme was adopted:
M
Dt
þ J

� �
DU ¼ �R Unð Þ; ð37Þ
where J ¼ @R Unð Þ=@U is the Jacobian matrix of the DG space discretization. Eq. (37) requires to solve a linear system of the
form Axþ b ¼ 0 in which the matrix A can be regarded as an NK � NK block sparse matrix where NK is the number of ele-
ments in T h and the rank of each block is NK

DOF � ðN þ 2Þ, being NK
DOF the number of degrees of freedom for each variable in the

generic element K. Thanks to the DG discretization here adopted, the degrees of freedom of a generic element K are only cou-
pled with those of the neighbouring elements and the number of nonzero blocks for each (block) row K of the matrix A is
therefore equal to the number of elements surrounding the element K plus one. The Jacobian matrix of the DG discretization
is computed analytically and, using very large time steps, the method can therefore achieve quadratic convergence in the
computation of steady state solutions. In the limit Dt !1 Eq. (37) is in fact identical to one iteration of the Newton method
applied to the steady discrete problem. Thus a fully implicit Newton–Krylov algorithm is accomplished with a pseudo-tran-
sient continuation strategy. The growth of the local CFL number is related to the residual vector L2 and L1 norms according to
the following relations:
CFL ¼ min
CFLmin

f b
;CFLmax

� �

f ¼max
kR Unð ÞkL2

kR U0
� �

kL2

;
kR Unð ÞkL1

kR U0
� �

kL1

0
@

1
A; ð38Þ
where CFLmin, CFLmax and b are user-defined input parameters. This means that, since Dt is linearly proportional to the CFL
value, during the computation the time step size continuously grows with the decreasing of the residuals norms. A remark-
able consequence is the achievement of a quadratic convergence at least in the last part of the solution process when, being
the residuals small, large time steps are employed.

If a local time derivative of pressure is introduced in the continuity equation, the matrix condition number can be signif-
icantly decreased, as well as the number of iterations required to achieve a prescribed residuals tolerance in the Krylov linear
solver. This is particularly relevant during the first pseudo time steps when, being the residuals large, the Dt is small. Thus
the idea is to solve
Z

Xh

qh
1
a2

@ph

@t
dx�

Z
Xh

$hqh � uhdxþ
Z

Ch

sqht � ûðu	h ;p	h Þdr ¼ 0; ð39Þ
instead of the first equation of the system of Eq. (35). Even if Eq. (39) has exactly the same form of a standard artificial com-
pressibility approach, in our algorithm the coefficient a2 can safely differs from the artificial compressibility coefficient, c2,
adopted in the Riemann solver, Eq. (29). Eqs. (39) and (38) merely define a globalisation strategy of the Newton–Krylov algo-
rithm preventing its lack of robustness and allowing to efficiently seek the solution of the steady state problem of Eq. (35).
This solution algorithm enjoys the flexibility of the two compressibility coefficients setting: the one related to the convective
flux terms can be fixed to a small value, in [18] it is shown that is preferable for both the accuracy and the Jacobian condition
number, while the second to a larger value, resembling the incompressible constrain which implies a!1. Note that in the
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original global mass matrix M, since the time derivative of pressure does not appear in the governing equations, the block
corresponding to the pressure degrees of freedom are null while this is not the case with the application of Eq. (39).

To solve Eq. (37) we resort to the preconditioned GMRES (Generalized Minimal RESidual) linear solvers available in the
PETSc library, [28], the software upon which our DG code relies for the purpose of parallelization.

The results here reported are obtained with the standard algorithm, nevertheless even a matrix-free version [29], in
which the Jacobian matrix J is replaced by its first order finite difference approximation ensuring a significant memory sav-
ing, has been already verified.

The parallelization is based on grid partitioning accomplished by means of the METIS package, [30]. Each processor owns
the data related to its local portion of the grid and the data on remote processors are accessed through MPI, the standard for
message-passing communication. Thanks to the compactness of our DG method only the data owned by the near neighbour
elements at partition boundaries need to be shared among different processes. An effective choice for the preconditioner is
the incomplete lower–upper factorization, ILU(0), of the analytically computed matrix A. However, since the global ILU(0) is
not a highly scalable algorithm, the block Jacobi (BJ) method, with one block per process each of which is solved with ILU(0),
is often used in the parallel computing context. Moreover several computations have shown that the Additive Schwarz Meth-
od (ASM), for which the local block is enlarged with the matrix entries corresponding to one or more strips of overlapping
elements, is more effective than the BJ method.
5. Numerical results

In this section we present high-order DG solutions of steady problems in order to assess the reliability and robustness as
well as the accuracy of the proposed SA model implementation. If not stated otherwise, the following results have been ob-
tained using the Allmaras negative ~m corrections and the new r definition. The validation cases here considered are included
in the proposals of the Turbulence Model Benchmarking Working Group, a subcommittee of the American Institute of Aero-
nautics and Astronautics (AIAA) Fluid Dynamics Technical Committee [31].

The main aim of the first test case, the flow over a flat plate, was to verify the accuracy of our DG implementation while
the second and the third test cases, the flow past a backward-facing step and around a NACA 0012 airfoil, have been chosen
to assess the solver performance in dealing with large flow separation zones and with highly stretched and curved elements,
respectively.

For all the computations here reported the freestream turbulent viscosity has been set to ~m1 ¼ 10�3m. This value is con-
sidered perfectly acceptable, see for example [22,32], but, unlike the ideal condition ~m1 ¼ 0, prevents the occurrence of an
apparent transition, see Section 5.1.

The initial flow field of all the P1 solutions has been set to uniform freestream conditions, with a ¼ 10 in Eq. (39) and
CFLmin ¼ 10�1 � 1, CFLmax ¼ 1020, b ¼ 1 in Eq. (38). For computational efficiency, each converged lower-order solution has
been taken as the initial flow field of the next higher-order solution. Thanks to the good initial field approximation, the
CFLmin parameter could be gradually increased up to 102, rising the degree of polynomial approximation.

The artificial compressibility parameter of the Riemann solver has been set in the range of 10�2 to 10�1 for all the cases
considered. However, as can be seen in Section 5.3, the results were not found to be significantly affected by the c2 value.

The parameters of the restarted GMRES solver have been set to 120 Krylov space vectors, 240 maximum iterations and
10�5 relative convergence tolerance. For parallel computations, a one-level Additive Schwarz preconditioner has been used.
The above parameters have been chosen in order to avoid any issues related to under-solving the linear systems. However,
we have already verified that all the test cases here reported could also be computed with less expensive GMRES settings.

All the solutions have been computed on a Linux Cluster with 8 Opteron nodes for a total of 64 cores operating at 2.3 GHz.

5.1. High Reynolds number flow over a flat plate

The first test case is the flow over a smooth flat plate with Reynolds number equal to 107 based on the plate length. The
flow was experimentally investigated in [33] and included in the 1969 ASOFR-IFP Stanford Conference [34]. It was also used
as a validation case of CFD codes by the NPARC Alliance [35].

The solution has been computed up to P6 polynomial approximation on two sets of quadrilateral grids suitably refined at
the wall and around the leading edge. The first set has been used to perform a convergence study and consists of five nested
grids with a number of elements in the range of ne ¼ 96 to ne ¼ 24576. The second set has been used to investigate the effect
of grid spacing close to the wall and includes three grids with ne ¼ 384 and different height of the elements next to the wall.

The computed skin friction coefficients are shown in Figs. (a)(a)11–13(a) for increasingly higher values of the non-dimen-
sional centroid distance yþc ¼ ycus=m of the elements next to the wall. The viscous stress sw tangential to the wall, needed to
compute the friction velocity us ¼

ffiffiffiffiffiffiffiffiffiffiffi
sw=q

p
, has been evaluated taking into account the lifting contribution of the velocity

jump to the velocity gradient internal to the elements, according to the equation
s ¼ qðmþ mtð~mhÞÞ½ð$huh þ r suhtð ÞÞ þ ð$huT
h þ r suhtð ÞT �:
These Figures show that using P3 polynomial approximation the computed skin friction distributions look quite accurate on
the grid with near-wall spacing as high as Oðyþc Þ  10.



Fig. 11. Flat plate, Re ¼ 107. Grid with Oðyþc Þ  1 and ne ¼ 384.

Fig. 12. Flat plate, Re ¼ 107. Grid with Oðyþc Þ  10 and ne ¼ 384.
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The near-wall behaviour of the numerical solutions is presented in terms of dimensionless velocity profiles
uþ ¼ u=us ¼ f ðyþÞ for Rex ¼ 5� 106. The velocity profiles are compared with experimental data and with the theoretical pro-
files in the viscous sub-layer and in the log-law region. Similarly to skin friction distributions, Figs. 11(b), 12(b) and 13(b)
show that high-order P3 solutions agree very well with the experimental data on the grid with Oðyþc Þ  10 near-wall spacing.
Higher degree polynomial approximations allow to obtain pretty accurate solutions even on very coarse meshes with only
ne ¼ 24 elements, see Fig. 14(a).

For the purpose of studying the convergence of the method, the computed drag coefficients have been compared with the
value of the most accurate P6 solution on the finest grid with ne ¼ 24576 elements. Assuming such value as the ‘‘exact’’ one,
Fig. 14(b) shows that the k theoretical order of convergence has been achieved indeed.

A typical convergence history of residuals using up to P6 polynomial approximations is displayed in Fig. 15(a). For this
simple test case the two negative ~m modifications and r formulations presented above provide quite similar convergence his-
tories and numerical results.

Finally, a remark on the boundary condition for ~m1. Employing the ideal value ~m1 ¼ 0, an apparent transition, that has no
relationship with any physics intentionally built in the SA model, has been observed in the solutions. This behaviour was



Fig. 13. Flat plate, Re ¼ 107. Grid with Oðyþc Þ  100 and ne ¼ 384.

Fig. 14. Flat Plate, Re ¼ 107. Solution accuracy.
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already investigated by Rumsey [36] and, as found by this author, we have verified that more accurate numerical solutions,
either on refined grids or with higher degree of polynomial approximation, produce larger ‘‘laminar regions’’, see Fig. 15(b).
In our results this artificial transition appears even if the trip term, considered by Rumsey the main responsible for this unde-
sirable behaviour, is missing, being it part of the transitional model, here not considered. However, the value ~m1 ¼ 10�3m,
much smaller than ~m1 ¼ 3m suggested by Rumsey as a cure for the full model, was sufficient to avoid this numerical artifact.
According to this observation, the following computations have been run with the freestream condition ~m1 ¼ 10�3m.
5.2. Turbulent flow past a backward-facing step

The second test case considered in this work is the flow past a backward-facing step. This is a quite popular test case for
studying the physics of separating and reattaching turbulent flows and for assessing the capabilities of turbulence models
and numerical methods. Here we have considered the experimental setup of [37] with step height H, inlet channel height
8H and Reynolds number based on the step height Re ¼ 37400. The flow has been computed on a set of five Cartesian grids



Fig. 15. Flat plate, Re ¼ 107.

Fig. 16. Backward-facing step case, Re ¼ 37400. P6 solution. Grid with Oðyþc Þ  0:1.
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with 2800 elements, grid lines clustered at the walls and around the separation point and yþc first cell height values of the
order of 0.1, 1, 10, 20 and 50. The example of velocity contours and streamlines of a high-order solution, shown in Fig. 16,
highlights the capability of the method to capture the secondary vortex on the bottom of the step. As was the case for the flat
plate problem, high-order (at least P3) solutions on the grid with Oðyþc Þ  10 near-wall grid spacing already provide almost
converged results, see Fig. 17.

Figs. 18 and 19(a) compare the DG results with the experimental velocity profiles and skin friction coefficients reported in
[37]. Velocity profiles, obtained using the Oðyþc Þ  0:1 mesh, at some dimensionless x values match well, especially in the
reattached zone, as well as the skin friction coefficient along the bottom wall. Fig. 19(b) shows the ~m profile at x ¼ 32. It
is clear that almost indistinguishable solutions are achieved with the two negative ~m modifications here implemented. Little
differences can be observed only in the region where ~m is close to zero, with the Allmaras approach ensuring smaller oscil-
lations amplitude around the freestream value.



Fig. 17. Backward-facing step, Re ¼ 37400. Numerical solutions for different near-wall grid spacing.
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Considering the predicting capabilities of the SA model on massively separated flow fields, the reattachment length xr , is a
sensitive parameter that has been historically used to asses the overall performance of turbulence models. In Table 1 are
reported the reattachment locations, computed using up to sixth order polynomial approximations, which are in good agree-
ment with the experimental data available in [37] and are almost identical to that, reported in [25], obtained with the same
turbulence model.

The table shows also the xr values obtained adopting both the Allmaras and the Bassi negative ~m corrections and the stan-
dard or the modified r closure function. It is worth to mention that, apart the first order cases, all the values fall inside the
same computational element. Furthermore it is easy to observe that, for the same order of polynomial approximation, all the
results are within the 1% of tolerance proving that all the modifications here employed do not affect the final solutions.

As regards the solver computational efficiency this test case reveals some interesting features about the corrections
adopted for the negative working variable of the turbulence model. Convergence histories are really similar for the two neg-
ative modifications, see Fig. 20. However the Allmaras approach is faster, in terms of Newton steps needed to reach the full
convergence up to machine precision, at low and at moderate polynomial order, Fig. 21(a), while the Bassi one seems to be
preferable for higher order computations, Fig. 21(b). In our opinion this behaviour can be justified since with the first



Fig. 18. Backward-facing step, Re ¼ 37400. Oðyþc Þ  0:1. Numerical and experimental velocity profiles.
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approach more terms are able to raise a negative ~m value, thus a lower number of zone characterised by ~m < 0 are computed
both during the solution process and in the final solution. However when a higher-order approximation is involved the non-
linear system of equation becomes stiffer compared to that achieved following the Bassi approach. In fact in the latter case,
when ~m < 0, the SA turbulence model is simply reduced into an advection–diffusion equation which does not involve any
non-linear source terms as it happens in the Allmaras case. In Fig. 22 P6 convergence histories are depicted. It is quite easy
to observe that relevant oscillations of the L2 norms of the residuals vector can occur when this value is quite small thus,
according to Eq. (38), Dt is large. In our computational experience even when this happens the computations do not
blow-up and still converge to the steady state solution. Moreover the residuals oscillation amplitude can be safely reduced
increasing the accuracy of the linear solver, for instance enhancing the total number of iteration or the Krylov sub-space size
etc. Fig. 22(a), or reducing the time step size Dt lowering the b parameter in Eq. (38), Fig. 22(b).

Finally we mention that, in order to verify the solver robustness, in this case all the simulations were performed with
a2 !1 in Eq. (39). As expected the lack of the block corresponding to the pressure DOFs in the mass matrix M is in some
sense paid only with an increased number of the inner GMRES iterations within the first Newton steps.



Fig. 19. Backward-facing step, Re ¼ 37400. Oðyþc Þ  0:1.

Table 1
Backward-facing step, Re ¼ 37;400. Computed reattachment location, xr , for different polynomial approximations, Oðyþc Þ  0:1, Exp. xr ¼ 6:26 [37], Wilcox [25]
xr ¼ 6:1.

P1 P2 P3 P4 P5 P6

Standard r, Allmaras ~m 5:6892 6:0084 6:0167 6:0159 6:0338 6:0105
Standard r, Bassi ~m 5:6932 6:0238 6:0372 6:0174 6:0350 6:0112
Modified r, Allmaras ~m 5:7113 6:0642 6:0661 6:0655 6:0656 6:0654
Modified r, Bassi ~m 5:7111 6:0687 6:0684 6:0669 6:0666 6:0660

Fig. 20. Backward-facing step, Re ¼ 37400. P1;P2; . . . ;P6 convergence histories.
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Fig. 21. Backward-facing step Re ¼ 37400. Convergence histories.

Fig. 22. Backward-facing step, Re ¼ 37400. P6 convergence histories.
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5.3. Turbulent flow around a NACA 0012 airfoil

As a final test case we have computed the incompressible turbulent flow around a NACA 0012 airfoil at different Reynolds
numbers (Re ¼ 2:88� 106; 6� 106) and angles of attack (a ¼ 0�; 10�; 15�). A C-type grid with 2472 elements and piecewise
cubic representation of the edges has been used. The farfield boundary has been placed at 100 chords length from the airfoil
section. Grid lines have been suitably clustered around the leading edge and near the airfoil surface. First cell hight guaran-
tees a maximum yþc value of about 20 in proximity of the airfoil trailing edge (for the case Re ¼ 2:88� 106 and a ¼ 15�). This
test case was computed up to P6 polynomial approximation, see Fig. 23 for some representative P6 results.

Our numerical results have been compared with the experimental data of Gregory and O’Reilly [38] (Re ¼ 2:88� 106) and
of Ladson [39,40] (Re ¼ 6� 106). Figs. 24 and 25 highlight the excellent agreement between experimental data and
numerical results.



Fig. 23. NACA 0012, Re ¼ 2:88� 106 and a ¼ 15� . P6 solution.

Fig. 24. NACA 0012, Re ¼ 2:88� 106. Pressure coefficient.
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The DG pressure distributions for Re ¼ 6� 106 were also compared with a reference SA solution computed by means of
the well established CFL3D code [31] on a very fine 859� 257 C-type mesh. This comparison, see Fig. 25(b), shows that our
converged DG solutions are indistinguishable from the reference one, thus confirming once more that the proposed modi-
fications of the SA model, while improving the robustness of the implementation, do not impair the quality of solutions. This
aspect can also be seen looking at the force coefficients reported in Tables 2 and 3 for all the degrees of polynomial approx-
imations and the various SA modifications proposed in this paper. The maximum difference for CD is below 1:5%, while the
lift coefficient CL compares even better with a difference less than 0.2% for Pk solutions with k P 2.

For the case Re ¼ 6� 106 and a ¼ 0� we have also performed a sensitivity analysis on the effect of the artificial compress-
ibility parameter c2 of the Riemann solver. Fig. 26 shows that even changing c2 by five orders of magnitude, the computed
pressure and skin friction distributions are almost identical even changing c2 by several orders of magnitude, thus confirm-
ing the reliability and robustness of the method.



Fig. 25. NACA 0012, a ¼ 15� . Pressure coefficient.

Table 2
NACA 0012, Re ¼ 2:88� 106 at a ¼ 15� . Computed CD � 102 for different polynomial approximations, ne ¼ 2472.

P1 P2 P3 P4 P5 P6

Standard r, Allmaras ~m 9:0546 2:6754 2:4722 2:4372 2:4188 2:4433
Standard r, Bassi ~m 8:9073 2:6541 2:4609 2:4185 2:4143 2:4175
Modified r, Allmaras ~m 8:6525 2:6445 2:4529 2:4140 2:4113 2:4114
Modified r, Bassi ~m 8:7111 2:6498 2:4558 2:4153 2:4122 2:4141

Table 3
NACA 0012, Re ¼ 2:88� 106 at a ¼ 15� . Computed CL for different polynomial approximations, ne ¼ 2472.

P1 P2 P3 P4 P5 P6

Standard r, Allmaras ~m 1:1124 1:4823 1:4992 1:5023 1:5041 1:5014
Standard r, Bassi ~m 1:1207 1:4842 1:5000 1:5042 1:5046 1:5041
Modified r, Allmaras ~m 1:1369 1:4612 1:5017 1:5051 1:5052 1:5049
Modified r, Bassi ~m 1:1330 1:4848 1:5009 1:5047 1:5050 1:5047
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Concerning the computational efficiency, Fig. 27 shows that the modified r function ensures really faster convergence to
steady state. The solver is in fact significantly more stable, thus allowing the standard values of CFLmin and b parameters in
Eq. (38) to be safely used. Instead, the stability of the original r formulation requires, especially for high angles of attack, low-
er values of such parameters and a larger number of Newton steps to converge. Moreover, the increased stability of the new r
formulation, together with the analytical residual linearisation employed in the code, allows to increase the CFLmin param-
eter up to 100 after the first or second lower order solutions, thus strongly reducing the number of Newton steps to reach
convergence in the following higher order solutions, see Fig. 27(b). We believe that this behaviour of the solver, already seen
in the convergence histories of the flat plate problem shown in Fig. 15(a), is important for the overall efficiency of high-order
solutions, since larger number of Newton steps are required only for the relatively less costly low-order computations.

As regards the behaviour of the Allmaras and Bassi treatments of negative ~m values, this test case confirms the comments
done in the previous section, see Fig. 28.

Fig. 29 shows the zones with negative eddy-viscosity and highlights that the Allmaras corrections result in a lower
number of elements with negative eddy viscosity with respect to the approach of Bassi. However, both approaches produce
quite extended zones with non positive ~m values but their reliability to assure a smooth transition of the eddy viscosity to its
freestream value allows to prevent the blow-up of the computations.



Fig. 26. NACA 0012, Re ¼ 6� 106 at a ¼ 0�; P6 solutions. Effect of the artificial compressibility coefficient.

Fig. 27. NACA 0012, Re ¼ 2:88� 106 at a ¼ 15� . P1;P2; . . . ;P6 convergence histories.
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6. Conclusions

In this work a high-order DG method for the incompressible RANS equations coupled with the SA turbulence model has
been presented. The DG discretization of the nonlinear convective terms is based on the artificial compressibility flux formu-
lation introduced few years ago for the incompressible Navier–Stokes equations. This approach has proved to be very well
suited to deal with the numerical stiffness induced by highly stretched grids, with possibly curved elements, and by the
strongly nonlinear character of the governing equations, typical of high-Reynolds number turbulent flow computations.

Two are the main contributions of this paper about the SA model implementation. The first one is how to deal with
unphysical, but likely to occur numerically, negative eddy viscosity values. The second one is the proposal, based on a de-
tailed analysis, of a new limiting procedure for one of the model closure functions that strongly affects the numerical sta-
bility of the implementation, even for positive values of ~m.

The occurrence of negative eddy viscosity values has been addressed and numerically evaluated by means of two ap-
proaches. The first one was suggested by Allmaras himself while the second one was inspired to the DG implementation



Fig. 28. NACA 0012, Re ¼ 2:88� 106 at a ¼ 15� . Convergence histories.

Fig. 29. NACA 0012 airfoil, Re ¼ 2:88� 106 at a ¼ 15� . P6 solution. Negative ~m zones.
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of the k—x turbulence model reported in Bassi et al. [12]. The two approaches differ in that the corrections proposed by
Allmaras are continuous and ensure continuity of the Jacobian, while in the approach of Bassi et al. [12] the Jacobian is dis-
continuous. We remark that, since the Allmaras modifications include more terms that could lead to the growth of an
unphysical ~m value, usually the zones with negative eddy viscosities are smaller in size. However, as shown in Section 5,
the overall quality of results and the behaviour of the solution algorithm are quite similar in the two approaches.

As a second contribution to a robust and efficient implementation of the SA model, we have introduced a new limiting
procedure for the closure function r of the model. The behaviour of this function in the original SA model sometimes leads
to a positive Jacobian of the source term which impairs the convergence to steady state of an implicit solver. The procedure
introduced in this work prevents the r function, whose square root is in fact a length scale, from attaining negative values,
and avoids the sign inversion of production and destruction source terms. Numerical experiments have shown that this mod-
ification of the SA model becomes essential when computing flows with strong adverse pressure gradients or large recircu-
lation and separation zones.
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By comparing our results with reference results available in the literature we have found that all the SA model modifi-
cations here proposed do not affect the RANS-SA solution, while they significantly improve the reliability of the model
and the robustness of the code. Furthermore, these SA modifications are not specific to the DG method, thus they can be eas-
ily implemented in any RANS-SA solver with significant advantage. Finally, the proposed modifications do not require any
additional computational effort and thus do not impair the efficiency of the implicit solver, which is able to provide high-
order solutions in a small number of Newton steps.

The code for three-dimensional flows in complex geometries has already demonstrated numerical robustness similar to
the two-dimensional case. The implementation and the demonstration of the method for the three-dimensional case will be
the subject of a forthcoming paper. Future work will be devoted to the implementation of DES in our high-order incompress-
ible DG solver.
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