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Abstract : 
antisymmetric decoupling scheme and modified pseudospin model proposed by Li and 
Qin for squaric acid have been used in present study to discuss the effect of electric field 
on some dielectric properties. Expressions for shift, width, soft mode frequency, 
dielectric constant, loss and transition temperature have been evaluated. By fitting model 
values of physical quantities in the theoretical expressions thermal dependence of 
antiferroelectric mode frequency, dielectric constant and loss have been calculated in 
presence of electric field  in the vicinity of transition temperature. Theoretical results are 
similar to other antiferroelectric crystals.
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INTRODUCTION

Squaric acid (SQA), C O H  is a strong organic acid and belongs to the group of hydrogen 4 4 2

bonded ferroelectrics. SQA is an antiferroelectric substance and used in the area of medical, 
[1,2]electronics, optics . SQA has layered structure. Each molecule is a square with oxygen ions at 

[3]its four vertices linked by hydrogen bonds on equal footing .  At about 371 K, the crystal 
[4-7]undergoes a first order phase transition to paraelectric phase . Because of the planar H-bonds, 

the interaction between molecules in the same layers is stronger than in the interlayers. Below 
transition temperature, protons are arranged in ordered pattern. The direction of lattice 
spontaneous polarization are the same for one molecular plane and opposite for neighbouring 
ones. The antiferroelectric phase is monoclinic with space group P2 /m and the lattice 1

dimensions are a=6.13Å, b=5.23Å, c=6.14Å while the paraelectric phase is tetragonal with 
space group I4/m with new lattice dimensions a= 6.26Å, b=5.36Å , c=6.30Å .

The hydrogen bonded geometry of crystal structure of SQA and its other forms has been 
[8] [9] [10]observed by CSD , thermogravimetric method  and finite field procedure . The geometry of 

crystal is responsible for non-linear electrical properties. There is an order-disorder transition 
[11]in SQA .This phase transition has been investigated by various methods such as C-NMR 

[13] [14]study ,optical birefringence , neutron scattering . Due to its first order phase transition [12]
[15]there is no thermal hysteresis can be detected . There is a measurable increase in imaginary 

[16]part of dielectric constant which denotes loss in microwave range . An intermediate liquid 
like state has been identified between ferroelectrically-ordered state and completely 

[17]disordered paraelectric state by unbiased QMC simulations . Theoretically SQA has been 
[18] [11] [19-21]studied by microscopic model , simulation technique , pseudo spin model , cluster 

[22] [19]approximation and tunneling of protons . Li and Qin  have considered pseudospin model to 
1 and 2 kinds of layers stacked alternatively along the b-axis. By using Green's function 
method, they evaluated soft mode frequency and the conditions of para and antiferroelectric 
phases, order parameter, dispersion relation, internal energy and transition entropy. External 
electric field has pronounced effects on temperature dependence of dielectric properties and 

The double-time thermal Green function method with the symmetric and 
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transition temperature of KH PO , PbHPO  and C H O  crystals. However, no theoretical study 2 4 4 4 4 2

has been made to study the effect of external electric field on transition and dielectric 
properties of squaric crystals.

[19]In the present study the pseudospin model for layers 1 and 2 of Li and Qin  has been modified 
by adding pseudospin-lattice interaction term, third and fourth-order phonon anharmonic 
interaction terms as well as an external electric field term. By using modified model and the 
method of double time thermal Green's function, expressions for width, shift, normal mode 
frequency, dielectric constant and loss tangent have been derived. By fitting model values in 
these expressions thermal dependence of normal mode frequency, dielectric constant and 
tangent loss have been calculated. Theoretical results in absence of electric field have been 

[23] [24] [25]compared with experimental results of Maier et.al. , Muser  and Samara and Semmingsen  
in absence of electric field while for different electric field strength their thermal behaviour 

[26,27]have been compared with experimental variations obtained by others  for antiferroelectric 
ADP crystal and copper formate terahydrate crystals.

Theory

For SQA crystal, one of the molecular planes of squaric acid each hydrogen bond is shared 
between two C O  radicals, one can assign two of the four neighbouring hydrogen bonds as 4 4

belonging to the central C O  radical. It is sufficient to consider one of these two neighbouring 4 4

hydrogen bonds only. As for layer-layer interactions only the interaction of neighbouring 
[19]layers is taken into account. We add Hsp, Hanh and HE terms to Li and Qin model  Hs, so that 

the total model for SQA is now expressed as

 ...(1)

With

     ...(2)                                                    

...(3)

...(4)

...(5)

x zwhere Ω is tunneling frequency of proton, S  and S  are the x- and z components of pseudospin 1 1

variable S respectively. The indices 1 and 2 refer to the two layers, J  is spin-spin exchange ij

interaction constant within a given chain and K  is the effective interaction constant between ij

neighbouring chains, V  is pseudospin-lattice interaction constant, ω is phonon frequency, Ak ik k
(3)and Bk are operators corresponding to position and momenta, V  (k , k , k ) and   are Fourier 1 2 3

transforms of the third and fourth order atomic force constants.

Green's Function and field dependent shift and width

 We consider the evaluation of Green's function

  ...(6)
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Differentiating Green's function Eq (6) with respect to times t and t′ respectively twice with the 

help of modified Hamiltonian given in eq(1), then Fourier transforming and writing in Dyson's 
equation form one obtains

...(7)

where

...(8)

and

 ...(9)

with

 ...(10)

In  there are higher order Green's functions, which are evaluated by decoupling 
them using scheme . The simpler Green's functions 
are then evaluated in Zeroth-order approximation. 

Substituting values of various Green's functions in Eq(10) and then resolving P(ω) into its real 

and imaginary parts, one obtains shift ∆(ω) and width Γ(ω) respectively. Green's function 

given in Eq.(7) finally becomes:

...(11)

with

...(12)

...(13)
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Shift and width are obtained as

...(18)

 

...(19)

 ...(20)

...(21)

In Eqs (20) and (21) and are renormalized phonon frequency and phonon width, 
respectively obtained in the evaluation of phonon Green's function   . The phonon 
Green's  function is obtained as

...(22)

Phonon frequency is obtained as

 ...(23)

Phonon width is obtained as:

+ ....................... (higher terms) ...(24)

Phonon shift is obtained as:

+ ....................... (higher terms) ...(25)
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Field dependent renormalized soft mode frequency

Solving Eq (11) self consistently one obtains antiferroelectric soft mode frequency as

...(26)

Soft mode frequency explicitly depends upon modified pseudospin frequency,    as well as 
renormalized phonon frequency  .

By applying Condition,     →0 as T→T   givevc

...(27)

Where

...(28)

Antiferroelectric transition temperature T  is explicit function of tunneling frequency, Ω inter c

layer and intra-layer interactions, spin-lattice interaction constant, phonon anharmonic 
interactions as well as electric field.

Electric field dependent dielectric constant and loss tangent

The susceptibility χ is related to Green's function 

...(29)

N is number of dipoles per unit volume and µ is dipole moment associated with OH....O 

bond. The dielectric constant ε is related to susceptibility χ as 

...(30)

We may write ε = 4π χ, as ε>>1 for ferroelectrics.

From Equations (11), (29) and (30) we obtain dielectric constant ε as

...(31)

The dissipation of power when any ferroelectric or dielectric is exposed to electric field is 
given by ratio of imaginary to real parts of dielectric constant, i.e.

...(32)

Above Eq (32) shows that loss tangent is function of proton tunneling frequency, width 
function. It is also inversely proportional to square of normal mode frequency.

NUMERICAL CALCULATION AND DISCUSSION

By using model values of physical parameters appearing in expressions derived for SQA 
-1 -1 -1 -1crystal, i.e. Ω=107 cm , T =371K,    =1086 cm , K= 160 cm-1, V =64 cm , N=35.59 cm , c ik

18 -1µ×10 (cgs)=4.86, ω=100 cm , C= 18000K. The thermal variations for normal mode k

frequency, dielectric constant and loss tangent using  Eqs (26), (31) and (32) have been 
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calculated and shown in figures 1, 2 and 3. Theoretical results for soft mode frequency, 
dielectric constant and tangent loss. Our theoretical results agree with experimental results, in 
absence of electric field. For different electric field strengths the results are similar to 

[26,27]experimental variations obtained by others  for antiferroelectric ADP crystal and copper 
formate tetrahydrate crystals. The experimental data for SQA crystal for different electric field 
strengths are not available in the literature.

-1Fig. 1 : Temperature and field dependence of soft mode frequency     (cm ) of  
SQA crystal (- our results)

Ω̂

Fig. 2 : Temperature and field dependence of Dielectric constant (ε) of SQA crystal (- our results)

Fig. 3 : Temperature and field dependence of tangent Loss (tan ä) of SQA crystal (— our results)
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It emerges from present study that the modified pseudospin model for layer 1 and 2 coupled 
with phonon  along with third and fourth order phonon anharmonic interaction terms explains 
well the temperature dependences of dielectric properties and phase transition in SQA crystal. 
The phonon anharmonic terms renormalize the soft mode frequency. The renormalized soft 
mode frequency explains the nature of transition at 371K in SQA crystal. If shift, width, 
pdeudospin- phonon interaction term and phonon anharmonic terms are neglected from our 
calculatiuons, our results at once reduce to the results of Li and Qin[19]. These authors have 
decoupled the correlations in the early stage and have not considered spin-phonon interaction 
and anharmonic interaction terms. Therefore, they could not obtain better and convincing 
results to explain antiferroelectric transition in SQA crystal. In the present work, the 
correlations have been solved by decoupling them at proper stage. Hence all the important 
interactions could be contained in the expressions. Therefore, present results arte much better 
and convincing, our expressions (31),(27), (32) and (26) show that the dielectric constant, curie 
temperature, dielectric loss and renormalized frequency respectively are all explicitly electric 
field dependent. The dielectric constant decreases with increase in electric field strength. Loss 
also decreases with increase in electric field. The effect of electric field is to shift the peak of 
dielectric constant to higher temperatures. Our theoretical results for the change in values of 
dielectric constant, transition temperature and tangent loss agree with experimental results, in 
absence of electric field. Experimental data for SQA crystal are not available in literature.

A transverse radiation field derives the low-lying transverse mode of this lattice mode and is 
then degraded into other vibrational modes of the material. Due to anharmonic phonon 
interactions, decay processes take place. For example, third-order interaction leads to the 
decay of a virtual phonon into two real phonons or the virtual phonon may be destroyed by 
scattering a thermally excited phonon. Similar processes occur may be destroyed by scattering 
a thermally excited phonon. Similar processes occur for fourth and higher order interactions. 

CONCLUSION

From present study it can be concluded that the two sub-lattice pseudospin lattice coupled 
mode model modified with third and fourth order phonon anharmonic interactions and extra 
spin-lattice interaction  terms explains the ferroelectric and dielectric behaviour of squaric acid 
crystal. Our theoretical results are in agreement with experimental results in absence of electric 
field which show the applicability of the present modified model for SQA crystal. 
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